

A Look Into Purple Fox’s New Arrival

Vector

Technical Brief

Introduction

In previous blogs1, we analyzed the post infection modules that were delivered from an intrusion

linked to the Purple Fox botnet. We discussed the initial access techniques for this malware,

which, in earlier activities, included targeting SQL databases. The malware, as observed from

Trend Micro telemetry, was launched for the sole purpose of mining cryptocurrency.

This technical brief focuses on the same group’s recent activities. We cover a new arrival vector

and the early access loaders that we believe are highly associated with the intrusion set behind

this botnet. This recent infection chain is mainly targeting user’s machines via trojanized

software packages masquerading as legitimate installers. The installers are actively distributed

online to lure users into downloading and executing them in an effort to increase the botnet’s

overall infrastructure.

Upon analysis, we found that the infrastructure hosting the attacker’s malware shows regular

updates to the backdoor samples that are installed on the victims’ systems (we detect as

Trojan.Win64.PFSHELLOADER.SM). This indicates that the group behind Purple Fox may still

be optimizing their malware arsenal in preparation for new campaigns. We believe this new

arrival vector and the various early access loaders for Purple Fox will eventually lead to a new

expansion in the overall botnet infrastructure.

We also discussed some links to previous malware that we observed during the analysis of

several artifacts from these activities, particularly their kernel-based modules. The artifacts

seem to be connected with previously known malware families (specifically, the Zegost info

stealer and the FatalRAT remote access trojan). We believe these families have been reused

by the threat actor behind Purple Fox, or it is likely that the actors had access to the malware’s

base code.

Delivery via Weaponized Execution Parents

We started with tracking the new infection chain and the software packages used to

encapsulate the first stage loader. First, we analyzed the following samples to observe how this

infection starts. We start at this point since the weaponized installer distributed online will

determine the next stage payloads that will be loaded on the victim’s system (the chain is shown

in Figure 1).

The second stage payload is added as a single character in the request sent by the execution

parent to the first stage command and control (C&C) server. It is retrieved from the module

filename’s last character (highlighted in Figure 1 as “r”), then the first stage C&C server will log

the execution timestamp sent in the request alongside the single character. The single character

will determine what payloads will be sent back for the malicious installer to drop on the infected

machine.

Figure 1. Malicious installer requests the second stage payloads

Figure 2. Hardcoded stage 1 C&C address, and generated single character index from module

filename

Reviewing the disguised software packages, we saw that some of the software they were

impersonating were commonly used by Chinese users. The following list shows the recently

used software and the corresponding malicious payload for the second stage. The different

payloads will be served by the C&C upon execution based on the last character in the module

filename.

Package Description Weaponized Filename Distribution Date

Telegram Installer TextInputh.exe 2021-12-08

360BDoctor software 客户账单明细j.exe 2021-10-17

PPHelper Tool for Windows to
Jailbreak iDevices

pphelper5.exe 2021-12-01

Vmware KVM 极品新茶上线到付服务项目以及联系方式r.exe 2021-09-13

ScreenRecorderPro Apowersoft.ScreenRecorderPro3.exe 2022-01-02

Network Scanner zenmap.exe 2022-01-18

chrome_pwa_launcher x.exe 2022-01-22

Whats app installer whatsappsetupr.exe 2022-01-28

Proxifier Proxy Client (奇迹娱乐12月总账单z.exe) 2022-01-06

Adobe flash installer flashc.exe 2022-02-07

Micro Focus Net Express mfcss.exe 2022-02-19

QuickQ Installer QuickQr.exe 2022-02-21

Table 1. Disguised packages and weaponized filename, highlighted last characters will

determine the type of malicious payload dropped on victim

The malicious URLs that were actively distributing some of these installers are listed in the

Indicators of Compromise (IOC) document.

Infection Chain

The execution of any of the execution parents from the previous table starts with resolving the

ShellExecuteA and URLDownloadToFileA application programming interfaces (API) to

download and execute the next stage from a hardcoded C&C server. This C&C address hosts

all the variants for the second stage payloads.

Figure 3. First stage loader APIs

By analzying a set of C&C addresses hosting the second stage samples, we identified a list of

more than 60 servers that had previously hosted the samples. At the time of writing, only six

servers were found active in the recently generated execution parent installers — in the first

column of Table 1 we can see the variations of software that these malicious installers were

impersonating.

Figure 4 shows an exposed HTTP file server (HFS) that’s used to host all the second stage

samples with their update timestamps. HFS servers were previously used by Purple Fox in their

earlier 2019 campaigns to run their C&C servers that host files on the infected bots. This

attribution link will be discussed further in the similarity analysis section.

Figure 4. Exposed HFS server acts as a first stage C&C server used for hosting the next stage

payloads

We tracked the frequency of the second stage updated packages pushed to this exposed server

using the timestamp data. Figure 5 shows the number of different second stage malicious

packages that received updates. They updated many of the packages hosted on their servers

on February 19 and February 26, 2022. Earlier payloads that got pushed to this server were in

August 2021 (that was the attacker’s last update for the module). They are still actively updating

their components at the time of writing.

Figure 5. Second stage payloads update count

Each package found on these servers is named using a single character (a-z, 0-9) or a special

character. The server holds a compressed RAR archive that includes the second stage

loaders, and the main file inside the archive is svchost.txt that has all the malicious PE

modules components that will be dropped in the second stage.

Upon clustering all the collected unique svchost.txt samples (40 unique samples), we found

they could be split into seven unique clusters. Each cluster has a different set of malicious PE

modules that serve different purposes. The purposes are determined from the single character

sent by the first stage execution parent to retrieve the right package. The following table shows

the current status of the available packages on the first stage C&C server at the time of writing.

Malicious
Archive
Cluster

PE Modules
inside
svchost.txt

Unique
archive
per
cluster

Size of archive
member

Archive Name (Request
character)

1 9 PE Modules 5 1.1 MB a, g, j, s, x

2 15 PE Modules 6 2.5 MB 0, 1, @, +, m, t

3 13 PE Modules 4 2.6 MB 2, 8, k, q

4 8 PE Modules 1 1015.8 MB i

5 8 PE Modules 17 1016.1 KB 3, 5, 9, -, =, b, c, d, e, f, h, l, n, o,
p, v, y

6 8 PE Modules 6 1016.2 KB 4, 7, r, u, w, z

7 8 PE Modules 1 1016.5 KB 6

7z
Legitimate
Tool

 1 572.1 KB 77

Table 2. Second stage payload clusters

Inside each unique cluster, we found that the portable executable (PE) modules are only slightly

different from each other. The differences center in some configuration parameters related to

the second stage communications.

The order of the PE modules inside svchost.txt is dependent on the package requested by the

malicious execution parents (files masquerading as legitimate installers). As previously

mentioned, the last character in the installer filename will determine the final set of the auxiliary

modules that will be stuffed inside svchost.txt.

All the svchost.txt clusters share a shellcode prologue at the beginning, then a variable number

of auxiliary PE modules immediately after the main backdoor. Some of these are observed to be

dropped on the victim machines while others seem to be loaded only if a specific condition is

met on the system.

Figure 6 shows the overall infection chain from the malicious installer until the second stage is

loaded.

Figure 6. Infection chain showing steps until second stage payload is loaded

Svchost.txt Portable Executable (PE) Components

This section provides the analysis of a specific set of portable executable (PE) modules found in

one of the clusters. This set was found to be the most distributed. We focused on this specific

cluster for the following reasons:

- It has significant links to other malware families — an old campaign previously

documented to be Purple Fox, and an info stealer known as Zegost.

- It was observed to be loading the previously documented Purple Fox MSI installer after

the second stage.

- Different rootkit capabilities are found in the auxiliary PE modules.

The uniqueness of this cluster is the wide capabilities the attackers implemented in terms of

antivirus (AV) evasion, the attribution links that could be concluded from the signing certificates

for the PE modules, and the deployed malicious signed kernel drivers. Also, the main backdoor

supported functionalities dropped in the second stage, and we believe it acts as a loader for the

Purple Fox MSI installer.

Shellcode Execution Analysis

After analyzing all the observed malicious execution parents delivering different clusters, we

found that the shellcode component at the prologue of the dropped svchost.txt was similar

across all the different variants, regardless of the actual payloads embedded after the

shellcode.

It has two different implementations across all the clusters. A detailed look into both the

implementations and the significant PE components found after the shellcode are provided in

the next sections.

Shellcode Hash Size Executed DLL
Export

25da2ebdbe2136f07bd414795082364cafda79d8271d099e78891
b079158ed1b

8.12 KB Fun1, Fun2, Fun3

492fdcbdf81ed196b35cdbb7fac85e3a8ee1edebe0803034df900f5
e1a5049b6

3 KB TestFunction

Table 3. Shellcode to load and invoke the backdoor export function

First Shellcode Analysis
The first shellcode

(25da2ebdbe2136f07bd414795082364cafda79d8271d099e78891b079158ed1b) implements

four main functions for the intended functionality, as shown in the Figure 7 call graph diagram.

Figure 7. Shellcode main functions for loading a PE module in memory

The shellcode initially identifies its current location in the memory where it was loaded so that it

can get to its end location and retrieve the next PE modules. Then, it performs several sanity

checks for the first PE module header to make sure it is a valid PE header.

Figure 8. Parsing the PE header structure for the next PE module

After getting all the required offsets, the shellcode will resolve a specific set of API addresses

from kernel32.dll and ntdll.dll to support more functions. The resolved addresses are seen in

Figure 9.

Figure 9. Hashed list of APIs inside the shellcode

The required APIs that need to be resolved are searched by a custom hashing function called

the Resolve_APIs subroutine, which mimics GetProcAddress API. It will parse and enumerate

kernel32.dll and ntdll.dll exports for those specific APIs, then hash each export name to check

against a set of hardcoded hashes stored inside the shellcode.

Figure 10. Enumerate export names and compare with APIs hashes

The execution flow continues with preparing the first PE module for execution by calling in the

Load_PE subroutine. It takes the start address of the first PE module from svchost.txt and the

resolved API address table so it can enumerate the section headers and allocate the required

memory chunks for loading each section using a sequence of VirtualAlloc calls.

Figure 11. Loading PE sections header

Finally, it will return the start address of the newly initialized memory space loaded with the first

PE module.

Figure 12. Loading the full PE module

The last step performed by this shellcode is searching for a specific hardcoded exported

function name from the loaded PE module and identifying its address to be able to call into this

module.

Figure 13. Calling export name "func1" from the loaded PE backdoor

The code stub responsible for parsing the export table and enumerating is made efficient by

using the system APIs previously resolved for sorting an array of the export table using the

qsort API function. Then bsearch is called to perform a binary search on the sorted array to

efficiently look for the required export name by ordinals.

Figure 14. Binary search for the export name

If for some reason the “Fun1” export name cannot be resolved, the shellcode will try to get the

address of “Fun2” and “Fun3” respectively by calling into any of the exports from the first PE

module that are implementing the main backdoor. The execution will be transferred to it as

shown in Figure 15.

Figure 15. Transfer the execution to the main backdoor export function

Second Shellcode Analysis
A new implementation for the shellcode prologue component

(492fdcbdf81ed196b35cdbb7fac85e3a8ee1edebe0803034df900f5e1a5049b6) was captured

from the new droppers in another cluster. The new shellcode is more minimalistic because it

implements only important functions to load a PE in memory and parse several system APIs

addresses. It resolves different system APIs from the first one we mentioned.

Figure 16. Resolved system APIs by the second shellcode sample

Also, the final export call is different for this sample, it calls an export named “TestFunction”

from the next PE module that gets loaded.

Figure 17. Final export call by the second shellcode after loading the PE in memory

Implementing user-mode loader
The attackers behind Purple Fox opt for implementing a customized user-mode loader in order

to minimize the amount of bookkeeping entries that their malicious code would register with the

system’s internal data structures.

It doesn't leave any bookkeeping entries because the native loader isn’t invoked at all, thus, a

user-mode shellcode loader is a good design choice if attackers are concerned with

cybersecurity forensics. It minimizes both the quantity and quality of the forensic evidence as

the execution doesn’t rely on the native loader and doesn't respect the PE format for a

successful execution. The attacker can execute arbitrary code in svchost.txt without any PE

header at all as they already implemented a custom loader. The consequence is that the OS will

not log such an execution, leading to fewer forensic artifacts from this infection chain.

To compare, if the LoadLibrary API is used to load a module into the address space of a
process, the call will only succeed if the specified module is a PE file that resides on the disk. In
the case of a stand-alone user mode loader, all it needs for a successful execution is to parse
the executable headers and make the necessary adjustments as the native Windows loader
takes care of three basic tasks: mapping a module into memory, populating the module’s Import
Address Table (IAT), and implementing relocation fixes.

Figure 18. LoadLibrary expect a PE file on the disk as input

This is implemented in shellcode because of its nature of being small, self-contained, having

minimal footprint, and being position independent. However, there is still an anti-forensics flaw:

it assumes the required modules inside svchost.txt are residing on the disk. If the threat actor

mainly implements this for the purpose of anti-forensics and to minimize the loader footprint, to

fully gain the anti-forensics benefits, the whole invocation should be carried out in a fileless way

(i.e through an exploit), so it will not leave any traces.

We didn't observe the invocation of this chain via any exploits as an arrival vector, however,

links to a similar family (the Zegost info stealer which was invoked mainly through shellcode via

some exploits) are discussed in the last section. This may mean that there is a group behind the

two families that just reused their old techniques from an earlier campaign, specifically invoking

their backdoors through customized shellcode loaders.

Second Stage Backdoor

After the shellcode loads and allocates memory for loading the stuffed PE modules inside

svchost.txt, the execution flow will call into the first PE module found after the shellcode. The

module is a remote access trojan that inherits its functionality from a malware reported by

AT&T2 on August 2021 known as FatalRAT.

It is a sophisticated C++ RAT that implements a wide set of capabilities for the remote attackers

controlling it. The following figure shows the evolution of these family variants, which are all

stemmed from the old Gh0st RAT previously leaked on github.3 Some pivot points, which link

this module to the previously documented info stealer malware Zegost, are discussed in the last

section.

Figure 19. The evolution of the updated FatalRAT samples found in this chain

A comparison between the new samples observed from the Purple Fox activities and the early

FatalRAT samples from an AT&T report4 reveals a lot of code similarities between their core

internal functions.

Figure 19. BinDiff statistics from the updated FatalRAT(primary) vs. Older FatalRAT(secondary)

showing high basic blocks match

The first stage C&C server 202[.]8.123[.]98 links FatalRAT operators with the Purple Fox, as it

was hosting the malicious compressed archives in this campaign and was used before by

FatalRAT as their main C&C server.

Figure 20. C&C hosting compressed archives

The executed FatalRAT variants shown in Figure 21 and 22 differ across each cluster, this

shows that the attackers are incrementally updating it.

Figure 21. Updated FatalRAT variant from cluster-1

Figure 22. Updated FatalRAT variant from a more recent cluster with more added functionality

The remote access trojan is responsible for loading and executing the auxiliary modules

according to several checks performed on the victim systems (i.e., changes happen if specific

AV agents are running or registry keys are found). Then, it executes them in a specific order

hardcoded in the backdoor code instead of waiting for a command from its C&C server.

The auxiliary modules are intended as support for a specific objective that needs to be done.

For example, the cluster dropped modules shown in Figure 23 focuses on AV evasion and

removal capabilities served from the kernel via various dropped rootkit components.

Figure 23. Dropping various PE modules from memory

It also initiates a second stage C&C channel with another set of servers. It sends all the

fingerprinting logs collected from the victim’s system and then waits for new commands from the

C&C server. The configuration parameters for the second stage C&C address is hardcoded

after the 7z_dll module in this cluster.

Figure 24. Second Stage config parameters from two variants from the same cluster

Figure 25. FatalRAT encrypted fingerprinting traffic

Figure 26. Dispatching commands from C&C as a new worker thread is created

The following table shows the details of the various PE modules from one of the analyzed

clusters:

PE
Module
Order

Module Description Code section MD5 hash Size

1 Purple fox second stage updated
FatalRAT

cd4462856c4fd8b466aa621adac70ded 5399 KB

2 545a30.dll drop and decrypt PE_3 72442AD98A13CA8D1F956D95F98E8AED 71 KB

3 222.dll dropped by 545a30.dll 24D5DAC4C6006A7EC58FD11838543953 361 KB

4 RAMNIT file infector
masquerading as Pure Player
software

A0272708E1DE3F323B71B5D723BEDD5A 328 KB

5 7z_EXE (Legitimate 7z installer) 70E470D6244A85221ADD5E4571B82DAB 303 KB

6 7z_dll (includes the second stage
config)

F2FEEB586039BE21DF852A77C3F0F621 1132 KB

7 luohua Dlldll (for UAC bypass) 4A59658BCC4205A2CA9BE1F13FDAE02B 52 KB

8 User-mode client interface (x64) 6046DC00F75D92877B847A959C4E01F6 75 KB

9 Mini-filter Killer Driver(x64) 842CD635A2662745ED3242CFC21C1C35 136 KB

10 A signed Hidden rootkit variant 1 C9385EE4D39A4BC7EF9DA02F70849EAB 62 KB

11 A signed Hidden rootkit variant 2 2DD4534BF273C23DC641AB0D3B3E192C 384 KB

Table 4. Various PE modules inside svchost.txt cluster

In the recently updated clusters, the attackers started to deliver some new perl modules

alongside an interpreter to be executed on the victim machines. We are currently tracking the

new payloads delivered by this threat.

Kernel-mode AV-killer Driver Analysis

One of the analyzed executables embedded in svchost.txt is a user-mode client used to

interface with the accompanying rootkit module shown in the next section. This client supports

five different commands, each command implements a specific functionality to be executed from

the kernel driver that has the appropriate IOCTL interface exposed. The following table shows

the details of each command:

IOCTL Description IOCTL User-
Mode

Command

ARGC User Mode Client Arguments

Kill a Mini-Filter Driver 0x222000 m 1 Mini-Filter driver name

Copy Files from Kernel 0x222004 c 2 Source path, Destination path

Delete Files from Kernel 0x222008 d 1 File Path to delete

Kill/Wipe User-mode Process 0x22200c k 2 Operation Type, Process name

NA NA i 1 Install Service (only in the x86
sample)

Table 1. IOCTL interface implemented by Purple Fox AV killer rootkit

Mini-filter killer driver
File systems are targets for input-output (I/O) operations to access files. File system filtering is

the mechanism by which the drivers can intercept calls sent to the file system, which is useful

for AV agents. The model called ‘file system mini-filters’ was developed to replace the legacy

filter mechanism. Mini-filters are easier to write and are the preferred way to develop file system

filtering drivers in almost all AV engines.

When an application accesses or creates a file, whether legitimate or malicious, it sends IRPs to

the Windows File System Driver at the kernel. These IRPs are handled by the Windows I/O

Manager and are then intercepted by the Windows Filter Manager. I/O Manager allows the

registered mini-filter drivers to filter the intercepted information. The Windows Filter Manager

then passes the IRPs to its registered mini-filter drivers, allowing the protection agent to detect

file access and modification events on the file system level.

Figure 27. File system mini-filter model

We looked deeper into the mini-filter driver killer and how the attackers implemented this

functionality. The driver first enumerates all the registered mini filter drivers on the system using

the system API FltEnumerateFilters, then it gets the targeted mini-filter object information it is

searching for by calling FltGetFilterInformation. Lastly, it creates a new system thread to

unregister the mini-filter driver and terminate the created system thread

(PsCreateSystemThread and FltUnregisterFilter).

Figure 28 shows the specific call graph for the system APIs used for this functionality.

Figure 28. System APIs calls for unregistering mini-filter drivers

When testing this rootkit functionality to remove a mini-filter driver from an unprotected system,

as shown in Figure 29, the driver logged the issued command when it successfully removed the

system mini-filter driver.

Figure 29. Testing "m" command on an unprotected system

This functionality was observed being used against 360 safeguard AV agent components. It was

found in the bat script shown in the next sections.

Killing user-mode processes
This kernel driver implements two different techniques for killing the user-mode process. The

choice is made from the user mode client provided after the “k” command; it receives either 1

or 0.

The first technique is when the passed command is k 0 <PROCESS_NAME>. It starts with

calling PsLookupProcessByProcessId to get a referenced pointer to the EPROCESS

structure of the target process. Then, it attaches the current execution thread to the address

space of the target process by calling KeStackAttachProcess. After this call, the current thread

can directly alter the address space of the target process and wipe all the content directly from

the kernel. It enumerates the address space starting from the memory address 0x10000 and

starts to wipe the memory contents in chunks of 0x1000 bytes each. It verifies that each

address is a valid virtual memory before trying to write it using MmIsAddressValid API to avoid

crashing the system.

Figure 30. Removing the process content from kernel-space

Figure 31. Testing "k" command on unprotected system

The second implemented method is when the passed command is k 1 <PROCESS_NAME>. It

will kill the process by using APC (Asynchronous Procedure Call).

APC is a system mechanism in Windows systems that makes it possible to queue a job to be

executed in the context of a target thread. This makes it possible to implement any kind of

asynchronous callbacks in Windows systems. It’s been known to be abused by other malware,

mainly to inject other processes in kernel mode. The APIs for dealing with kernel APCs are

undocumented, indicating a mature threat actor with a wide range of capabilities.

The code shown in Figure 32 shows an enumeration of all the thread IDs running on the

systems to identify any thread running under the target process to be killed. It does so by

PsLookupThreadByThreadId, which takes the thread ID as it is input and returns a referenced

pointer to the ETHREAD structure for the thread, starting by TID 0x4 adding 4 by each iteration.

Then, the IoThreadToProcess API returns a pointer to the process for the current thread. If this

pointer is equal to the target EPROCESS structure, it will use the KeInitializeApc and

KeInsertQueueApc undocumented kernel APIs to queue a kernel APC to the thread queue.

The KAPC callback will eventually call PsTerminateSystemThread, which is sent along with

the IOCTL buffer sent by the user-mode client.

Figure 32. Killing user-mode process using kernel APCs

Bat script invoker
A sample usage for the previously discussed kernel driver is illustrated in Figure 33. The user-

mode client that interfaces with the kernel driver is invoked by the APC mechanism to kill a

process called ZhuDongFangYu.exe. Then, it unregisters a mini-filter driver called 360FsFlt.

Finally, it kills other processes by the first mechanism (360safe.exe, 360tray.exe, 360sd.exe,

QQPCTray.exe, QQPCRTP.exe). Killing these processes helps with AV evasion, stopping the

targeted AV agents from running so that the attackers can continue with their activities.

Figure 33. Invoking the user-mode client that interfaces with the kernel driver to kill a specific

process

Similarity Analysis

Stolen Code Signing Certificate

Analyzing the artifacts dropped by this chain, we looked for the stolen code signing certificates

used to sign the kernel drivers’ modules so that the modules can be successfully loaded into the

Windows kernel. Pivoting with these certificates led us to analyze other signed malicious

samples in our malware repository, and these samples can help attribute malicious activity to

previously known intrusion sets.

This section will describe the use of three different stolen code signing certificates confirmed to

be related to this campaign, and the evidence that links different analyzed samples together.

Name Serial Number Valid Usage Issuer Status

Hangzhou
Hootian Network
Technology Co.,
Ltd.

08 7F CE CC 8E
CF 05 F7 4C C3
B8 AF AD 4C 06
5D

Code Signing VeriSign Class 3
Code Signing
2010 CA

Revoked

上海域联软件技

术有限公司

5F 78 14 9E B4
F7 5E B1 74 04
A8 14 3A AE AE
D7

Code Signing VeriSign Class 3
Code Signing
2010 CA

Revoked

Shanghai easy
kradar
Information

55 2B 41 BE 12
D9 40 43 7D F4
5D 48 87 38 CC
51

Code Signing Thawte Code
Signing CA - G2

Revoked

Consulting Co.
Ltd.

Table 2. Code Signing certificates related to Purple Fox

Retrospectively studying “Hangzhou Hootian Network” signed files from our repository, we

found a strong connection to early activity of the Purple Fox botnet that started in 2019 (reported

by Guardicore5).

The threat actors behind Purple Fox used this certificate to sign their rootkit component used to

hide the deployed crypto miner module in the earlier campaign in 2019. It mainly used this

rootkit to hide its registry keys and achieve file system-level stealth. These drivers were

protected and obfuscated with the VMProtect tool to increase the difficulty of reverse-

engineering the samples.

The fact that this certificate appeared again in the previously analyzed mini-filter removal driver

and the other modules appeared in the svchost.txt cluster indicates that it is still the same

threat actor behind these new activities.

The following table shows an analysis for this malicious certificate from a statistical point of view

in terms of the number of captured samples signed with this same malicious certificate.

Figure 34. Signed executables with “Hangzhou Hootian” statistics

Analysis of the second certificate, 上海域联软件技术有限公司 “Shanghai Oceanlink Software

Technology Co. Ltd.,” revealed several clusters of malicious kernel modules. Most of them

were compiled drivers that stemmed from two open source projects: Hidden6 rootkit and

Blackbone7 Windows memory hacking library. Both modules are known to have been utilized in

previous Purple Fox activities.

Another interesting link regarding the third certificate, “Shanghai easy kradar Information

Consulting Co. Ltd.,”is that it overlaps with “Hangzhou Hootian Network” in signing a

common cluster of kernel drivers of imphash 2bef7e40cd07bc587b2db765364884d9, which

was also seen in previous Purple Fox activities.

The earlier certificate was found to be explicitly blocked by the digitally-signed rootkit FiveSys

that was reported in October 2021 by Bitdefender8. It shows the competition between different

threat actors behind these campaigns as each group tries to exclusively control their victims. It

also shows how they identify and block each other using the stolen certificate signatures. This

same intelligence over the stolen certificates gives us the ability to cluster, track, and attribute

their campaigns.

Figure 5. FiveSys Rootkit blocking list includes Shanghai easy kradar certificate

Figure 36. Purple Fox stolen code signing certificates graph

Similarities with Zegost Info Stealer

The FatalRAT dropped from the malicious archive found on the first stage C&C server had

many similarities in code with a previously documented info stealer known as Zegost.9 This

malware has been historically attributed to Chinese cybercriminals that focus their campaigns

on Chinese government agencies, but it has also been observed in various global campaigns.

The previously documented motive behind this info stealer was to gather intelligence, which is

confirmed by the information-stealing capabilities found in Zegost malware samples.

The following are some of the commonalities that were found between these Purple Fox

campaign modules and the old Zegost samples. It implies with strong confidence that the same

actor is behind the two campaigns. The actors also probably reused some of the old

components for this campaign, or they are at least both forked from the same codebase.

• Process name mssecess.exe typo:

Svchost.txt backdoor implements a process checker list for common AV and EDR products.
The two malware share the same list that includes Microsoft Security Essentials process spelled
as ‘mssecess.exe’ instead of 'msseces.exe'

Figure 37. The process 'mssecess.exe' typo in the new Purple Fox backdoor

• Sgaiycl string:

The mini-filter killer driver
(638fa26aea7fe6ebefe398818b09277d01c4521a966ff39b77035b04c058df60) inside
svchost.txt samples has a PDB path
“C:\Users\sgaiycl\Desktop\RunDrive\AddTrustDriver\x64\Release\Driver.pdb”. This username is
correlated with an old Zegost sample
(9b0401ed25b9852928fea88b68f386c89c1fd594043a65432307b477b9f841f7) which resolved
the malicious sub-domain sgaiycl[.]gnway[.]net. Moreover, this Zegost sample is also digitally
signed with the same “Hangzhou Hootian” code signing certificate.

Figure 38. Purple Fox driver PDB path

Figure 39. Zegost sample C&C sub-domain

• Logging of the number and speed of the victims’ processors:

Both families start with fingerprinting their victims’ machines and sending the collected data to
the second stage C&C server. They query the registry key
“HKLM\\HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0\\\"~MHz\” to identify the
resources of the infected machine. Knowledge of the system hardware resources are important
information for Purple Fox attacks when the objective is to add their victims to their crypto
mining pool.

Figure 40. Sending the victim hardware resources to the second stage C&C

• Heavy usage of COM programming:

Both use a similar COM APIs sequence to find video capture devices installed on the victims’
machines, such as a webcams.

Figure 41. the DirectShow capture filter is being used to enumerate the infected machine for

video capture devices

• Keylogging Capabilities:

Both implement a similar keylogging functionality, as seen in Figure 42.

Figure 42. Different keystrokes logged by Purple Fox malware

• Invoking Zegost through shellcode and similar Svchost nomenclature for their parent
packages:

As shown previously, the updated FatalRAT was invoked through a shellcode that implements a
user- mode loader. According to documentation10 of an old attack chain, Zegost was deployed
through an embedded shellcode. The two chains (svchost.txt and svchost.exe) also used a
similar nomenclature to encapsulate the malicious modules.

Figure 43. Zegost infection chain from Zscaler report11

• Similar configurations string:

The string “6gkIBfkS+qY=" was found in the new Purple Fox backdoor configuration, which is
the same string that a Zegost sample loaded in the registry
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services ConnectGroup =
"6gkIBfkS+qY=".

Figure 44. Config parameters from Purple Fox updated FatalRAT

Similarities with Earlier Purple Fox Campaigns

This campaign shares some similarities with earlier Purple Fox activities. We will list some of the

commonalities between both in terms of how the operators are running their attack infrastructure

and the malware they are hosting on the first stage C&C servers of this campaign:

• The attacker’s servers that store the first stage malicious compressed archives were all

running HFS – an HTTP File Server – serving different packages according to the

execution parent request. This aligns with the Nansh0u campaign in 2019 reported by

Guardicore.12

• They are still experiencing some bad SecOps. They keep their whole infrastructure on a

file server with no activated authentication controls, even all their binary clusters

(including old samples) with their original timestamps, and a text file that includes all the

victims IPs (around 23,000 unique public IPs). However, in this campaign, they removed

any logs, or username traces previously left on their file servers in the old campaign.

Figure 45. Old Purple Fox server from 2019 campaign running old HFS HTTP server, exposing

all the victim’s data

Figure 46. The new HFS servers running the first stage C&C servers only exposing the second

stage binaries

Figure 47. Victim list of 23,000 unique IPs found hosted on one of their servers

• One of the first stage servers (194.146.84.245) hosted an old module for the MSI
installer for Purple Fox (e1f3ac7f.moe) that will eventually load the crypto miner
discussed in the previous blogs.

Figure 48. hosting old purple fox MSI installer on the new servers

• They are still building their infrastructure from compromising vulnerable servers running

unpatched services (compromised servers as an infrastructure).

Revoked Kernel Drivers Tell-tales

Kernel-mode drivers are executable files that run within the operating system’s kernel with high-

privileged access to sensitive data structures and sensitive system resources. To control the

quality of the code that runs in the address space of the kernel-land, Microsoft only allows

signed drivers to run in kernel mode through enforcing kernel-mode code signing (KMCS)

mechanisms.

Due to performance issues and backward compatibility, Windows allows the loading of a kernel

driver signed by a revoked code signing certificate. So, by testing a previous kernel driver, it can

be loaded successfully as Windows allows a driver signed with a revoked certificate to load.

In the case of user-mode signed executables, the digital signatures are verified by checking the

CRL list obtained from certificate issuers remotely. However, in the kernel drivers’ case, it

cannot be queried online like user-mode signed executables due to the absence of network

connectivity during the kernel initialization and bootup. The kernel boot must be fast and

efficient, so only primitive services are available.

This justifies the design choice of code signing verification for the Windows drivers that is

enforced by the kernel to verify the signature offline. It cannot check the latest revocation list as

all the system cryptographic services and network access are not available. A primitive version

of the signature verification is used for kernel drivers compared with user-mode executable

verification. As a result, the kernel drivers signed with these revoked certificates can still be

loaded into a 64-bit Windows kernel despite their revoked status.

This design choice tradeoff allows mature threat actors to chase and pursue any stolen code

signing certificate and add it to their malware arsenal. If the malware authors acquire any

certificate that has been verified by a trusted subordinate CA and by Microsoft, even if it was

revoked, they can use this certificate for malicious purposes.

Thus, the leaked and compromised certificates of a trusted driver vendor will still be a target for

a threat actor with a mature and sophisticated arsenal.

Conclusion

The attackers behind the Purple Fox botnet are still active and updating their arsenal with
malware that includes a new variant of FatalRAT, which itself seems to be regularly updated
with new functionalities. Moreover, they are trying to improve their signed rootkit arsenal for AV
evasion to be able to bypass the detection mechanisms by targeting them with customized
signed kernel drivers. Obtaining a code signing certificate is not a trivial technique and requires
lots of planning. However, mature actors can afford this effort for the benefit of advanced stealth
opportunities coupled with the high privileged access that they can achieve.

This activity aligns with the return of low-level attacks and the increase of signed rootkits
usage,13 which are trends we have been observing. These revitalized techniques are mainly due
to the increasing protection on the user-land processes by endpoint protection platform (EPP)
and endpoint detection and response (EDR) technologies, either on the users’ desktop or

servers. Because of these added protections, the attackers will opt for the path of least
resistance — getting some of their code running from the kernel.

The trends of using stolen code signing certificates to sign customized kernel drivers (i.e. the
recent NVIDIA data breach14) or even abusing unprotected legitimate drivers (i.e. the
HermeticWiper abuse of EaseUS used against Ukraine15) are growing, and predictions show
they are expected to grow further in the future. These are vital reasons why software driver
vendors must effectively secure their obtained code signing certificates and follow secure
practices in the Windows kernel drivers development process.

References

1 Jay Yaneza, Abdelrhman Sharshar, and Sherif Magdy. (Dec. 13, 2021). Trend Micro. “A Look

Into Purple Fox’s Server Infrastructure.” Accessed on Mar. 24, 2022 at

https://www.trendmicro.com/en_us/research/21/l/a-look-into-purple-fox-server-

infrastructure.html.

2Ofer Caspi. (Aug. 2, 2021). AT&T Cybersecurity. “New sophisticated RAT in town: FatalRat

analysis.” Accessed on Mar. 24, 2022 at https://cybersecurity.att.com/blogs/labs-research/new-

sophisticated-rat-in-town-fatalrat-analysis?.

3Github. (May 9, 2013). Github. “gh0st.” Accessed on Mar. 24, 2022 at

https://github.com/sin5678/gh0st.

4Ofer Caspi. (Aug. 2, 2021). AT&T Cybersecurity. “New sophisticated RAT in town: FatalRat

analysis.” Accessed on Mar. 24, 2022 at https://cybersecurity.att.com/blogs/labs-research/new-

sophisticated-rat-in-town-fatalrat-analysis?.

5Ophir Harpaz and Daniel Goldberg. (n.d.). Guardicore. “The Nansh0u Campaign – Hackers

Arsenal Grows Stronger”. Accessed on Mar. 24, 2022 at https://www.guardicore.com/labs/the-

nansh0u-campaign-hackers-arsenal-grows-stronger/.

6 JKornev. (Feb. 28, 2022). Github. “Hidden.” Accessed on Mar. 24, 2022 at

https://github.com/JKornev/hidden.

7 DarthTon. (Jun. 21, 2022). Github. “Blackbone.” Accessed on Mar. 24, 2022 at

https://github.com/DarthTon/Blackbone.

8Cristian Alexandru et al. (Oct. 20, 2021). Bitdefender. “Digitally-Signed Rootkits are Back – A

Look at FiveSys and Companions.” Accessed on Mar. 24, 2022 at

https://www.bitdefender.com/blog/labs/digitally-signed-rootkitsare-back-a-look-atfivesys-and-

companions/.

9 FortiGuard SE Team. (Jul. 26, 2019). Fortinet. “Zegost from Within – New Campaign Targeting

Internal Interests.” Accessed on Mar. 24, 2022 at https://www.fortinet.com/blog/threat-

research/zegost-campaign-targets-internal-interests.

https://www.trendmicro.com/en_us/research/21/l/a-look-into-purple-fox-server-infrastructure.html
https://www.trendmicro.com/en_us/research/21/l/a-look-into-purple-fox-server-infrastructure.html
https://cybersecurity.att.com/blogs/labs-research/new-sophisticated-rat-in-town-fatalrat-analysis
https://cybersecurity.att.com/blogs/labs-research/new-sophisticated-rat-in-town-fatalrat-analysis
https://github.com/sin5678/gh0st
https://cybersecurity.att.com/blogs/labs-research/new-sophisticated-rat-in-town-fatalrat-analysis
https://cybersecurity.att.com/blogs/labs-research/new-sophisticated-rat-in-town-fatalrat-analysis
https://www.guardicore.com/labs/the-nansh0u-campaign-hackers-arsenal-grows-stronger/
https://www.guardicore.com/labs/the-nansh0u-campaign-hackers-arsenal-grows-stronger/
https://github.com/JKornev/hidden
https://www.bitdefender.com/blog/labs/digitally-signed-rootkitsare-back-a-look-atfivesys-and-companions/
https://www.bitdefender.com/blog/labs/digitally-signed-rootkitsare-back-a-look-atfivesys-and-companions/
https://www.fortinet.com/blog/threat-research/zegost-campaign-targets-internal-interests
https://www.fortinet.com/blog/threat-research/zegost-campaign-targets-internal-interests

10Deepen Desai. (Oct. 16, 2015). Zscaler. “Chinese Backdoor Zegost Delivered Via Hacking

Team Exploit.” Accessed on Mar. 24, 2022 at https://www.zscaler.com/blogs/security-

research/chinese-backdoor-zegost-delivered-hacking-team-exploit.

11Deepen Desai. (Oct. 16, 2015). Zscaler. “Chinese Backdoor Zegost Delivered Via Hacking

Team Exploit.” Accessed on Mar. 24, 2022 at https://www.zscaler.com/blogs/security-

research/chinese-backdoor-zegost-delivered-hacking-team-exploit.

12Ophir Harpaz and Daniel Goldberg. (n.d.). Guardicore. “The Nansh0u Campaign – Hackers

Arsenal Grows Stronger”. Accessed on Mar. 24, 2022 at https://www.guardicore.com/labs/the-

nansh0u-campaign-hackers-arsenal-grows-stronger/.

13Kaspersky. (May 6, 2021). Kaspersky. “Operation TunnelSnake: Formerly unknown rootkit

used to secretly control networks in Asia and Africa.” Accessed on Mar. 24, 2022 at

https://usa.kaspersky.com/about/press-releases/2021_operation-tunnel-snake-formerly-

unknown-rootkit-used-to-secretly-control-networks-in-asia-and-africa.

14Katie Wickens. (Mar. 7, 2022). PC Gamer. “Nvidia's stolen data is being used to disguise

malware as GPU drivers.” Accessed on Mar. 24, 2022 at https://www.pcgamer.com/nvidias-

stolen-data-is-being-used-to-disguise-malware-as-gpu-drivers/.

15Juan Andrés Guerrero-Saade. (Feb. 23, 2022). Sentinel Labs. “HermeticWiper New

Destructive Malware Used In Cyber Attacks on Ukraine.” Accessed on Mar. 24, 2022 at

https://www.sentinelone.com/labs/hermetic-wiper-ukraine-under-attack/.

https://www.zscaler.com/blogs/security-research/chinese-backdoor-zegost-delivered-hacking-team-exploit
https://www.zscaler.com/blogs/security-research/chinese-backdoor-zegost-delivered-hacking-team-exploit
https://www.zscaler.com/blogs/security-research/chinese-backdoor-zegost-delivered-hacking-team-exploit
https://www.zscaler.com/blogs/security-research/chinese-backdoor-zegost-delivered-hacking-team-exploit
https://www.guardicore.com/labs/the-nansh0u-campaign-hackers-arsenal-grows-stronger/
https://www.guardicore.com/labs/the-nansh0u-campaign-hackers-arsenal-grows-stronger/
https://usa.kaspersky.com/about/press-releases/2021_operation-tunnel-snake-formerly-unknown-rootkit-used-to-secretly-control-networks-in-asia-and-africa
https://usa.kaspersky.com/about/press-releases/2021_operation-tunnel-snake-formerly-unknown-rootkit-used-to-secretly-control-networks-in-asia-and-africa
https://www.pcgamer.com/nvidias-stolen-data-is-being-used-to-disguise-malware-as-gpu-drivers/
https://www.pcgamer.com/nvidias-stolen-data-is-being-used-to-disguise-malware-as-gpu-drivers/
https://www.sentinelone.com/labs/hermetic-wiper-ukraine-under-attack/

