specterops.io /blog/2025/09/18/more-fun-with-wmi/

More Fun With WMI

i 18/09/2025

By: Steven Flores * 7 min read

TL;DR Win32_Process has been the go to WMI class for remote command execution for years. In this
post we will cover a new WMI class that functions like Win32_Process and offers further capability

From time to time, across different versions of Windows, | like to take a look at Windows Management
Instrumentation (WMI) classes to see if any interesting classes and methods exist to perform particular
actions. One of the things that | look for are methods | could use for general post-ex capability.

To take a deeper dive into WMI for new opportunities, we need to have an idea of what we already know
in terms of a technique like lateral movement. Current classes and their methods include:

e Process — Win32_Process (Create)

e Service — Win32_Service (Create/StartService or Change)
e Job — Win32_ScheduledJob (Create)

e Task — PS_ScheduledTask (New)

e Product — Win32_Product (Install)

e Performance — Win32_PerfData/Win32_PerfRawData

e Custom/Malicious WMI Provider

e Derived Class

e Event Subscription

While searching, | came across some interesting classes and their methods that extend the classes
above. | will only cover one at this time, due to some of the other potential candidates not being fully
fleshed out.

MSFT_MTProcess

MSFT_MTProcess is the closest WMI class that | have seen to Win32_Process. Win32_Process is the
canonical example of WMI lateral movement and is what most people think of when discussing lateral
movement with WMI. MSFT_MTProcess has a method called CreateProcess that accepts a command-
line argument much like Win32_Process. However, a big caveat to this class is that it only exists on
Windows Server 2016 and newer. This means it is not available when attempting lateral movement to
workstations, but it will trigger execution of a given binary/file like Win32_Process. What is nice about this
is that the setup is just as straight forward as Win32_Process, with an argument being passed to a binary,
unlike something like Win32_PerfData which takes a little bit of setup. This particular class is in the
.\Root\Microsoft\Windows\ManagementTools namespace.

MSFT_MTProcess Part 2

1/4


https://specterops.io/blog/2025/09/18/more-fun-with-wmi/
https://specterops.io/blog/author/steven-f/

A second interesting method for MSFT_MTProcess is CreateDump. You can leverage this class to create
a dump of a given process. If you want to remotely (or locally) create a dump of a process without adding
any new tooling, then you can leverage MSFT_MTProcess’s CreateDump method. Again this class only
exists on Windows Server 2016 or later. This means that if you want to get a process dump of
everyone’s favorite process (i.e., Isass.exe) and take it offline to extract data, you can. Does this class
offer an interesting or novel way of dumping a process? No. This class follows the same technique as
Task Manager where you can right click a process and create a process dump. This loads dbghelpd.dll
and calls MiniDumpWriteDump on the instance of the process you give it. This does make sense, since
this WMI provider is called the Task Manager Provider; however the process execution chain is a little
different. Rather than Task Manager loading the DLL, you have WmiPrvSe completed the load and
making the function call.

A 4 2
if ( !'MiniDumpkiriteDump(
»
*(HANDLE *) ,
MiniDumpWithThreadInfe|MiniDumpkithFullMemoryInfo|MiniDumpWithUnloadedModules |MiniDumplithHandleData |MiniDumpliithFullMemery,
8,

8,
2) )

MSFT_MTProcess on Workstations

| did leave out an important note about MSFT_MTProcess above. Earlier, | stated that it will only work on
Windows Server 2016 and higher. By default, that is still true; however, we can make it work on Windows
workstation operating systems as well. There are two main components to this. First is the provider
dynamic-link library (DLL); this WMI class provider is mttmprov.dll. Second, is the MOF file which will be
used for all of the parameters and associated data for the WMI class. With a couple of steps, we can take
those two provided files and install them to a Windows 10/11 host and gain functionality of dumping a
process or executing a program through the class’s previously mentioned methods.

First, we write the provider DLL and MOF file to C:\Windows\System32\wbem on the target host. From
there, we will want to install the MOF file so that the class is created in the WMI database and becomes
usable. To do this, we’d want to use something like:

mofcomp.exe C:\Windows\System32\wbem\mttmprov.mof

Technically, we don’t have to use mofcomp. We could use pure WMI to do this, but you lend yourself to
encountering issues by doing this. Lastly, we would need to register the COM CLSID manually by
creating some registry keys. Once you complete all of these steps, the class becomes available for use.

Computer\HKEY_CLASSES_ROOT\CLSID\{49FE263
{49F371E1-8C5C-4d9c-9A3B-5:
v | {45FE263F-8F0A-4C17-BDDE-7

l InProcServer32

0A-4C17-BDDE-TD060375983T PInProcServer32

~ L Name Tupe. Data

3| (Default) REG_EXPAND SZ esystemroot %\system 32 whem'\mttmprov.dil
ab| ThreadingModel REG_SZ Free

{4A03DCES-6E17-4A39-B845-4EETDC3331A5)
{4a04656d-52aa-40de-Ba(9-cb 178760742}
{441ESACD-A108-4100-9E26-D2FAFA 1B AL2E)

This entire process is similar to installing a malicious WMI Provider mentioned above in the list of known
lateral movement techniques; however, rather than being overtly malicious, it's an existing legitimate
Windows WMI provider much like Win32_Process’s provider.

2/4



Namespaces Classee (531} Search
= VSFAWINTD-22H2-1\RDOT

S Quick Fler:  [MSFT_MTProcess netances (195) Properies (45) Methods () Query Scopt  Logang
ROOT Classes Methods

AOOT\DEFAULT - Lazy . Descripbon Path Method Hame  Stalic  Descriotion
ROOT direcacey | MSFT_MTProcess False WSF-WIN10-22H2-1\A00 | || CeseDump  False

Settings

ROOT \madc:
ROOTVPEH (A Home About
ROOT\Polcy

ROOTWRSOP
ROOT\SECURITY I | |

Windows specifications

Edition

System
g Version

ROOT\StandardCimy2
ROOT subscrption Installed on
ROOTWWMI

3 Display OS build

Experience A s Feature Experience Pack 12.4

Tooling

Since there is a new usable class listed above, it would not be very useful if there wasn’t tooling available
for it. | have created two tools that implement the classes above and a little bit more:
WMI_Proc_Dump.py and mtprocess.py.

WMI_Proc_Dump.py is a tool that uses the MSFT_MTProcess class to dump a process remotely when
targeting Windows Server 2016 or higher (or Windows workstation OS if you have installed MT Process
provider). This will call MSFT_MTProcess to dump the process, which will automatically write
<Process_Name>.dmp to C:\Windows\Temp. However, if you want to rename it to something less
suspicious, you can with CIM_DataFile (even though telemetry would likely capture the original name).

Mtprocess.py is the second script being released that implements the CreateProcess method of the
MSFT_MTProcess class. Additionally, this script provides an automated way to install
theMSFT_MTProcess class to a workstation host.

thirteen/domainadmin:passu

One major drawback of the implementation was that in order for this to be done remotely, | used
Win32_Process to call mofcomp.exe on the MOF file. This is a bit of a chicken and egg problem, because
the point of adding MSFT_MTProcess is to get away from Win32_Process. Additionally, the MOF file
changes the namespace from .\Root\Microsoft\Windows\ManagementTools to .\Root\CIMv2 since that
namespace doesn’t exist on the Windows workstation operating system.

WMI_Proc_Dump can be found here https.//github.com/Oxthirteen/WMI_Proc_Dump and mtprocess can
be found here https.//github.com/Oxthirteen/mtprocess.

Conclusion

3/4



Win32_Process has been the de facto WMI class for most lateral movement and is still used today. Over
time, there have been other methods of achieving almost the same functionality with other classes.
However, often other requirements are needed to be successful and sometimes can be a bit
cumbersome. The MSFT_MTProcess class is the closest replacement class for Win32_Process that |
have seen on any Windows host, and is installed by default on any 2016 and higher server OS versions.
There are native Windows utilities that make installing this WMI provider on non server OS’s very simple,
and this can even be done remotely. And as a bonus, this provider also offers ways of getting process

dumps of a given process instance. Both of these methods make this class useful for offensive use
cases.

Post Views: 1,393

4/4



