
1/19

ml10

TokyoX: DLL side-loading an unknown artifact
lab52.io/blog/tokyox-dll-side-loading-an-unknown-artifact

During Christmas holidays, Lab52 has been analyzing a sample which loads an artifact that we have
decided to refer to as “TokyoX” since no similarities have been found as to any known malware, which we
usually detect in open sources. However, we cannot confirm so far that it is indeed a new family of
malware.

The first thing we identified was a DLL 
 (382b3d3bb1be4f14dbc1e82a34946a52795288867ed86c6c43e4f981729be4fc) which had the following

timestamps in VirusTotal at the time of the current analysis, and was uploaded from Russia via web site:

Creation Time 2021-12-09 02:46:43
 First Submission 2021-12-09 08:48:20

 Last Submission 2021-12-09 08:48:20
 Last Analysis 2021-12-23 23:38:08

Some antivirus engines tagged the sample as PlugX, but it seems that the attribution might be due to the
final payload’s loading mechanism: DLL sideloading with an encrypted payload in the same directory.
After analyzing the final payload we could not find any similarities with other known samples from PlugX
other than the loading TTPs.

This DLL had a related .zip file with the name планирование.zip (translated to as planning.zip). When
unzipping, the following files are observed:

The legitimate file Creative.exe, an encrypted Data file and the version.dll DLL, which implements the
loader function for the Data file, and therefore responsible of mapping the “TokyoX”.

If we execute it from a path which is not final or the expected by the malware, it replicates to another path
and executes from there, which is something it does have in common with some PlugX dll loaders:

https://lab52.io/blog/tokyox-dll-side-loading-an-unknown-artifact/


2/19

Once executed, we observe how the netsh.exe process tries to establish connections with port 443 of the
IP address 31.192.107[.]187.

In this analysis we will focus on different aspects about the process; from double-clicking the binary
123.exe process (which is a copy of Creative.exe but in another path) to the execution of “TokyoX”
already decrypted in memory.

The first thing we observe within the process is how the version.dll library prepares the decryption and the
final payload’s loading in the remote process:

In fact, we can see how the content of the Data file is read in the code section of version.dll:

If we edit the Data file with a hexadecimal editor we will see their values, which will help us to identify it in
memory later (beginning with E3 84):



3/19

After reading the file from disk, a child process netsh.exe is created. This just-created child process is
where several new memory segments will be located (a total of 5, including the final decrypted payload)
to decrypt the final “TokyoX” payload. The APIs which were observed for the creation and writing of the
remote process are the native APIs NtAllocateVirtualmemory and NtwriteVirtualmemory.

First, it creates two segments: 100Kb where the encrypted payload is located and which comes from the
disc, and another one of 4Kb. In the 4Kb segment we observe how the following string is set (which will
be the string used for the decrypting process):

The other memory segment of 100Kb contains the following (encrypted content, as we see how it
matches the content from Data file on Disk):



4/19

After the creation of these two segments, a third segment is allocated, where it is loaded the absolute
memory addresses from several win32 APIs (VirtualAlloc, LoadLibrary, GetProcAddress, the home
address of the coded payload, etc.) for its later use by the loader:



5/19

We can notice how the segment will have the memory addresses (starting from 123.exe they are located
in netsh.exe segment through the version.dll code):

Then, another segment of 4Kb is created where it loads the code that will decrypt and load the final
payload.



6/19

Finally, the “TokyoX” loader runs from the DLL (version.dll) in netsh.exe through the API
NtcreateThreadEx and we see the start of the last page created in the stack:



7/19

After the execution of NtCreateThreadEx, as indicated, the loader is initiated in netsh.exe in the segment:

Once the execution is moved to the netsh.exe process, it takes the string located in the initial 4Kb
segment, copies it into the stack and replicates it (0x100, 256 bytes) to match the specific block size of
256bytes. In the following screenshots we can observe how the block ends with the string “!Up?” when it
reaches the value 0x100 in hexadecimal.



8/19

After the block is created with the replicated string, the values from 00 to FF are found and used for the
decrypting process.



9/19

At this point, the loader transforms the 00-FF block with a series of additions combining the replicated
string’s block with the 00-FF block, as we can see:



10/19

The combination of the blue block (in following image) and the 00-FF block (pointed in red in previous
image) results in the following block in memory, marked in red in the image:



11/19

On the next step, the loader reads the initial argument, arg0, whose value is 0x900000 and points at the
4Kb block, which stores the absolute addresses to different API from Win32:

After this, the decrypting process for the final payload begins. The decrypting process gets two values
from the second block, exchanges and adds them, and the result serves as a final index to recover the
element from the second block with which the xor will be achieved through the coded block.



12/19

This description of the decryption algorythm has been identified as the RC4 algorythm.

After the decryption process, we find a PE binary, as seen in the following image. In this case, the
payload does not start with the traditional MZ header but the string “tokyo”:



13/19

Then, we see how it loads the VirtualAlloc absolute address (0x77211856) from the segment previously
created:



14/19

This creates another memory segment in the process netsh.exe with RWX licenses (that of 116Kb) which
will be used to load the PE:

In this new segment, it maps the binary using the virtual addresses as the regular Windows PE loader
would do.

Then, it calls the API LoadLibraryA (it has the address since the DLL saved it in the memory segment) of
the strings located in the mapped block:

Then it calls GetProcAddress() to get the addresses of certain functions:



15/19

Next, the libraries and functions block may be appreciated:



16/19

After the correct mapping and having loaded the necessary libraries for its proper functioning, it calls EAX
to run the decrypted and mapped payload:



17/19

To summarize, this article goes through the process followed in memory after executing the Creative
Cloud application until deploying TokyoX in memory. This DLL sideloading style is often linked to APT
groups whose attribution is also linked to China, however being a known technique as it is, we are not
able to consider any feasible attribution at the moment.

As reviewed at the beginning of the article, what we have named as “TokyoX” has not been identified as a
known malware so far (at least, with the sources that we have).

Additionally, at some point of the analysis we identified a tool used by this group for the creation of
version.dll, which pretends to be a Windows DLL located in SysWOW/System32. The string “AheadLib”
found among the code of the malicious version.dll drew our attention, and we quickly found two chinese
(casually or not) GitHub repositories with the source code of some tool called AheadLib.



18/19

Basically, this tool will allow you to create a C++ source code file, implementing a DLL with the same
exported functions as a given DLL. For the purpose of the current analysis we generated a source code
file using this tool and giving the legitimate version.dll as input.



19/19

In the shown screenshot we can see on the left side the pseudocode generated by IDA Pro while
analyzing the malicious version.dll sample. On the right side, we can observe the source code
automatically generated by AheadLib using the legitimate version.dll as input. Even though the exported
functions are not shown in the previous image, we can appreciate how there is a perfect match between
both snippets.

We will post soon an analysis of the final “TokyoX” RAT and its capacities.

IOCs

382b3d3bb1be4f14dbc1e82a34946a52795288867ed86c6c43e4f981729be4fc
31.192.107[.]187:443

 
 


