
1/10

cyberdom.blog /ghosting-the-sensor-disrupting-defender-for-identity-without-detection/

Ghosting the Sensor: Disrupting Defender for Identity
Without Detection
⋮ 7/26/2025

Think of your enterprise as a fortified city, and each domain controller as a gatehouse. Microsoft
Defender for Identity is like a watchtower built inside the gate, quietly observing everyone who passes
through. It doesn’t rely on patrols or wall guards but monitors credentials, behaviors, and hidden threats
from within.

When it sees something suspicious, it sends a signal to the central command. However, if an attacker
finds a way to block that signal using DNS tricks or traffic redirection, the watchtower remains lit and
appears normal. Meanwhile, the attacker walks in the shadow.

This is MDI’s blind spot. It assumes its signals are always delivered, but a quiet attacker can cut that link
and operate freely inside the network (a specific domain controller).

This blog post sheds some light on a real-life scenario that was recently investigated. This scenario was
an evasion technique that focuses on traffic manipulation and security telemetry suppression through
network redirection. Specifically, it targets the MDI sensor’s reliance on local DNS resolution and the
unverified assumption that outbound TLS traffic consistently reaches Microsoft’s backend. By redirecting
sensor traffic to a local endpoint using DNS tampering, an attacker can keep the sensor service running
while silently severing telemetry transmission. This renders the sensor blind, without generating alerts or
impacting operational continuity.

https://cyberdom.blog/ghosting-the-sensor-disrupting-defender-for-identity-without-detection/

2/10

The technique is “OLD BUT GOLD”. Simple in execution yet highly effective, this has been observed in
real world incidents where advanced threat actors and red teams exploited DNS trust to quietly eliminate
Defender for Identity visibility while maintaining the appearance of a healthy sensor. This approach
requires no external binaries, no code injection, and no service disruption.

Additionally, in the real scenario, the attacker made a few more actions, such as configuring the built in
firewall on the Windows server to block certain connections.

Some questions were raised, like why didn’t the EDR see many actions? But this is for a different blog
post. In the meantime, we’re operating within the AD DS (Active Directory Domain Services) layer, where
MDI is actively monitoring and collecting identity related signals.

During my incident investigations and research for this post, I identified multiple techniques to fuzz MDI
URL endpoints and discovered a significant number of targets in the process.

Introduction

MDI’s sensor is not just another event log parser. It operates at the intersection of network telemetry,
Windows Security Auditing, and Active Directory state introspection, embedding itself as a privileged
observer on domain controllers. Its core function is to capture, parse, and correlate low-level protocol
behavior such as Kerberos ticket exchanges, NTLM challenges, LDAP bind requests, and SMB session
flows with high-fidelity log signals from the Windows Event Log stack.

At the core of this architecture is Microsoft.Tri.Sensor.exe, which communicates with Microsoft’s cloud
through tenant-scoped API endpoints such as sensorapi.atp.azure.com. This communication includes
structured telemetry, behavioral signals, heartbeat status, and version metadata. These interactions form
the foundation of MDI’s anomaly detection pipeline.

The core sensor engine (Microsoft.Tri.Sensor.exe) operates at the system level and leverages:

Npcap-based packet interception, bound directly to DC interfaces, captures real-time
authentication data. Utilizes to capture and analyze network data. The sensor and Npcap work
together to provide comprehensive threat detection capabilities.

ETW (Event Tracing for Windows) and WMI providers to access local security and directory
events. Specifically, it utilizes ETW for real-time event logging and WMI providers to access and
interpret system information, enabling comprehensive security monitoring and analysis.

Telemetry encryption and compression layers that forward parsed observables to tenant-
scoped backend endpoints like sensorapi.atp.azure.com or purplexlabsensorapi.atp.azure.com.
The sensor encrypts the telemetry data it collects before sending it to the cloud. This ensures that
even if intercepted, the data remains unreadable without the decryption key.

Each sensor is controlled by a cloud command channel and maintains bidirectional TLS channels for
telemetry, heartbeats, policy updates, and behavioral signal delivery. The telemetry pipeline includes:

3/10

High-fidelity event sequences (Kerberos logon chains, ticket reuse patterns, group membership
deltas)

Sensor status indicators (load, capture state, service errors)

Anomaly triggers (e.g., DCSync detection, reconnaissance enumeration, lateral movement)

For adversaries and red teamers, the sensor represents a critical point of visibility. Disabling it outright
is noisy and detectable. However, preserving operational appearance while degrading its telemetry
capabilities offers a stealthy and highly effective approach to sensor evasion.

Note: If you are not monitoring the MDI traffic, services, and infrastructure, you have a blind spot.

Microsoft Defender for Identity – High-Level Architecture

Sensor Internal

At the heart of Microsoft Defender for Identity (MDI) lies a distributed sensor-based architecture, where
each Domain Controller hosts a self-contained runtime that captures, parses, and forwards telemetry to
the Microsoft cloud. This runtime is composed of two tightly coupled executables:
Microsoft.Tri.Sensor.exe and Microsoft.Tri.Sensor.Updater.exe.

Note: The sensor discussed here is classified as a legacy component. For modern deployments,
Microsoft recommends transitioning to the unified Defender sensor for enhanced coverage and
integration.

These components establish secure outbound communication over HTTPS, primarily targeting
sensorapi.atp.azure.com or tenant-specific subdomains (e.g., purplexlabsensorapi.atp.azure.com). The

4/10

API serves as the authoritative control plane for sensor-to-cloud interaction, enabling the ingestion of
real-time telemetry, health monitoring, and update coordination.

The Core Telemetry Engine

The Microsoft.Tri.Sensor.exe executable is the operational backbone of the MDI sensor. It runs under the
AATPSensor Windows service and performs multiple low-level operations in parallel:

Network Inspection

Packet Inspection: Hooks into the network stack to inspect raw traffic at the transport layer. It parses
authentication protocols, such as Kerberos, NTLM, LDAP, and SMB, directly from the domain controller’s
live traffic, eliminating the need for a network tap or mirror port.

Security Event Monitoring: Actively subscribes to Windows Event Logs, specifically targeting identity-
related events such as 4624 (logon), 4768 (TGT request), 4776 (NTLM authentication), and 4662
(directory access), using ETW or standard event API consumption.

Directory Interaction: Queries local Active Directory for metadata on users, groups, trust relationships,
and service accounts to build a real-time graph of identity relationships and privilege flows.

Telemetry Aggregation and Dispatch: Collects and packages telemetry data, detection signals,
behavioral anomalies, and health metrics. This data is then transmitted to the tenant-specific endpoint,
such as sensorapi.atp.azure.com, over encrypted outbound channels.

Health and Heartbeat Signals: Sends periodic status beacons that report version information,
operational status, and connectivity metrics to Microsoft’s backend.

Note: for more information about the MDI event collection

Telemetry Serialization

Structures captured events into telemetry packets

Applies tenant-specific policy filters and suppression rules

Encrypts telemetry payloads using TLS

Data is sent to the following URL endpoint

https://<tenant>sensorapi.atp.azure.com/<specific api telemtry>

If unreachable, it enters an exponential backoff retry loop.

Attacker Objective
While there are many ways to disrupt, evade, or outright terminate Microsoft Defender for Identity (MDI)
sensors, some of them can cause noise service crashes, telemetry gaps, or obvious health alerts in the

https://learn.microsoft.com/en-us/defender-for-identity/deploy/event-collection-overview

5/10

portal. But what if you could manipulate the sensor without ever triggering an alert?

Create a stealthy, persistent disruption of the MDI sensor’s outbound telemetry without terminating,
crashing, or tampering with it Microsoft.Tri.Sensor.exe directly. The goal is simple:

Let the process live – The MDI sensor (Microsoft.Tri.Sensor.exe) remains up, running,
and healthy. No service crash. No recovery trigger. The process thinks it’s doing its job.

Break the signal flow – By routing sensorapi.atp.azure.com and related endpoints to
127.0.0.1You’ve null-routed the telemetry. The sensor transmits, but the packets are lost due to
a black hole. Outbound TLS fails silently. No exfiltration. No alerts.

Stay below detection thresholds – Because you’re not terminating services, uninstalling
software, or dropping connections via firewall rules, you don’t trigger: Defender for Identity sensor
health alerts or SIEM rules built on service failure events.

Microsoft Defender for Identity sensors do not validate whether the data they send is actually received
by Microsoft’s backend. There’s no:

End-to-end ACK or receipt

Mutual TLS pinning from the agent

DNS validation guardrails

They trust DNS, like many other security controls, such as EDR. IN the EDR world, there is a known
tactic and manipulation.

Traffic Manipulation
Stage: DNS Redirection

We will redirect telemetry endpoints to 127.0.0.1, null-routing the connection.

$RedirectIP = "127.0.0.1"

$HostsFile = "$env:SystemRoot\System32\drivers\etc\hosts"

$TenantSensorEndpoint = "purplexlabsensorapi.atp.azure.com"

Remove any existing entry for the tenant sensor

$ExistingHosts = Get-Content -Path $HostsFile

$FilteredHosts = $ExistingHosts | Where-Object {

$_ -notmatch [regex]::Escape($TenantSensorEndpoint)

}

$FilteredHosts | Set-Content -Path $HostsFile

Add the silent redirect

Add-Content -Path $HostsFile -Value "$RedirectIP`t$TenantSensorEndpoint"

6/10

Flush DNS cache to activate immediately

ipconfig /flushdns | Out-Null

Write-Host "[*] Redirection active. $TenantSensorEndpoint -> $RedirectIP"

Note: You should configure your workspace URL endpoint.

Stage: External Traffic Monitor for MDI Sensor

Before the changes, and when the routing remained unchanged.

After the changes, and when the routing is for the local 127.0.0.1

7/10

The “Identities” section in the Defender XDR portal continues to display a healthy status, even hours after
the disruption was introduced.

The MDI services remain fully operational and show no signs of disruption.

Assumptions vs. Reality

8/10

From the attacker’s perspective, Defender for Identity’s architecture is rich with trust assumptions about
DNS resolution, outbound network communication, and the integrity of the local sensor. Each of these
assumptions can be exploited silently using native PowerShell, local privileges, and protocol-level
deception without stopping services, writing malware, or triggering local defenses.

Below are the critical assumptions and how a capable attacker dismantles each one.

Assumption: If the AATPSensor service is running, the sensor is fully operational.

The reality:

Keep the service running, but null-route its telemetry.
Use DNS redirection (hosts file override) to silently forward sensorapi.atp.azure.com to 127.0.0.1.
The service logs show normal operation, but no data reaches Microsoft.

Assumption: DNS resolution is trustworthy and reflects accurate endpoint routing.

The reality:

Tamper with the local DNS resolver stack.
Modify C:\Windows\System32\drivers\etc\hosts to override Microsoft endpoints.
Exploit the sensor’s lack of endpoint verification, it does not validate remote TLS fingerprints or
pinned DNS names.

Assumption: Sensor telemetry sent over TLS is encrypted, reliable, and visible to Microsoft.

The reality:

Break the outbound path while maintaining a local TCP handshake.
Redirect to a local HTTPS listener on port 443 that responds with HTTP 200 OK to /heartbeat.
This spoofs backend liveness and maintains the illusion of connectivity.

Assumption: MDI sensors are monitored in real-time by the SOC.

The reality:

Exploit the backend heartbeat delay
The portal may show “healthy” status even while telemetry is fully blind.
Complete all lateral movement and privilege escalation within the blind window.

Assumption: Defender for Endpoint or Microsoft Security Copilot will detect sensor tampering.

The reality:

Avoid service termination, memory injection, or binary replacement.
Use PowerShell-only native techniques that blend into administrative baselines.
No Defender alert, no Event ID 7045, no EDR signature triggered.

Each assumption is a point of trust. Each point of trust, when left unmonitored, becomes a blind spot.
An attacker doesn’t need to defeat the sensor. They only need to turn it against itself, operational, quiet,

9/10

and completely blind.

The Blue Team’s Side

Signal Source Detection Vector
hosts file monitoring File integrity monitor, Defender for Endpoint
Net logs Lack of outbound 443 to *.atp.azure.com
MDI Log Inactivity Detection checks key MDI telemetry tables for recent activity
Sysmon Event ID 1 Unusual PowerShell modifying system files

Hosts file monitoring

If you’re using Microsoft Defender for Endpoint, Advanced Hunting provides a powerful way to monitor,
investigate, and detect any suspicious modifications to the hosts file in real time.

Hosts File Tampering Detection – Process Attribution and Timeline

MDI Log Inactivity Detection

https://raw.githubusercontent.com/eshlomo1/CloudSec/refs/heads/main/Microsoft%20SIEM-XDR/Hunting-KQL/MDE/Hosts_File_Tampering_Detection.kusto
https://raw.githubusercontent.com/eshlomo1/CloudSec/refs/heads/main/Microsoft%20SIEM-XDR/Hunting-KQL/MDE/MDI_Log_Inactivity_Detection.kusto

10/10

Conclusion

DNS layer sensor disruption offers a powerful and stealthy method of evading Microsoft Defender for
Identity telemetry without stopping services, altering binaries, or triggering local tampering alerts.

From an offensive security standpoint, this method is ideal for:

Simulated domain takeovers

Low-and-slow lateral movement scenarios

Cloud disconnect testing

Sensor visibility boundary assessment

For defenders, it reinforces the critical need for:

Proactive heartbeat monitoring

System file integrity enforcement

Network-layer validation of telemetry flow

If your sensor is running, but MDI never sees it, you are blind.

