<
research

@) TREND

A Look Into Purple Fox’s New Arrival
Vector

Technical Brief

Introduction

In previous blogs?!, we analyzed the post infection modules that were delivered from an intrusion
linked to the Purple Fox botnet. We discussed the initial access techniques for this malware,
which, in earlier activities, included targeting SQL databases. The malware, as observed from
Trend Micro telemetry, was launched for the sole purpose of mining cryptocurrency.

This technical brief focuses on the same group’s recent activities. We cover a new arrival vector
and the early access loaders that we believe are highly associated with the intrusion set behind
this botnet. This recent infection chain is mainly targeting user’s machines via trojanized
software packages masquerading as legitimate installers. The installers are actively distributed
online to lure users into downloading and executing them in an effort to increase the botnet’s
overall infrastructure.

Upon analysis, we found that the infrastructure hosting the attacker’'s malware shows regular
updates to the backdoor samples that are installed on the victims’ systems (we detect as
Trojan.Win64.PFSHELLOADER.SM). This indicates that the group behind Purple Fox may still
be optimizing their malware arsenal in preparation for new campaigns. We believe this new
arrival vector and the various early access loaders for Purple Fox will eventually lead to a new
expansion in the overall botnet infrastructure.

We also discussed some links to previous malware that we observed during the analysis of
several artifacts from these activities, particularly their kernel-based modules. The artifacts
seem to be connected with previously known malware families (specifically, the Zegost info
stealer and the FatalRAT remote access trojan). We believe these families have been reused
by the threat actor behind Purple Fox, or it is likely that the actors had access to the malware’s
base code.

Delivery via Weaponized Execution Parents

We started with tracking the new infection chain and the software packages used to
encapsulate the first stage loader. First, we analyzed the following samples to observe how this
infection starts. We start at this point since the weaponized installer distributed online will
determine the next stage payloads that will be loaded on the victim’s system (the chain is shown
in Figure 1).

The second stage payload is added as a single character in the request sent by the execution
parent to the first stage command and control (C&C) server. It is retrieved from the module
filename’s last character (highlighted in Figure 1 as “r”), then the first stage C&C server will log
the execution timestamp sent in the request alongside the single character. The single character
will determine what payloads will be sent back for the malicious installer to drop on the infected

machine.

PE Module Stuffing

First Stage C&C Server

Malicious
Afchivelrdet Stuffed PE Modules
A
B Shellcode_1
(@] Backdoor_1
Mini-filter Killer Driver
E Execution parents ; Hidden Signed Rootkit
[Exe] Whatsappsetupfjexe ‘ 7z Tool
l > N
X
[www | http://194146.84.245:4397/§?=1640518491 v
1. Log server request timestamp z
2. Serve the requester archive 1
2
0
©2022 TREND MICRO

Figure 1. Malicious installer requests the second stage payloads

rcx 0000000000000000
rdx 00ODODOODOLAFCCO "http://194.146.84.245:4397,/r7=1646026824"
r8 0000000002341480 "C:%\Users‘\\Public\\videos\\1646026824\ \1.rar"

1:
2:
3:
4:

*3)last_char, (va_list)TimeStamp);

Figure 2. Hardcoded stage 1 C&C address, and generated single character index from module
filename

Reviewing the disguised software packages, we saw that some of the software they were
impersonating were commonly used by Chinese users. The following list shows the recently
used software and the corresponding malicious payload for the second stage. The different
payloads will be served by the C&C upon execution based on the last character in the module

filename.
Package Description Weaponized Filename Distribution Date
Telegram Installer Textinputh.exe 2021-12-08
360BDoctor software %= kA AR .exe 2021-10-17
PPHelper Tool for Windows to pphelper5.exe 2021-12-01
Jailbreak iDevices
Vmware KVM BEFFEELTINRSABLUIRK TR rexe | 2021-09-13

ScreenRecorderPro Apowersoft.ScreenRecorderPro3.exe 2022-01-02
Network Scanner zenmap.exe 2022-01-18
chrome_pwa_launcher X.exe 2022-01-22
Whats app installer whatsappsetupr.exe 2022-01-28
Proxifier Proxy Client (B2 5R12 A S K87 exe) 2022-01-06
Adobe flash installer flashc.exe 2022-02-07
Micro Focus Net Express mfcss.exe 2022-02-19
QuickQ Installer QuickQr.exe 2022-02-21

Table 1. Disguised packages and weaponized filename, highlighted last characters will
determine the type of malicious payload dropped on victim

The malicious URLSs that were actively distributing some of these installers are listed in the
Indicators of Compromise (I0OC) document.

Infection Chain

The execution of any of the execution parents from the previous table starts with resolving the
ShellExecuteA and URLDownloadToFileA application programming interfaces (API) to
download and execute the next stage from a hardcoded C&C server. This C&C address hosts
all the variants for the second stage payloads.

Figure 3. First stage loader APIs

By analzying a set of C&C addresses hosting the second stage samples, we identified a list of
more than 60 servers that had previously hosted the samples. At the time of writing, only six
servers were found active in the recently generated execution parent installers — in the first
column of Table 1 we can see the variations of software that these malicious installers were
impersonating.

Figure 4 shows an exposed HTTP file server (HFS) that’s used to host all the second stage
samples with their update timestamps. HFS servers were previously used by Purple Fox in their
earlier 2019 campaigns to run their C&C servers that host files on the infected bots. This
attribution link will be discussed further in the similarity analysis section.

@ HTTP File Server v
& Login Q, Search & Selection B Archive $ Sort

0 folders, 41 files, 55.8 MB
2022/2/19 19:24 & 1016.1 KB
@ @ 2022/1/28 23:37 & 2.5MB
+ ® 2022/1/28 23:38 & 2.5 MB
= 2022/2/19 19:24 & 1016.1 KB
0 @ 2022/1/28 23:37 & 2.5MB
1 © 2022/2/16 0:50 & 2.5 MB
2 2022/2/21 2:58 & 2.6 MB
3 2022/2/19 19:24 & 1016.1 KB
2022219 19:24 & 1016.2 KB
5 2022/2/19 19:24 X 1016.1 KB
6 2022/2{19 19:24 & 1016.5 KB
7 2022/2{19 19:24 & 1016.2 KB
77 ® 2021/8/18 12:20 & 572.1 KB
8 @ 2022/2/16 16:56 & 2.6 MB
9 2022/2/19 19:25 & 1016.1 KB
a @ 2022/2/20 15:01 & 1.1 MB
b 2022/2/19 19:25 & 1016.1 KB
C 2022/2/19 19:25 & 1016.1 KB

d 2022/2/19 19:25 X 1016.1 KB

O0DD0DO0DD0DODOODDDODDOoOOoODDODOoODDOoODOoOoOoD®R
S \

e 2022/2/19 19:25 & 1016.1 KB

Figure 4. Exposed HFS server acts as a first stage C&C server used for hosting the next stage
payloads

We tracked the frequency of the second stage updated packages pushed to this exposed server
using the timestamp data. Figure 5 shows the number of different second stage malicious
packages that received updates. They updated many of the packages hosted on their servers
on February 19 and February 26, 2022. Earlier payloads that got pushed to this server were in
August 2021 (that was the attacker’s last update for the module). They are still actively updating
their components at the time of writing.

12 1 12 B 7 1 2 3 8 12 2 3) 6 7 1 1
PM |PM AM PM PM AM PM PM PM AM AM PM PM PM PM PM AM

Aug | Jan Feb 16 Feb Feb 20 Feb 21 Feb Feb 26 Feb
18 28 19 25 27
2021 2022
©2022 TREND MICRO

Figure 5. Second stage payloads update count

Each package found on these servers is named using a single character (a-z, 0-9) or a special
character. The server holds a compressed RAR archive that includes the second stage
loaders, and the main file inside the archive is svchost.txt that has all the malicious PE
modules components that will be dropped in the second stage.

Upon clustering all the collected unique svchost.txt samples (40 unique samples), we found
they could be split into seven unique clusters. Each cluster has a different set of malicious PE
modules that serve different purposes. The purposes are determined from the single character
sent by the first stage execution parent to retrieve the right package. The following table shows
the current status of the available packages on the first stage C&C server at the time of writing.

Malicious | PE Modules Unique Size of archive | Archive Name (Request
Archive inside archive member character)
Cluster svchost.txt per
cluster
1 9 PE Modules 5 1.1 MB a,0,j,S, X
2 15 PE Modules | 6 2.5 MB 0,1, @, +, m,t
3 13 PE Modules | 4 2.6 MB 2,8,k q
4 8 PE Modules 1 1015.8 MB i
5 8 PE Modules 17 1016.1 KB 3,59 -=0Dbcdefhln,o,
p1 V’ y
6 8 PE Modules |6 1016.2 KB 4,7,r,uU, W, Z
7 8 PE Modules |1 1016.5 KB 6

7z 1 572.1 KB 77
Legitimate
Tool

Table 2. Second stage payload clusters

Inside each unique cluster, we found that the portable executable (PE) modules are only slightly
different from each other. The differences center in some configuration parameters related to
the second stage communications.

The order of the PE modules inside svchost.txt is dependent on the package requested by the
malicious execution parents (files masquerading as legitimate installers). As previously
mentioned, the last character in the installer filename will determine the final set of the auxiliary
modules that will be stuffed inside svchost.txt.

All the svchost.txt clusters share a shellcode prologue at the beginning, then a variable number
of auxiliary PE modules immediately after the main backdoor. Some of these are observed to be
dropped on the victim machines while others seem to be loaded only if a specific condition is
met on the system.

Figure 6 shows the overall infection chain from the malicious installer until the second stage is
loaded.

ot 5
:

Malicious installer Purple Fox
(xxxxﬂexe) threat actor

|

=

1. URLDownloadtoFileA
(Mal_Archive)
2. URLDownloadtoFileA

(7Tz.exe)
1.rar .
Malici Archi Stage_1_C2:port/char?=timestamp
AOIOUS TONIVE Stage_1_C2:port/77
TZ.exe
oo » (=)
Legitimate tool o !“
(77) ”

First Stage C&C

3. Shell execute (7z) to
decompress (1.rar)
4. Shell Execute (ojbkcg.exe -a) Malicious Archive

Riaw - ojbkcg.exe
C) .360dll

1) Load 360.dll
2) Call export RunDIIEntry()

Shellcode prologue
=3 PEST MaliiBaskdsor 3 Shellcode loader:

1 - Load PE_1in memory
PE_2 Auxiliary Modules 2 - Call into backdoor export

1) Open svchost.txt

2) VirtualAlloc memory

3) Read svchost.txt in memory
4) Transfer execution to the

shellcode loader

“Fun1’/ “TestFunction”
3 - Connect to stage 2
C&C server
4 - Drop auxiliary modules

PE_N

©2022 TREND MICRO

Figure 6. Infection chain showing steps until second stage payload is loaded

Svchost.txt Portable Executable (PE) Components

This section provides the analysis of a specific set of portable executable (PE) modules found in
one of the clusters. This set was found to be the most distributed. We focused on this specific
cluster for the following reasons:

- It has significant links to other malware families — an old campaign previously
documented to be Purple Fox, and an info stealer known as Zegost.

- It was observed to be loading the previously documented Purple Fox MSI installer after
the second stage.

- Different rootkit capabilities are found in the auxiliary PE modules.

The uniqueness of this cluster is the wide capabilities the attackers implemented in terms of
antivirus (AV) evasion, the attribution links that could be concluded from the signing certificates
for the PE modules, and the deployed malicious signed kernel drivers. Also, the main backdoor
supported functionalities dropped in the second stage, and we believe it acts as a loader for the
Purple Fox MSI installer.

Shellcode Execution Analysis

After analyzing all the observed malicious execution parents delivering different clusters, we
found that the shellcode component at the prologue of the dropped svchost.txt was similar
across all the different variants, regardless of the actual payloads embedded after the
shellcode.

It has two different implementations across all the clusters. A detailed look into both the
implementations and the significant PE components found after the shellcode are provided in
the next sections.

Shellcode Hash Size Executed DLL
Export

25da2ebdbe2136f07bd414795082364cafda79d8271d099e78891 | 8.12 KB Funi, Fun2, Fun3

b079158ed1b

492fdcbdf81ed196b35cdbb7fac85e3a8eeledebe0803034df900f5 | 3 KB TestFunction

€1a5049b6

Table 3. Shellcode to load and invoke the backdoor export function

First Shellcode Analysis

The first shellcode
(25da2ebdbe2136f07bd414795082364cafda79d8271d099e78891b079158ed 1b) implements
four main functions for the intended functionality, as shown in the Figure 7 call graph diagram.

-

Shellcode_Main

!

Resolve_APIs

l

Load_PE

!

find_export

!

Get_Shellcode_End

©2022 TREND MICRO

Figure 7. Shellcode main functions for loading a PE module in memory

The shellcode initially identifies its current location in the memory where it was loaded so that it
can get to its end location and retrieve the next PE modules. Then, it performs several sanity
checks for the first PE module header to make sure it is a valid PE header.

Figure 8. Parsing the PE header structure for the next PE module

After getting all the required offsets, the shellcode will resolve a specific set of APl addresses
from kernel32.dll and ntdll.dll to support more functions. The resolved addresses are seen in

Figure 9.

00000000003CFBC0 <&VirtualAllocs 00007 FFB385FAL90 | kernel32. 00007 FFEZB5FAL90
00000000003CFBCE <&VirtualFrees 00007 FFB385FALB0 | kernel32.00007FFB385FALB0
00000000003CFED0 <&LoadLibraryss 00007 FFB3B5FEBGD | kernel32. 00007FFB385FEBGD
00000000003CFEDE <&GetProcAddresss 00007 FFB385FA310 | kernel32. 00007 FFBE385FA310
00000000003CFBED <&Freelibrary> 00007 FFB385FBDOO | kernel32. 00007 FFE385FBDOO
00000000003CFEBES <&GeTNativesystemInfos | 00007FFB385FECS0 | kernel32. 00007FFB385FECSOD
00000000003CFEF0 <&RT1AT locateHeap:> 00007 FFEZ917B870 | ntdl1. 00007FFE3917EE70

QoO000000003CFEBFE <&HEapFresa: 00007FFB385F6350 | kernel32. 00007FFE385F6350
QOOO0C000003CFa00 <&GetProcessHeaps> 00007 FFE385F6ASD | kernel32. 00007 FFE3B5FGASD
00000000003CF208 <&VirtualProtects 00007 FFE385FAF90 | kernel32. 00007 FFE3B5FAF 30
00000000003CFI10 <&VirtualQueryExs 00007 FFE385FASDO | kernel32. 00007 FFE3B5FASDO
00000000003CF918 <&bsearch> 00007 FFE391CEC20 | ntdl1. 00007FFE39LCEC 20

QOOO00C000003CFa20 <&gsOrts 00007 FFE391D0040 | ntd11. 00007 FFE3 91D 0040

Figure 9. Hashed list of APIs inside the shellcode

The required APIs that need to be resolved are searched by a custom hashing function called

the Resolve_APIs subroutine, which mimics GetProcAddress API. It will parse and enumerate
kernel32.dIl and ntdll.dll exports for those specific APIs, then hash each export name to check

against a set of hardcoded hashes stored inside the shellcode.

Figure 10. Enumerate export names and compare with APIs hashes

The execution flow continues with preparing the first PE module for execution by calling in the
Load_PE subroutine. It takes the start address of the first PE module from svchost.txt and the
resolved API address table so it can enumerate the section headers and allocate the required
memory chunks for loading each section using a sequence of VirtualAlloc calls.

++Hlumber

Figure 11. Loading PE sections header

Finally, it will return the start address of the newly initialized memory space loaded with the first
PE module.

Figure 12. Loading the full PE module

The last step performed by this shellcode is searching for a specific hardcoded exported
function name from the loaded PE module and identifying its address to be able to call into this
module.

Figure 13. Calling export name "funcl" from the loaded PE backdoor

The code stub responsible for parsing the export table and enumerating is made efficient by
using the system APIs previously resolved for sorting an array of the export table using the
gsort API function. Then bsearch is called to perform a binary search on the sorted array to
efficiently look for the required export name by ordinals.

FF50 58 call qword ptr ds:[rax+58]
48:894424 70 mov qword ptr ss:|[[rsp+70], rax
48:837C24 70 00 cmp qword ptr ss:[rsp+70,0

« 75 04 jne 23|00007FFB391CEC20 <ntdll.bsearch>
33C0 XOr ealmov rax,rsp

~ EB 49 jmp 23|mov gqword ptr ds:[rax+8],rbx
48:8B4424 70 mov ralmov qword ptr ds:[rax+10],rbp
OFB740 08 movzx |mov qword ptr ds:[rax+18],rsi
894424 38 mov dwlmov gqword ptr ds:[rax+20], rdi

Figure 14. Binary search for the export name

If for some reason the “Fun1” export name cannot be resolved, the shellcode will try to get the
address of “Fun2” and “Fun3” respectively by calling into any of the exports from the first PE
module that are implementing the main backdoor. The execution will be transferred to it as
shown in Figure 15.

48:895C24 08

mov gword ptr ss:[rsp+8],rbx

[rsp+8]:&"PE™

7 push rdi
48: 83EC 20 sub rsp,20
B3 43080000 mov ecx, 543
E8 2CF30000 call 150044760
33FF xor edi,edi
43: 8000 95627300 Tea rex,qword ptr ds: [18076B6D2] 00000001807 6B6D2 : "Sainbox™
66: 893D 74BETAOD mov word ptr ds:[1807E0FBS8],di
E8 B3EBFFFF call 180033FCC
FF15 D1Z243C00 call gword ptr ds:[<&GetCommandLineA>]
48:8BCS MoV FCx,rax
48:8D15 1FSE3CO0 lea rdx,gword ptr ds:[1803FB278] 00000001803FB278: "-g"
453:8BD3 mov rbx,rax
EE8 OF3D33200 call 18036F170
45:85C0 test rax,rax
~ 75 1F jne 180035485
48:8D15 435E3C00 lea rdx,gword ptr ds:[1803FB2B0] 00000001803FB2BO: "-a"
45: 8BCE mov rcx,rbx
ES FBIC3300 €dl11 18036F170
48:85C0 test rax,rax
v 75 OB jne 180035485
43:8B5C24 320 mov rbx,gword ptr ss:irsp+30{
48:83C4 20 add rsp,z0
SF pop rdi
c3 ret

Figure 15. Transfer the execution to the main backdoor export function

Second Shellcode Analysis

A new implementation for the shellcode prologue component
(492fdcbdf81ed196b35cdbb7fac85e3a8eeledebe0803034df900f5e1a5049b6) was captured
from the new droppers in another cluster. The new shellcode is more minimalistic because it
implements only important functions to load a PE in memory and parse several system APIs
addresses. It resolves different system APIs from the first one we mentioned.

77002990 [kernel32.77002990
76FF5F20 | kernel32.76FF5F20
024E0BDA
776C7C20 | ntd11.776C7C20
776C82A0 \ntd11.776C82A0
77690300 | ntd11.77690300
7768ADB0 (ntd11.7768ADB0O
76FF7800|kernel32.76FF7800
76FF4170 | kernel32.76FF4170
76FFSEDO |kernel32.76FFSEDO
76FFSEF0 | kernel32.76FF5EFOQ
76FF7C70 | kernel32.76FF7C70
77003CEQ | kernel32.77003CEQ

0019FE98 <&LoadLibraryA>
0019FE9C <&GetProcAddresss
0019FEAD

0019FEA4 <&memcpy>

O019FEAS <&memset>

0019FEAC <&RtlReAllocateHeaps>
0019FEBO <&RtlAallocateHeaps>
0019FEB4 <&GetProcessHeap>
0019FEB8 <&IsBadReadPtr>
0019FEBC <&VirtualAlloc>
0019FECO <&VirtualFree>
0019FEC4 <&VirtualProtects
0019FECE8 <&CreateMutexAs=

Figure 16. Resolved system APIs by the second shellcode sample

Also, the final export call is different for this sample, it calls an export named “TestFunction”
from the next PE module that gets loaded.

Figure 17. Final export call by the second shellcode after loading the PE in memory

Implementing user-mode loader

The attackers behind Purple Fox opt for implementing a customized user-mode loader in order
to minimize the amount of bookkeeping entries that their malicious code would register with the
system’s internal data structures.

It doesn't leave any bookkeeping entries because the native loader isn’t invoked at all, thus, a
user-mode shellcode loader is a good design choice if attackers are concerned with
cybersecurity forensics. It minimizes both the quantity and quality of the forensic evidence as
the execution doesn't rely on the native loader and doesn't respect the PE format for a
successful execution. The attacker can execute arbitrary code in svchost.txt without any PE
header at all as they already implemented a custom loader. The consequence is that the OS wiill
not log such an execution, leading to fewer forensic artifacts from this infection chain.

To compare, if the LoadLibrary API is used to load a module into the address space of a
process, the call will only succeed if the specified module is a PE file that resides on the disk. In
the case of a stand-alone user mode loader, all it needs for a successful execution is to parse
the executable headers and make the necessary adjustments as the native Windows loader
takes care of three basic tasks: mapping a module into memory, populating the module’s Import
Address Table (IAT), and implementing relocation fixes.

HMODULE LoadLibraryA(
[in] LPCSTR lpLibFileName

);

Figure 18. LoadLibrary expect a PE file on the disk as input

This is implemented in shellcode because of its nature of being small, self-contained, having
minimal footprint, and being position independent. However, there is still an anti-forensics flaw:
it assumes the required modules inside svchost.txt are residing on the disk. If the threat actor
mainly implements this for the purpose of anti-forensics and to minimize the loader footprint, to
fully gain the anti-forensics benefits, the whole invocation should be carried out in a fileless way
(i.e through an exploit), so it will not leave any traces.

We didn't observe the invocation of this chain via any exploits as an arrival vector, however,
links to a similar family (the Zegost info stealer which was invoked mainly through shellcode via
some exploits) are discussed in the last section. This may mean that there is a group behind the
two families that just reused their old techniques from an earlier campaign, specifically invoking
their backdoors through customized shellcode loaders.

Second Stage Backdoor

After the shellcode loads and allocates memory for loading the stuffed PE modules inside
svchost.txt, the execution flow will call into the first PE module found after the shellcode. The
module is a remote access trojan that inherits its functionality from a malware reported by
AT&T? on August 2021 known as FatalRAT.

It is a sophisticated C++ RAT that implements a wide set of capabilities for the remote attackers
controlling it. The following figure shows the evolution of these family variants, which are all

stemmed from the old GhOst RAT previously leaked on github.® Some pivot points, which link
this module to the previously documented info stealer malware Zegost, are discussed in the last
section.

=

Old GhostRAT S L n GitHul

4

Zegost InfoStealer — Jsed by

1
=

FatalRAT —

1
)

Updated FatalRAT ~— s o 24

©2022 TREND MICRO

Figure 19. The evolution of the updated FatalRAT samples found in this chain

A comparison between the new samples observed from the Purple Fox activities and the early
FatalRAT samples from an AT&T report* reveals a lot of code similarities between their core
internal functions.

IDA Vie... ﬂ Secondary Unmatc... “ Primary Unmatc...
MName Value
basicBlock matches (nonibrary) 92
basicBlocks primary (ibrary) 5331
basicBlocks primary (nonibrary) 2601
basicBlocks secondary (ibrary) 106
basicBlocks secondary (non-ibrary) 4599
flowGraph edge matches (ibrary) 280
flowGraph edge matches (non-ibrary) 677
flowGraph edges primary (ibrary) 7565
flowGraph edges primary (non-ibrary) 3163
flowGraph edges secondary {ibrary) 132
flowGraph edges secondary {non-ibrary) 6157

Figure 19. BinDiff statistics from the updated FatalRAT(primary) vs. Older FatalRAT(secondary)
showing high basic blocks match

The first stage C&C server 202[.]8.123[.]98 links FatalRAT operators with the Purple Fox, as it
was hosting the malicious compressed archives in this campaign and was used before by
FatalRAT as their main C&C server.

URLs

Scanned Detections Status URL

2021-09-05 1/89 http:/f202.8.123.98:6547/27=1630845137
2021-09-03 1/89 200 http:/f202.8.123.98:6547/7

2021-09-02 1/89 200 http:/f202.8.123.98:6547/M7=1630362571
2021-09-02 1/89 200 http:/f202.8.123.98:6547iq7=1630638074
2021-09-02 1/89 200 http:/f202.8.123.98:6547/07=1630629189
2021-09-02 1/89 200 http:/f202.8.123.98:6547/e7=163058891
2021-09-02 1/89 200 http:/f202.8.123.78:6547/m?=1630361231
2021-09-01 2189 200 http:/f202.8.123.98:6547/7=1630348084
2021-08-3 1/89 200 http:/f202.8.123.98:6547/D7=1590426653
2021-08-30 1/89 200 http:/f202.8.123.98:6547/u?=1630364002
2021-08-02 1/89 https://202.8.123.98/

Figure 20. C&C hosting compressed archives

The executed FatalRAT variants shown in Figure 21 and 22 differ across each cluster, this
shows that the attackers are incrementally updating it.

char *Funl()

Chr:clr.'._Jictiﬁ '

return resulity

Figure 21. Updated FatalRAT variant from cluster-1

@, (int)sub_18@851DF, @, @, @);

{int)sub_1@8885352, @,

Figure 22. Updated FatalRAT variant from a more recent cluster with more added functionality

The remote access trojan is responsible for loading and executing the auxiliary modules
according to several checks performed on the victim systems (i.e., changes happen if specific
AV agents are running or registry keys are found). Then, it executes them in a specific order
hardcoded in the backdoor code instead of waiting for a command from its C&C server.

The auxiliary modules are intended as support for a specific objective that needs to be done.
For example, the cluster dropped modules shown in Figure 23 focuses on AV evasion and
removal capabilities served from the kernel via various dropped rootkit components.

Figure 23. Dropping various PE modules from memory

It also initiates a second stage C&C channel with another set of servers. It sends all the
fingerprinting logs collected from the victim’s system and then waits for new commands from the
C&C server. The configuration parameters for the second stage C&C address is hardcoded
after the 7z_dIl module in this cluster.

66 69 67 5D 0D[config]. 66 ...-[config].
5C 50 72 6F 67 .path=C:\Prog 5C .path=C:\Prog
32 32 32 2E 6C ramData\222.1 32 ramData\222.1
00 00 00 00 00 nk...P....... 00 nk.voPovuennn
2E 64 6C 6C 00 Plugin32.dll. 2E Plugin32.dll.
12 0 00 00 B8 12 Veeeann

0 B8 01 13 BB | I

FE 00 00 00 00 -eucecuanoca-n

....1b6.226.1 341[44.48.24

320zl oo v 00 R

Figure 24. Second Stage config parameters from two variants from the same cluster
Crowdsourced IDS Rules

HIGH 2 INFO O

Matches rule from Proofpeoint Emerging Threats Open
Ls Malware Command

@eeoEEER 37 39 73 @1 93 98 98 dE 97 98 98 96 98 98 98 28 VIM..... seeeees

aeeopale fc 4f 37 38 38 @@ 97 d4 3c Bc 88 e8 bf fd 19 19 07BB... €.iuuannn
@Geeopeza 11 39 88 98 52 52 12 Vb 3c 9@ a3 7c 48 89 68 dS .9..RR.{ <..|@.h.
Bo00p038 d5 65 c@ 5T d4 5b 58 ¢3 c7 c9 6b 78 74 68 28 58 .e._.[X. ..kxth(X

esepopeds fd 63 48 78 9@ 86 73 6b @@ 81 88 9a e9 67 63 2c SEntioofdE ooooc gh,
@oeopese 1d d3 d8 b8 @6 fe @2 48 fe 47 56 16 91 92 33 ba @ .av...3.
@oeopecd 808 fc be 38 36 e@ 9d Ve 22 21 57 5d 97 dc 9e cb aaBB..~ "IM]...
poaopa7a bd 47 78 d9 62 88 358 94 af de 28 a4 9c 76 46 24 .Gx.b.8. ..(..vF3
opep@as@ al 15 9e a@ @8 3@ c9 68 95 5a @a la Be 93 c3 ac Zbll ofZscoooc
@eeoped2 dd @c 6a Ba 98 av cb 76 GSe Sodlocoot 5

@aeeaeee 37 39 78 88 98 98 98 99 98 98 98 99 98 98 98 98 FKennan annnnans
@aeeaes9 37 39 78 8@ 98 98 98 99 98 98 98 96 98 98 98 28 TEiioccos cocooos
eepepers fc 4f 95 98 98 32 98 32 S Y S

@peREE18 37 39 78 88 98 98 98 99 98 98 98 99 93 98 98 1c TEif-ccos cooooooc
oeeeeeBl 37 39 78 B8 98 98 98 99 98 98 98 96 98 98 98 2@). S
@eeepacl fc 4f 95 98 98 32 98 32 0...2.2

@poe@e28 37 39 78 88 98 98 98 99 93 98 98 99 98 98 98 1c TEiE-cccs cooooooc
@@ee@aCa 37 30 78 3@ 93 98 98 99 08 98 98 96 98 93 95 28 TEMsccos cocooos
@eeopeDe fc 4f 95 98 98 32 98 32 0...2.2

@peeae38 37 39 78 88 98 98 98 99 98 98 98 99 98 98 98 I1c FHKennan anannans
@@@e@BEl 37 39 78 8@ 98 98 98 99 98 98 98 96 98 93 98 2@ TEiioccos cocooos
eepeperl fc 4f 95 98 98 32 98 32 S Y S

@peR@E4E 37 39 78 88 98 98 98 99 98 98 98 99 93 98 98 1c TEif-ccos cooooooc
eaeeaara 37 39 78 B8 98 98 98 99 98 98 98 96 98 98 98 2@ TOuvias waanaas
@eeoeles fc 4f 95 98 98 32 98 32 e o o2 2

@poe@e58 37 39 78 88 98 98 98 99 98 98 98 99 98 98 98 1c TEif-cccs cooooooc
@@@@alll 37 39 78 3@ 93 98 98 99 08 98 98 96 98 93 985 28 TEMsccos cocooos
@eeopl2l fc 4f 95 98 98 32 98 32 0...2.2

@oeeaeed 37 39 78 88 98 98 98 99 98 98 98 99 98 98 98 1c FHKenaan anannans
@@a@eal2a 37 39 78 8@ 98 98 98 99 98 98 98 96 98 98 98 2@ TEiioccos cocooos
eeeepl39 fc 4f 95 98 98 32 98 32 S Y S

eoeeee78 37 39 78 83 98 98 98 99 98 98 98 99 98 98 98 lc TOKevunn wnvunans
eaeealdl 37 39 78 B8 98 98 98 99 98 98 98 96 98 98 98 28 TOuvias waanaas
@eeeplsl fc 4f 95 98 98 32 98 32 e o o2 2

@poe@@Ee 37 39 78 88 98 98 98 99 98 98 98 99 98 98 98 1c TEif-cccs cooooooc
@@@eals9 37 30 78 3@ 93 98 98 99 08 98 98 96 98 93 95 28 TEMsccos cocooos
@eeoplee fc 4f 95 98 98 32 98 32 0...2.2

@oeeaes8 37 39 78 88 98 98 98 99 98 98 98 99 98 98 98 I1c FHKennan anannans

Figure 25. FatalRAT encrypted fingerprinting traffic

(int)sub_10002448, (i

(int)sub_1ee

gned int)CreateTh

d int)CreateThrea

ca
LOBYTE(
rn

B

gned int)CreateTh

LOBYTE(

igned int)CreateTh

gned int)CreateThrea

gned int)CreateThrea

gned int)CreateThrea

@, StartAddress, @,
@, (LPTHRE. _ROUTINE)sub_ 18083F4A, @
@, (LPTHREAD " ROUTINE)sub_188@48D7, @,
@, (LPTHREAD _ROUTINE)sub_:
@, (LPTHRE _ROUTINE)sub 1884264, @,

_ROUTINE)sub_10@@43F1, @

_ROUTINE)sub_1888457E, @

Figure 26. Dispatching commands from C&C as a new worker thread is created

The following table shows the details of the various PE modules from one of the analyzed

clusters:

PE Module Description Code section MD5 hash Size

Module

Order

1 Purple fox second stage updated €d4462856c4fd8b466aa621adac70ded 5399 KB
FatalRAT

2 545a30.dll drop and decrypt PE_3 | 72442AD98A13CA8D1F956D95F98EBAED | 71 KB

3 222.dll dropped by 545a30.dll 24D5DAC4C6006A7EC58FD11838543953 | 361 KB

4 RAMNIT file infector A0272708E1DE3F323B71B5D723BEDD5SA | 328 KB
masquerading as Pure Player
software

5 7z_EXE (Legitimate 7z installer) 70E470D6244A85221ADD5E4571B82DAB | 303 KB

6 7z_dll (includes the second stage | F2FEEB586039BE21DF852A77C3F0F621 | 1132 KB
config)

7 luohua DlidIl (for UAC bypass) 4A59658BCC4205A2CA9BE1F13FDAEO2B | 52 KB

8 User-mode client interface (x64) 6046DCO0F75D92877B847A959C4EQ01F6 | 75 KB

9 Mini-filter Killer Driver(x64) 842CD635A2662745ED3242CFC21C1C35 | 136 KB

10 A signed Hidden rootkit variant 1 C9385EE4D39A4BC7EF9DA02F70849EAB | 62 KB

11 A signed Hidden rootkit variant 2 2DD4534BF273C23DC641AB0OD3B3E192C | 384 KB

Table 4. Various PE modules inside svchost.txt cluster

In the recently updated clusters, the attackers started to deliver some new perl modules
alongside an interpreter to be executed on the victim machines. We are currently tracking the
new payloads delivered by this threat.

Kernel-mode AV-killer Driver Analysis

One of the analyzed executables embedded in svchost.txt is a user-mode client used to
interface with the accompanying rootkit module shown in the next section. This client supports
five different commands, each command implements a specific functionality to be executed from
the kernel driver that has the appropriate IOCTL interface exposed. The following table shows
the details of each command:

IOCTL Description IOCTL User- ARGC User Mode Client Arguments
Mode
Command

Kill a Mini-Filter Driver 0x222000 m 1 Mini-Filter driver name

Copy Files from Kernel 0x222004 c 2 Source path, Destination path

Delete Files from Kernel 0x222008 d 1 File Path to delete

Kill/Wipe User-mode Process| 0x22200c k 2 Operation Type, Process name

NA NA i 1 Install Service (only in the x86

sample)
Table 1. IOCTL interface implemented by Purple Fox AV killer rootkit

Mini-filter killer driver

File systems are targets for input-output (I/O) operations to access files. File system filtering is
the mechanism by which the drivers can intercept calls sent to the file system, which is useful
for AV agents. The model called ‘file system mini-filters’ was developed to replace the legacy
filter mechanism. Mini-filters are easier to write and are the preferred way to develop file system
filtering drivers in almost all AV engines.

When an application accesses or creates a file, whether legitimate or malicious, it sends IRPs to
the Windows File System Driver at the kernel. These IRPs are handled by the Windows I/O
Manager and are then intercepted by the Windows Filter Manager. /0O Manager allows the
registered mini-filter drivers to filter the intercepted information. The Windows Filter Manager
then passes the IRPs to its registered mini-filter drivers, allowing the protection agent to detect
file access and modification events on the file system level.

1/0 Request

1/0O Manager

IRP

M‘_ MIRERE

File System Drver

Figure 27. File system mini-filter model

We looked deeper into the mini-filter driver killer and how the attackers implemented this
functionality. The driver first enumerates all the registered mini filter drivers on the system using
the system API FItEnumerateFilters, then it gets the targeted mini-filter object information it is
searching for by calling FItGetFilterinformation. Lastly, it creates a new system thread to
unregister the mini-filter driver and terminate the created system thread
(PsCreateSystemThread and FltUnregisterFilter).

Figure 28 shows the specific call graph for the system APIs used for this functionality.

|Fscreatesysiemtnreaa] [rRuiEquaiunicogestring] [ExFreeroniwitnTag] [Fionjecioerererence| [memset] [FiiEnumerateriivers]| [FiteerFiiterinormatton]| [Exeiiocaterool]

IPsTerminateSystemThreadI IFTLUnregisLerFiTLerI

Figure 28. System APIs calls for unregistering mini-filter drivers

When testing this rootkit functionality to remove a mini-filter driver from an unprotected system,
as shown in Figure 29, the driver logged the issued command when it successfully removed the
system mini-filter driver.

Administrator: Command Prompt = = n

icrosoft Windows [Uersion 6.3.96001
(c)> 2813 Microsoft Corporation. All rights reserved.

\Windows\system32>f 1tmc

385200
328518
328500
135000
46000
45000
408700

:\Windows\system32>C:\PFRK.exe m

] I>Einidl| Filter

\Windows\system32>f 1tmc
Num Instances Altitude Frame

385200
328510
135000
46000
45000
48700

X DebugView on \\AD-CORP-DATABAS (local) - 0o

File Edit Capture Options Computer Hely

sEE | Q| S~ A BEBT 9P| M

£ Time

1 0.00000000

2 0.00000146 IOCTL_IO_KILL MINIFITER

3 0.00000255 JFi1cer |

Figure 29. Testing "m" command on an unprotected system

This functionality was observed being used against 360 safeguard AV agent components. It was
found in the bat script shown in the next sections.

Killing user-mode processes

This kernel driver implements two different techniques for killing the user-mode process. The
choice is made from the user mode client provided after the “k” command,; it receives either 1
or 0.

The first technique is when the passed command is k 0 <PROCESS_NAME>. It starts with
calling PsLookupProcessByProcessld to get a referenced pointer to the EPROCESS
structure of the target process. Then, it attaches the current execution thread to the address
space of the target process by calling KeStackAttachProcess. After this call, the current thread
can directly alter the address space of the target process and wipe all the content directly from
the kernel. It enumerates the address space starting from the memory address 0x10000 and
starts to wipe the memory contents in chunks of 0x1000 bytes each. It verifies that each
address is a valid virtual memory before trying to write it using MmisAddressValid API to avoid
crashing the system.

return resulty

Figure 30. Removing the process content from kernel-space

o) Command Prompt

wUzeressherif _magdy-Dezsktop>
:sUsersssherif _magdysDesktop?
- o o 3 m d [l O

HWaorksb4.exe - Application Error

g ‘-.I The instruction at 0xB8f117458 referenced memory at Cx00000008. The
@7 memory could not be read.

Click on OK to terminate the program

~Usersssherili _magdy-~lesktop
sUzersssherif _magdysDesktop
Uzsersssherif | dy~Desktop>*mal.exe k B HWorksbd.exe
plo]-—gutz|la mA{la]|Horks64_exe

NUsersssherif magdysDesktop>

& DebugView on \\AD-CORP-DATABAS (local)
File Edit Capture Options Computer Help

EHEA| QSR BEBT| 7 | A

Time Debug Print

#
1 0.00000000 DispatchIoctl

2 0.00000182 IOCIL IO KILL PROCESS
3 0.00000292 HWorks64.exe

4 0.00021734 Process Pid = 3432

Figure 31. Testing "k" command on unprotected system

The second implemented method is when the passed command is k 1 <PROCESS_NAME>. It
will kill the process by using APC (Asynchronous Procedure Call).

APC is a system mechanism in Windows systems that makes it possible to queue a job to be
executed in the context of a target thread. This makes it possible to implement any kind of
asynchronous callbacks in Windows systems. It's been known to be abused by other malware,
mainly to inject other processes in kernel mode. The APIs for dealing with kernel APCs are
undocumented, indicating a mature threat actor with a wide range of capabilities.

The code shown in Figure 32 shows an enumeration of all the thread IDs running on the
systems to identify any thread running under the target process to be killed. It does so by
PsLookupThreadByThreadld, which takes the thread ID as it is input and returns a referenced
pointer to the ETHREAD structure for the thread, starting by TID 0x4 adding 4 by each iteration.
Then, the loThreadToProcess API returns a pointer to the process for the current thread. If this
pointer is equal to the target EPROCESS structure, it will use the KelnitializeApc and
KelnsertQueueApc undocumented kernel APIs to queue a kernel APC to the thread queue.
The KAPC callback will eventually call PsTerminateSystemThread, which is sent along with
the IOCTL buffer sent by the user-mode client.

KAPC_callback, @, @, @, @);

Figure 32. Killing user-mode process using kernel APCs

Bat script invoker

A sample usage for the previously discussed kernel driver is illustrated in Figure 33. The user-
mode client that interfaces with the kernel driver is invoked by the APC mechanism to kill a
process called ZhuDongFangYu.exe. Then, it unregisters a mini-filter driver called 360FsFIt.
Finally, it kills other processes by the first mechanism (360safe.exe, 360tray.exe, 360sd.exe,
QQPCTray.exe, QQPCRTP.exe). Killing these processes helps with AV evasion, stopping the
targeted AV agents from running so that the attackers can continue with their activities.

ping -n 1 127.1»nul

m m m
]

B

<=
L
a1
m
]

=
m
]
m
)

V
m
Ll

<
m
H
m
b
m m m® m " ™ M M

b ot

wmomowow

Figure 33. Invoking the user-mode client that interfaces with the kernel driver to kill a specific
process

Similarity Analysis

Stolen Code Signing Certificate

Analyzing the artifacts dropped by this chain, we looked for the stolen code signing certificates
used to sign the kernel drivers’ modules so that the modules can be successfully loaded into the
Windows kernel. Pivoting with these certificates led us to analyze other signed malicious
samples in our malware repository, and these samples can help attribute malicious activity to
previously known intrusion sets.

This section will describe the use of three different stolen code signing certificates confirmed to
be related to this campaign, and the evidence that links different analyzed samples together.

Name Serial Number | Valid Usage Issuer Status
Hangzhou 08 7F CE CC 8E | Code Signing VeriSign Class 3 | Revoked
Hootian Network | CF 05 F7 4C C3 Code Signing
Technology Co., | B8 AF AD 4C 06 2010 CA
Ltd. 5D
Sl Bt 5F 78 14 9E B4 | Code Signing VeriSign Class 3 | Revoked

J;/iﬁﬂ%iﬂ#i F7 5E B1 74 04 Code Signing
AERAE A8 14 3A AE AE 2010 CA

D7
Shanghai easy | 552B 41 BE 12 | Code Signing Thawte Code Revoked
kradar D94043 7D F4 Signing CA - G2
Information 5D 48 87 38 CC

51

Consulting Co.
Ltd.

Table 2. Code Signing certificates related to Purple Fox

Retrospectively studying “Hangzhou Hootian Network” signed files from our repository, we
found a strong connection to early activity of the Purple Fox botnet that started in 2019 (reported
by Guardicore®).

The threat actors behind Purple Fox used this certificate to sign their rootkit component used to
hide the deployed crypto miner module in the earlier campaign in 2019. It mainly used this
rootkit to hide its registry keys and achieve file system-level stealth. These drivers were
protected and obfuscated with the VMProtect tool to increase the difficulty of reverse-
engineering the samples.

The fact that this certificate appeared again in the previously analyzed mini-filter removal driver
and the other modules appeared in the svchost.txt cluster indicates that it is still the same
threat actor behind these new activities.

The following table shows an analysis for this malicious certificate from a statistical point of view
in terms of the number of captured samples signed with this same malicious certificate.

)
5
2
1 1
o = i

2015 2017 2018 2020 2021 2022
(Jan-Feb)

©2022 TREND MICRO

Figure 34. Signed executables with “Hangzhou Hootian” statistics

Analysis of the second certificate, £ BB B R BPRAE “Shanghai Oceanlink Software

Technology Co. Ltd.,” revealed several clusters of malicious kernel modules. Most of them
were compiled drivers that stemmed from two open source projects: Hidden® rootkit and
Blackbone’ Windows memory hacking library. Both modules are known to have been utilized in
previous Purple Fox activities.

Another interesting link regarding the third certificate, “Shanghai easy kradar Information
Consulting Co. Ltd.,”is that it overlaps with “Hangzhou Hootian Network” in signing a

common cluster of kernel drivers of imphash 2bef7e40cd07bc587b2db765364884d9, which

was also seen in previous Purple Fox activities.

The earlier certificate was found to be explicitly blocked by the digitally-signed rootkit FiveSys
that was reported in October 2021 by Bitdefender®. It shows the competition between different
threat actors behind these campaigns as each group tries to exclusively control their victims. It
also shows how they identify and block each other using the stolen certificate signatures. This
same intelligence over the stolen certificates gives us the ability to cluster, track, and attribute

their campaigns.

The malware authors have left debug messages revealing the list of signatures it monitors:

00000478

00000480

00000482

00000484

00000486

00000488

00000490

00000492

186.51918030

186.51918030

186.51918030

186.51919556

186.51919556

186.51921082

186.51921082

186.51921082

[MY-1]MD5-0:9D9F 343EAASFB4045A4BTD0543TACO2B
[MY-1]MD5-1:A269121 72598 TBT66T40D43964E83CF3
[MY-1]MD5-2:698FDB4F0AABAAGSFEBDIETADA1 TFADA

[MY-1]MD5-3:CE7D7EE0T6ATAD3C53226508F6BBFF09

[MY-1]Sign-0:Zhang Zhengqi

[MY-1]Sign-1:Haining shengdun Network Information Technology Co., Ltd

[MY-1]Sign-2:SHENZHEN LIRINUOS

[MY-1]Sign-3:Shanghai easy kradar Information Consulting Co.Ltd

Figure 5. FiveSys Rootkit blocking list includes Shanghai easy kradar certificate

H

HangZhou
Certificate
E

Signed by

Zegost
InfoStealer

—_

)

Driver.sys
CallDriver.exe
Hidden RK
*Main Backdoor

Svchost.txt
PE Modules

FiveSys Rootkit

Blocks

=

Shanghai Easy
Certificate

;

=

Shanghai Ocean
Link Certificate

11

Signed by

()]

Purple Fox
Rootkit (MSI)

Signed by

©2022 TREND MICRO

Figure 36. Purple Fox stolen code signing certificates graph

Similarities with Zegost Info Stealer

The FatalRAT dropped from the malicious archive found on the first stage C&C server had
many similarities in code with a previously documented info stealer known as Zegost.® This
malware has been historically attributed to Chinese cybercriminals that focus their campaigns
on Chinese government agencies, but it has also been observed in various global campaigns.
The previously documented motive behind this info stealer was to gather intelligence, which is
confirmed by the information-stealing capabilities found in Zegost malware samples.

The following are some of the commonalities that were found between these Purple Fox
campaign modules and the old Zegost samples. It implies with strong confidence that the same
actor is behind the two campaigns. The actors also probably reused some of the old
components for this campaign, or they are at least both forked from the same codebase.

e Process name mssecess.exe typo:

Svchost.txt backdoor implements a process checker list for common AV and EDR products.
The two malware share the same list that includes Microsoft Security Essentials process spelled
as ‘mssecess.exe’ instead of 'msseces.exe’

aMssecessExe

Figure 37. The process 'mssecess.exe' typo in the new Purple Fox backdoor

e Sgaiycl string:

The mini-filter killer driver
(638fa26aea7febebefe398818b09277d01c4521a966ff39b77035b04c058df60) inside
svchost.txt samples has a PDB path
“C:\Users\sgaiycl\Desktop\RunDrive\AddTrustDriver\x64\Release\Driver.pdb”. This username is
correlated with an old Zegost sample
(9b0401ed25b9852928fea88b68f386c89c1fd594043a65432307b477b9f841f7) which resolved
the malicious sub-domain sgaiycl[.Jgnway[.]Jnet. Moreover, this Zegost sample is also digitally
signed with the same “Hangzhou Hootian” code signing certificate.

Debug Artifacts

Path Cilsers\sgaiyc\Desktop\RunDrivelAddTrustDriverixé4\Release\Driver.pdb
Figure 38. Purple Fox driver PDB path

Contacted Domains

Domain Detections

sgaiycl.gnway.net 1/8%9

Figure 39. Zegost sample C&C sub-domain

e Logging of the number and speed of the victims’ processors:

Both families start with fingerprinting their victims’ machines and sending the collected data to
the second stage C&C server. They query the registry key
“HKLM\\HARDWAREWDESCRIPTION\W\System\\CentralProcessor\\O\W'~MHZz\” to identify the
resources of the infected machine. Knowledge of the system hardware resources are important
information for Purple Fox attacks when the objective is to add their victims to their crypto
mining pool.

return al, , v3, &va);
> Internet Protocol Version 4, Src: 192.168.80.148, Dst: 129.226.189.237
> Transmission Control Protoccl, Src Port: 51222, Dst Port: 10022, Seq: 1, Ack: 1, Len: 784
4 Data (784 bytes)

Data: bc@2@@eR4f333647446961676e6T73655363616ehch20000. . .

[Length: 7@4]

PR @2 00 91 @1 @0 @a B G0 00 @2 B2 @@ @8 bb 4
P @2 34 2a 32 38 30 38 4d 48 7a 00 00 08 00 89
P0 @@ PP BB 80 @@ bT B2 @GP B8 00 B0 00 BA A1 80

e0 @2 fe @f @80 @0 32 3@ 32 32 2d 3@ 32 2d 32 34

Figure 40. Sending the victim hardware resources to the second stage C&C

e Heavy usage of COM programming:

Both use a similar COM APIs sequence to find video capture devices installed on the victims’
machines, such as a webcams.

ow Capture Filter)

num ; rclsid

Figure 41. the DirectShow capture filter is being used to enumerate the infected machine for
video capture devices

o Keylogging Capabilities:

Both implement a similar keylogging functionality, as seen in Figure 42.

aEnter_8
aEsc_@

aFl

Figure 42. Different keystrokes logged by Purple Fox malware

e Invoking Zegost through shellcode and similar Svchost nomenclature for their parent
packages:

As shown previously, the updated FatalRAT was invoked through a shellcode that implements a
user- mode loader. According to documentation'® of an old attack chain, Zegost was deployed
through an embedded shellcode. The two chains (svchost.txt and svchost.exe) also used a
similar nomenclature to encapsulate the malicious modules.

Aa Legitimate utility

| - L
.." Ping_Master_Pro

7\t Fake Display Driver
e DLL to decrypt & run
~

Zegost payload

Zegost Backdor - SFX

Installer s | Encrypted Zegost
— * payload
fafent

entugiang.png

Figure 43. Zegost infection chain from Zscaler report*!

e Similar configurations string:

The string “6gkIBfkS+qY=" was found in the new Purple Fox backdoor configuration, which is
the same string that a Zegost sample loaded in the registry
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services ConnectGroup =
"6gkIBfkS+qY=".

62 32

0011AeDB 00 F5 1F 00 00

00 00 00
00 00 00
00 00 00

0 00 00

[38 67 6B 49 42 66 6B

53 2B

00 00 00

0 00 00

00 00 00
00 00 00
0 00 00
6E 62 G6F

0 00 00
0 00 00
0 00 00

0 53 el

0 00 00
0 00 00

00 00 00
00 00 00
00 00
00 00
00 00
00 00
65 62 30

00 00
00 00
a0 00
a0 00
a0 00
78 20
a0 00
a0 00
a0 00

€9 ©

00 00
00 00
00 00
00 00
a0 00
a0 00
a0 00

ao

33 30

00 00
00 00
00 00
00 00
00 00

43

00 00
00 00
00 00

02

00 00
00 00
00 00
00 00
00 00
00 00
00 00
0 00 00

36

4F 4D

EF 78

0 oo
35 65

00 00
00 00
00 00
00 00
00 00

00 00
00 00
00 00

00 00
00 00
00 00
00 00
00 00
00 00
00 00

20 53

20 43

0 61

37 37 00

71 59 3D]|00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

75 70 70 6F
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

4F 4D 20 53
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

32 61 62 31

00 00 00 00

00 00
00 00
00 00
00 00
00 00
00 00

72 74 00

65 72

00 00
00 00
00 00

00 o0
00 00
00 00
00 00
00 00
00 00
00 00
37 31 33
00 00

00 00 00 00 00 0O
00 00 00 74 64
00 00 00 00 53 &1
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
& 89 ©3 65 73 20
00 00 00 00 00 0O
00 00 00 00 00 0O
00 00 00 00 00 0O
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
31 62 30 63 30

00 00 00 00 00 00

00 00
3 32
69 ©
00 00
00 00
00 00
00 00
00 00
00 00
00 00
28 44

0o

00 00
00 00
00 00
00 00
00 00
00 00
33 35 3
00 00

Figure 44. Config parameters from Purple Fox updated FatalRAT

Similarities with Earlier Purple Fox Campaigns

This campaign shares some similarities with earlier Purple Fox activities. We will list some of the
commonalities between both in terms of how the operators are running their attack infrastructure
and the malware they are hosting on the first stage C&C servers of this campaign:

e The attacker’s servers that store the first stage malicious compressed archives were all
running HFS — an HTTP File Server — serving different packages according to the
execution parent request. This aligns with the NanshOu campaign in 2019 reported by

Guardicore.!?

e They are still experiencing some bad SecOps. They keep their whole infrastructure on a
file server with no activated authentication controls, even all their binary clusters
(including old samples) with their original timestamps, and a text file that includes all the
victims IPs (around 23,000 unique public IPs). However, in this campaign, they removed
any logs, or username traces previously left on their file servers in the old campaign.

0O 38 s

O &8 ne

O Bape

o8
O

0 Boo

O 8 e

0 0 o o o 8

O 0
oo e

4.3 M8
2.2 M8
54.5K8
148.0 KB
277.3K8
5.8 M8
20.8 M8
5458
5.0 M8
5.0 MB
5.0 MB
5.0 M8
5.0 M8
58.0 K8
105.4 KB
4.1 M8
4.1 M8

2019-24 7:15:27
2019-2-23 1:50:35
2019-2-25 0:44:38
2019-2-25 1:52:34
2019-3-3 15:40:48

2019-3-15 15:32:51
2019-3-16 0:10:06
2019-3-30 23:26:24
20194-1 16:09:55
20194-1 16:09:55
2019-4-1 16:09:55
2019-4-1 16:09:55
2019-4-1 16:09:55
20194-2 11:40:06
2019-4-11 10:33:27
2019-4-11 23:36:59
2019-4-11 23:37:18

| Size | Timestamps. | His |

9
37

13836

1460

Figure 45. Old Purple Fox server from 2019 campaign running old HFS HTTP server, exposing
all the victim’s data

194.146.84.244:4397
@ HTTP File Server 9
& Login Q, Search & Selection [§ Archive £+ Sort

w 0 folders, 41 files, 55.8 MB
O - 2022/2/19 19:24 & 1016.1 KB
O @ © 2022/1/28 23:37 & 2.5 MB
O+ © 2022/1/28 23:38 & 2.5 MB
0= 2022/2/19 19:24 & 1016.1 KB
0o @ 2022/1/28 23:37 & 2.5 MB
01 @ 2022/2/16 0:50 & 2.5 MB
2 2022/2/21 2:58 & 2.6 MB
03 2022/2/19 19:24 & 1016.1 KB

Figure 46. The new HFS servers running the first stage C&C servers only exposing the second
stage binaries

[hsipsbd 348KB 2/25/2022 8:58 AM
BT ojbkeg.exe “] hfsips.txt - Notepad — T
[rundi3222.exe

File Edit Format View Help

m s.rar

| svchost.bd

98.159.232.233
98.159.232.236
98.159.232.238
98.176.69.211
98.188.112.1
98.212.178.86
98.221.2.48

Figure 47. Victim list of 23,000 unique IPs found hosted on one of their servers

e One of the first stage servers (194.146.84.245) hosted an old module for the MSI
installer for Purple Fox (elf3ac7f.moe) that will eventually load the crypto miner
discussed in the previous blogs.

Downloaded Files

Scanned Detections Type Name

2022-02-25 16 159 RAR arfwwwiclean-mxivirusesevidence/output.188899197.txt
2022-02-23 16 /54 RAR CilUsersiPublicWVideos\164 5467167\ 1.rar

2022-02-07 0 /56 HTML elfiac/fmoe

2022-02-24 0 /59 HTML fvarfwwwiclean-miivirusesevidenceloutput 49847522 txt
2022-02-27 0/68 Win32 EXE 77

Figure 48. hosting old purple fox MSI installer on the new servers

e They are still building their infrastructure from compromising vulnerable servers running
unpatched services (compromised servers as an infrastructure).

Revoked Kernel Drivers Tell-tales

Kernel-mode drivers are executable files that run within the operating system’s kernel with high-
privileged access to sensitive data structures and sensitive system resources. To control the
guality of the code that runs in the address space of the kernel-land, Microsoft only allows
signed drivers to run in kernel mode through enforcing kernel-mode code signing (KMCS)
mechanisms.

Due to performance issues and backward compatibility, Windows allows the loading of a kernel
driver signed by a revoked code signing certificate. So, by testing a previous kernel driver, it can
be loaded successfully as Windows allows a driver signed with a revoked certificate to load.

In the case of user-mode signed executables, the digital signatures are verified by checking the
CRL list obtained from certificate issuers remotely. However, in the kernel drivers’ case, it
cannot be queried online like user-mode signed executables due to the absence of network
connectivity during the kernel initialization and bootup. The kernel boot must be fast and
efficient, so only primitive services are available.

This justifies the design choice of code signing verification for the Windows drivers that is
enforced by the kernel to verify the signature offline. It cannot check the latest revocation list as
all the system cryptographic services and network access are not available. A primitive version
of the signature verification is used for kernel drivers compared with user-mode executable
verification. As a result, the kernel drivers signed with these revoked certificates can still be
loaded into a 64-bit Windows kernel despite their revoked status.

This design choice tradeoff allows mature threat actors to chase and pursue any stolen code
signing certificate and add it to their malware arsenal. If the malware authors acquire any
certificate that has been verified by a trusted subordinate CA and by Microsoft, even if it was
revoked, they can use this certificate for malicious purposes.

Thus, the leaked and compromised certificates of a trusted driver vendor will still be a target for
a threat actor with a mature and sophisticated arsenal.

Conclusion

The attackers behind the Purple Fox botnet are still active and updating their arsenal with
malware that includes a new variant of FatalRAT, which itself seems to be regularly updated
with new functionalities. Moreover, they are trying to improve their signed rootkit arsenal for AV
evasion to be able to bypass the detection mechanisms by targeting them with customized
signed kernel drivers. Obtaining a code signing certificate is not a trivial technique and requires
lots of planning. However, mature actors can afford this effort for the benefit of advanced stealth
opportunities coupled with the high privileged access that they can achieve.

This activity aligns with the return of low-level attacks and the increase of signed rootkits
usage,’® which are trends we have been observing. These revitalized techniques are mainly due
to the increasing protection on the user-land processes by endpoint protection platform (EPP)
and endpoint detection and response (EDR) technologies, either on the users’ desktop or

servers. Because of these added protections, the attackers will opt for the path of least
resistance — getting some of their code running from the kernel.

The trends of using stolen code signing certificates to sign customized kernel drivers (i.e. the
recent NVIDIA data breach'#) or even abusing unprotected legitimate drivers (i.e. the
HermeticWiper abuse of EaseUS used against Ukraine'®) are growing, and predictions show
they are expected to grow further in the future. These are vital reasons why software driver
vendors must effectively secure their obtained code signing certificates and follow secure
practices in the Windows kernel drivers development process.

References

1 Jay Yaneza, Abdelrhman Sharshar, and Sherif Magdy. (Dec. 13, 2021). Trend Micro. “A Look
Into Purple Fox’s Server Infrastructure.” Accessed on Mar. 24, 2022 at
https://www.trendmicro.com/en_us/research/21/l/a-look-into-purple-fox-server-
infrastructure.html.

20fer Caspi. (Aug. 2, 2021). AT&T Cybersecurity. “New sophisticated RAT in town: FatalRat
analysis.” Accessed on Mar. 24, 2022 at https://cybersecurity.att.com/blogs/labs-research/new-
sophisticated-rat-in-town-fatalrat-analysis?.

3Github. (May 9, 2013). Github. “ghOst.” Accessed on Mar. 24, 2022 at
https://github.com/sin5678/gh0st.

4Ofer Caspi. (Aug. 2, 2021). AT&T Cybersecurity. “New sophisticated RAT in town: FatalRat
analysis.” Accessed on Mar. 24, 2022 at https://cybersecurity.att.com/blogs/labs-research/new-
sophisticated-rat-in-town-fatalrat-analysis?.

SOphir Harpaz and Daniel Goldberg. (n.d.). Guardicore. “The NanshOu Campaign — Hackers
Arsenal Grows Stronger”. Accessed on Mar. 24, 2022 at https://www.guardicore.com/labs/the-
nanshOu-campaign-hackers-arsenal-grows-stronger/.

6 JKornev. (Feb. 28, 2022). Github. “Hidden.” Accessed on Mar. 24, 2022 at
https://github.com/JKornev/hidden.

" DarthTon. (Jun. 21, 2022). Github. “Blackbone.” Accessed on Mar. 24, 2022 at
https://github.com/DarthTon/Blackbone.

8Cristian Alexandru et al. (Oct. 20, 2021). Bitdefender. “Digitally-Signed Rootkits are Back — A
Look at FiveSys and Companions.” Accessed on Mar. 24, 2022 at
https://www.bitdefender.com/blog/labs/digitally-signed-rootkitsare-back-a-look-atfivesys-and-

companions/.

9 FortiGuard SE Team. (Jul. 26, 2019). Fortinet. “Zegost from Within — New Campaign Targeting
Internal Interests.” Accessed on Mar. 24, 2022 at https://www.fortinet.com/blog/threat-
research/zegost-campaign-targets-internal-interests.

https://www.trendmicro.com/en_us/research/21/l/a-look-into-purple-fox-server-infrastructure.html
https://www.trendmicro.com/en_us/research/21/l/a-look-into-purple-fox-server-infrastructure.html
https://cybersecurity.att.com/blogs/labs-research/new-sophisticated-rat-in-town-fatalrat-analysis
https://cybersecurity.att.com/blogs/labs-research/new-sophisticated-rat-in-town-fatalrat-analysis
https://github.com/sin5678/gh0st
https://cybersecurity.att.com/blogs/labs-research/new-sophisticated-rat-in-town-fatalrat-analysis
https://cybersecurity.att.com/blogs/labs-research/new-sophisticated-rat-in-town-fatalrat-analysis
https://www.guardicore.com/labs/the-nansh0u-campaign-hackers-arsenal-grows-stronger/
https://www.guardicore.com/labs/the-nansh0u-campaign-hackers-arsenal-grows-stronger/
https://github.com/JKornev/hidden
https://www.bitdefender.com/blog/labs/digitally-signed-rootkitsare-back-a-look-atfivesys-and-companions/
https://www.bitdefender.com/blog/labs/digitally-signed-rootkitsare-back-a-look-atfivesys-and-companions/
https://www.fortinet.com/blog/threat-research/zegost-campaign-targets-internal-interests
https://www.fortinet.com/blog/threat-research/zegost-campaign-targets-internal-interests

0Deepen Desai. (Oct. 16, 2015). Zscaler. “Chinese Backdoor Zegost Delivered Via Hacking
Team Exploit.” Accessed on Mar. 24, 2022 at https://www.zscaler.com/blogs/security-
research/chinese-backdoor-zeqgost-delivered-hacking-team-exploit.

1Deepen Desai. (Oct. 16, 2015). Zscaler. “Chinese Backdoor Zegost Delivered Via Hacking
Team Exploit.” Accessed on Mar. 24, 2022 at https://www.zscaler.com/blogs/security-
research/chinese-backdoor-zegost-delivered-hacking-team-exploit.

120phir Harpaz and Daniel Goldberg. (n.d.). Guardicore. “The NanshOu Campaign — Hackers
Arsenal Grows Stronger”. Accessed on Mar. 24, 2022 at https://www.quardicore.com/labs/the-
nanshOu-campaign-hackers-arsenal-grows-stronger/.

BKaspersky. (May 6, 2021). Kaspersky. “Operation TunnelSnake: Formerly unknown rootkit
used to secretly control networks in Asia and Africa.” Accessed on Mar. 24, 2022 at
https://usa.kaspersky.com/about/press-releases/2021 operation-tunnel-snake-formerly-
unknown-rootkit-used-to-secretly-control-networks-in-asia-and-africa.

l4Katie Wickens. (Mar. 7, 2022). PC Gamer. “Nvidia's stolen data is being used to disguise
malware as GPU drivers.” Accessed on Mar. 24, 2022 at https://www.pcgamer.com/nvidias-
stolen-data-is-being-used-to-disguise-malware-as-gpu-drivers/.

5Juan Andrés Guerrero-Saade. (Feb. 23, 2022). Sentinel Labs. “HermeticWiper New
Destructive Malware Used In Cyber Attacks on Ukraine.” Accessed on Mar. 24, 2022 at
https://www.sentinelone.com/labs/hermetic-wiper-ukraine-under-attack/.

https://www.zscaler.com/blogs/security-research/chinese-backdoor-zegost-delivered-hacking-team-exploit
https://www.zscaler.com/blogs/security-research/chinese-backdoor-zegost-delivered-hacking-team-exploit
https://www.zscaler.com/blogs/security-research/chinese-backdoor-zegost-delivered-hacking-team-exploit
https://www.zscaler.com/blogs/security-research/chinese-backdoor-zegost-delivered-hacking-team-exploit
https://www.guardicore.com/labs/the-nansh0u-campaign-hackers-arsenal-grows-stronger/
https://www.guardicore.com/labs/the-nansh0u-campaign-hackers-arsenal-grows-stronger/
https://usa.kaspersky.com/about/press-releases/2021_operation-tunnel-snake-formerly-unknown-rootkit-used-to-secretly-control-networks-in-asia-and-africa
https://usa.kaspersky.com/about/press-releases/2021_operation-tunnel-snake-formerly-unknown-rootkit-used-to-secretly-control-networks-in-asia-and-africa
https://www.pcgamer.com/nvidias-stolen-data-is-being-used-to-disguise-malware-as-gpu-drivers/
https://www.pcgamer.com/nvidias-stolen-data-is-being-used-to-disguise-malware-as-gpu-drivers/
https://www.sentinelone.com/labs/hermetic-wiper-ukraine-under-attack/

