
trustedsec.com /blog/operating-inside-the-interpreted-offensive-python

Unknown Title

Introduction

Every once in a while, I get the urge to go back and revisit older techniques that used to be popular but have fallen out of favor with the offensive community. Things like Office Macros, PowerShell,

and custom shellcode loaders used to be incredibly effective but are now deemed “burned” by many industry colleagues I chat with. While there is some truth to this, I am still constantly surprising

myself and others on my team with so-called “burned” TTPs that prove themselves effective on operations.

Python Malware

In this post, I want to revisit another old technique I believe is a prime candidate to host malware payloads—Python for Windows. But, before we do, let’s revisit some existing work in this space.

Unknown Title about:blank

1 of 13 4/27/2025, 6:19 PM

https://trustedsec.com/blog/operating-inside-the-interpreted-offensive-python?utm_content=322648418&utm_medium=social&utm_source=twitter&hss_channel=tw-403811306
https://trustedsec.com/blog/operating-inside-the-interpreted-offensive-python?utm_content=322648418&utm_medium=social&utm_source=twitter&hss_channel=tw-403811306
https://trustedsec.com/blog/operating-inside-the-interpreted-offensive-python?utm_content=322648418&utm_medium=social&utm_source=twitter&hss_channel=tw-403811306
https://trustedsec.com/blog/operating-inside-the-interpreted-offensive-python?utm_content=322648418&utm_medium=social&utm_source=twitter&hss_channel=tw-403811306
https://trustedsec.com/blog/operating-inside-the-interpreted-offensive-python?utm_content=322648418&utm_medium=social&utm_source=twitter&hss_channel=tw-403811306
https://trustedsec.com/blog/operating-inside-the-interpreted-offensive-python?utm_content=322648418&utm_medium=social&utm_source=twitter&hss_channel=tw-403811306
https://trustedsec.com/blog/operating-inside-the-interpreted-offensive-python?utm_content=322648418&utm_medium=social&utm_source=twitter&hss_channel=tw-403811306

It seems like hackers have been writing Python malware forever, from Python socket shells to Py2Exe toy implants, but the first Python tradecraft I can remember using is Chris Truncer’s Veil Evasion

project. Veil was first released in 2013 and still seems like magic—a tool that turns Python into shells.

Shortly after, a golden age of malware began when Microsoft announced PowerShell would come preinstalled on Windows. The original PowerShell empire, PowerSploit, and tons of other tradecraft

were written in PowerShell, designed to be used wherever PowerShell was preinstalled. Python malware took a back seat, since the Python interpreter had to be installed on a target before it could be

used. After that, Microsoft made some big changes to PowerShell, introducing the Anti-Malware Scanning Interface (AMSI) and various logging capabilities that made developing PowerShell malware

just a little bit harder. Eventually, offensive tool developers ditched PowerShell and moved back to unmanaged languages like C and C++.

In late 2018, Microsoft released Python on the Microsoft store (which, at that time, was called the Windows Store). It took me several years to realize how easy it was to install, and I think many others

didn’t realize this, either. In 2022, Diego Capriotti released Pyramid, an exploitation framework written in Python. In my mind, this marks the first release of modern Python tradecraft. Around the same

time, Anthony Rose released an implementation of a Python 3 engine embedded in .NET, with inspiration taken from Turla’s IronNetInjector code. Python code could now be run on Windows without

even installing the Python interpreter.

With the easy availability of Python on Windows, as well as some existing Python tradecraft, I believe there is a case to be made for a small but meaningful niche of offensive Python within the

malware development space.

Downloading Python From the Microsoft Store

As mentioned before, Python can be easily downloaded from the Microsoft store. On modern Windows systems, simply open the Microsoft store and search for Python. Several versions are available.

At the time of writing, Python 3.7 to 3.13 are available. Simply click the “Get” button to download Python. Administrative rights are not required. Alternately, the Microsoft Store has a default protocol

handler that you can use if you know the package you want to download. For example, Python 3.13 can be opened using the following URL: ms-windows-store://pdp/?ProductId=9pnrbtzxmb4z.

Unknown Title about:blank

2 of 13 4/27/2025, 6:19 PM

https://github.com/Veil-Framework/Veil-Evasion
https://github.com/Veil-Framework/Veil-Evasion
https://github.com/Veil-Framework/Veil-Evasion
https://github.com/Veil-Framework/Veil-Evasion
https://github.com/Veil-Framework/Veil-Evasion
https://github.com/Veil-Framework/Veil-Evasion
https://github.com/naksyn/Pyramid
https://github.com/naksyn/Pyramid
https://github.com/naksyn/Pyramid
https://github.com/BC-SECURITY/Taming-Offensive-IronPython
https://github.com/BC-SECURITY/Taming-Offensive-IronPython
https://github.com/BC-SECURITY/Taming-Offensive-IronPython

Figure 1 - Python Available in Microsoft Store

After the install, Python can be run from the start menu or a stub executable in the C:\Users\\AppData\Local\Microsoft\WindowsApps| folder.

Figure 2 - Running Python Downloaded From Microsoft Store

Download and Install Python Offline

There are a few scenarios in which we might not be able to use the Microsoft Store to download Python this way:

• We can only use the command line/No GUI access available

• The Microsoft Store is disabled via Group Policy or other means

• No direct Internet connection on the host

Unknown Title about:blank

3 of 13 4/27/2025, 6:19 PM

But fear not, there is still a way to load Python or other Microsoft Store packages on Windows:

Step 1: Open the desired Microsoft Store application in a browser.

Figure 3 - Opening Python Store Page in Browser

Step 2: Copy the Microsoft Store URL and paste it into https://store.rg-adguard.net/. Download the MSIX, APPX, or APPXBundle file, which is the package installer. Note that even though we may not

trust this third-party app store, the installer packages are digitally signed, which prevents tampering with the installers. Even so, I recommend installing and testing out the package files in a lab

environment before deploying them on the target.

Figure 4 - Getting Python MSIX File From rg-adguard.net

Step 3: Transfer the installer file to the target box. If GUI access is available, simply double-click the file to initiate the installation process. Under the hood, this spawns the program AppInstaller.exe.

Unknown Title about:blank

4 of 13 4/27/2025, 6:19 PM

https://store.rg-adguard.net/
https://store.rg-adguard.net/
https://store.rg-adguard.net/

Figure 5 - Double-Click MSIX Installation Prompt

Alternately, the PowerShell Add-AppxPackage cmdlet or dism.exe can be used to install or uninstall Microsoft Store packages.

Figure 6 - Installing MSIX File From PowerShell

Figure 7 - Showing Python App Installation

Figure 8 - Uninstalling Python via PowerShell

It should be noted that dism.exe requires administrative rights to run, even though the package install itself does not require it.

Unknown Title about:blank

5 of 13 4/27/2025, 6:19 PM

Figure 9 - Using dism.exe to Install Python From MSIX File

If you’re not sure where an MSIX package will be installed, I wrote a Python script that tries to predict the installation path of the main binary associated with a Windows app package without installing

it.

Figure 10 - Predicted Executable Path for Python and iTunes Applications

Note that the final executable of Python is located at: C:\Users\kevinclark\AppData\Local\Microsoft\WindowsApps\PythonSoftwareFoundation.Python.3.13_qbz5n2kfra8p0\python3.13.exe.

In general, this format is: C:\Users\[username]\AppData\Local\Microsoft\WindowsApps\[company_name].[app_name]_[publisher_id]\[executable].exe, where [publisher_id] is that unique

hash generated from the publisher’s certificate, and [executable] is the main executable name specified in the AppxManifest.xml file inside the package installer file. Although some packages

deviate from this structure, most package installations can be predicted with this formula.

Pip Package Manager

The Microsoft store Python package comes with Pip, the Python package manager, installed and can be invoked just by using Python.exe -m pip. If network access to the PyPI repos is available,

packages can be downloaded and installed normally.

Unknown Title about:blank

6 of 13 4/27/2025, 6:19 PM

https://gitlab.com/-/snippets/4787074
https://gitlab.com/-/snippets/4787074
https://gitlab.com/-/snippets/4787074

Figure 11 - Installing a Library via Pip

But many corporate environments block access to the PyPI repos or have web proxies that make downloading packages a challenge. This can make the use of offensive Python a challenge. We must

do one (1) of these two (2) things:

• Use Python tools that only rely on the standard library

• Download required libraries offline and transfer them to the host

Although annoying, it is possible to transfer and then install packages on an offline host. I wrote a simple offline package downloader and a companion installer program that uses only the standard

library.

Figure 12 - Offline Package Downloader Help Menu

Figure 13 - Downloading Pip Wheels With Dependencies

After packages have been downloaded, the script zips them up into a single file that can either be uploaded to the offline host directly or hosted on a web server. The installation script is then used to

download the packages’ ZIP file and install each Pip wheel.

Unknown Title about:blank

7 of 13 4/27/2025, 6:19 PM

https://gitlab.com/-/snippets/4787736
https://gitlab.com/-/snippets/4787736
https://gitlab.com/-/snippets/4787736

Figure 14 - Offline Package Installer Help Menu

Figure 15 - Performing Install From Offline Packages’ ZIP File

Python Standard Library

We can see it’s possible to download and install libraries onto hosts without a direct connection to the PyPI repos. Otherwise, it is still a good practice to try to limit offensive tooling to standard library

packages if possible. A good example of this is using the less user-friendly urllib instead of the requests library.

Many other useful capabilities are built into the Python standard library. Here is a list of a few things offensive developers might want to do and the library they are implemented in:

Capability Standard Library Module

Web requests urllib

TCP connections socket

Sha256 hashing hashlib

Compression gzip, bz2, zlib, zipfile

Load DLLs and call unmanaged functions ctypes

Spawn processes & run commands subprocess

Process structured data json, xml

Access & modify the Registry winreg

Encode and decode binary data base64

IP address manipulation ipaddress

But Python doesn’t provide everything we might need in the standard library. Some important things require using a library or need to be implemented by hand:

Unknown Title about:blank

8 of 13 4/27/2025, 6:19 PM

Capability Third-Party Library Module

AES encryption pycryptodome

Web socket connections aiohttp

Load the CLR & interact with managed code pythonnet

Packet captures libpcap

LDAP interaction ldap3

Windows protocols impacket

A full list of packages that come default with a Windows Python installation can be found here.

Ctypes for Unmanaged Execution

One of my favorite Python modules is ctypes. Along with the struct library, ctypes lets a Python programmer write code in the style of C, including loading unmanaged libraries and exports, manual

memory management, and performing real pointer operations. If you are familiar with PInvoke for C#, ctypes is essentially the same thing for Python.

So, how do we use ctypes to call a Win32 API? There are five (5) steps:

• Load a DLL providing the function we want

• Get a handle to the function we want to call

• Define the function prototype, including parameters and return type

• Marshal Python parameters into C type parameters

• Call the function

• (Optional) Marshal the return value back to a Python type for use with Python code

For Win32 DLLs, you should use ctypes.windll.dllname or ctypes.WinDLL(“dllname”) to load a DLL. To load a DLL from a specific file, use ctypes.CDLL(r“C:\path\to\dll.dll”).

kernel32 = ctypes.windll.kernel32 # Load kernel32.dll

kernel32_2 = ctypes.WinDLL(“kernel32”) # Load kernel32.dll again

custom_dll = ctypes.CDLL(r"C:\test\custom.dll") # Load custom.dll

After loading a DLL, you’ll need to find an export you want to call. In this example, I will be using the CreateFileW API from kernel32.dll. DLL exports can be found by name or by export ordinal

number. Most programmers prefer to import by name, since it is easier and more reliable across Windows versions.

CreateFileW = kernel32.CreateFileW # Get exported function handle

Unknown Title about:blank

9 of 13 4/27/2025, 6:19 PM

https://gitlab.com/-/snippets/4788512
https://gitlab.com/-/snippets/4788512
https://gitlab.com/-/snippets/4788512

CreateFileW_ord = kernel32[212] # Get function by ordinal. Not recommended since these values can change between Windows versions

After we have a function pointer, we need to define the function prototype, which includes the function parameters and the return type. The wintypes submodule is nice enough to have all of the

common Windows primitive types defined for us, so be sure to import that. Set the argtypes list that defines the parameter types, and then set the restype value to be whatever the function should

return. In the case of CreateFileW, the parameters and return types are clearly defined on MSDN.

MSDN documentation for CreateFileW:

#

HANDLE CreateFileW(

[in] LPCWSTR lpFileName,

[in] DWORD dwDesiredAccess,

[in] DWORD dwShareMode,

[in, optional] LPSECURITY_ATTRIBUTES lpSecurityAttributes,

[in] DWORD dwCreationDisposition,

[in] DWORD dwFlagsAndAttributes,

[in, optional] HANDLE hTemplateFile

#);

#

from ctypes import wintypes

ctypes function definition for CreateFileW:

#

CreateFileW.argtypes = [

 wintypes.LPCWSTR, # filename

 wintypes.DWORD, # desired access

 wintypes.DWORD, # share mode

 wintypes.LPVOID, # security attributes

 wintypes.DWORD, # creation disposition

 wintypes.DWORD, # flags and attributes

 wintypes.HANDLE # template file

]

CreateFileW.restype = wintypes.HANDLE

Finally, we need to make some data to give to the CreateFileW function, marshal the data as wintypes, and then execute the function. Note that ctypes performs some conversion of data between

Python types and C types automatically for us.

Define the test data

filename = "test.txt" # Test file name

GENERIC_READ = 0x80000000

GENERIC_WRITE = 0x40000000

CREATE_ALWAYS = 2

FILE_ATTRIBUTE_NORMAL = 0x80

Execute the function with test data

handle = CreateFileW(

 filename, # Auto converted from Python str to wintypes.LPCWSTR

 GENERIC_READ | GENERIC_WRITE,

 0,

 None, # Translates to NULL when passed to CreateFileW

 CREATE_ALWAYS,

 FILE_ATTRIBUTE_NORMAL,

 None

)

That’s it! A file named test.txt was created in the current directory via Python’s ctypes module.

Ctypes Examples

Here is the full code for a Python program that displays the current process ID and name in a MessageBox window.

import ctypes

from ctypes import c_char_p, c_uint32, c_void_p, create_string_buffer

import os.path

Windows API constants

MAX_PATH = 260

MB_OK = 0x00000000

MB_ICONINFORMATION = 0x00000040

Load DLLs

kernel32 = ctypes.windll.kernel32

user32 = ctypes.windll.user32

Define function prototypes

GetCurrentProcessId = kernel32.GetCurrentProcessId

Unknown Title about:blank

10 of 13 4/27/2025, 6:19 PM

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew

GetCurrentProcessId.restype = c_uint32

GetCurrentProcessId.argtypes = []

GetModuleFileNameA = kernel32.GetModuleFileNameA

GetModuleFileNameA.restype = c_uint32

GetModuleFileNameA.argtypes = [c_void_p, ctypes.c_char_p, c_uint32]

MessageBoxA = user32.MessageBoxA

MessageBoxA.restype = ctypes.c_int32

MessageBoxA.argtypes = [c_void_p, c_char_p, c_char_p, c_uint32]

Get process ID using Windows API

process_id = GetCurrentProcessId()

Get process name using Windows API

buffer = create_string_buffer(MAX_PATH)

path_length = GetModuleFileNameA(None, buffer, MAX_PATH)

if path_length == 0:

 raise Exception("Failed to get module filename")

Convert buffer to string and get just the filename

full_path = buffer.value.decode('ascii')

process_name = os.path.basename(full_path)

message = f"Process Name: {process_name}\nProcess ID: {process_id}"

MessageBoxA(

 None,

 message.encode('ascii'),

 b"Process Information",

 MB_OK | MB_ICONINFORMATION

)

Figure 16 - Popping a MessageBox in Python

Finally, I wrote a simple reflective DLL loader as a more practical example of Python malware. While this loader is not sufficient for real operations, it clearly demonstrates an essential component of

attacker tradecraft implemented in Python.

Figure 17 - Reflective DLL Loader Help Menu

Unknown Title about:blank

11 of 13 4/27/2025, 6:19 PM

https://gitlab.com/-/snippets/4786803
https://gitlab.com/-/snippets/4786803
https://gitlab.com/-/snippets/4786803

Figure 18 - Calling DllMain on Reflectively Loaded DLL

Figure 19 - Finding and Executing Exported Run Function

IoCs Inside of Python

Python is a legitimate application used in enterprise networks around the world. It has a good reputation, and the python.exe binary is signed by Microsoft and the Python Software Foundation. It’s

also quite common to see Python already installed on workstations and servers, making it unnecessary to install it at all.

Figure 20 - Valid Code Signing Cert for python.exe

Like many interpreted languages, Python has weird memory indicators that come with dynamically generated code. The default Windows CPython installation creates unbacked executable memory

sections and Read-Write-Execute memory even before any Python code is executed.

Unknown Title about:blank

12 of 13 4/27/2025, 6:19 PM

Figure 21 - Read-Write-Execute Memory Found in python.exe

Yet, best of all, Python is a general-purpose language, meaning its uses are practically endless, ranging from data science to system administration, to videogame programming, to DevOps

orchestration work and so much more. What, then, is normal for a python.exe process to be doing? Should python.exe be connecting to websites on the Internet? What about socket connections to

other systems? How about allocating or modifying sections of memory? Should python.exe be consuming a large amount of memory or CPU?

These questions can concretely be answered with a strong “maybe” or “it depends on what Python is doing.” Although not impossible, all of these factors combined make it more difficult for endpoint

products to baseline normal behavior and make it easier for attackers and operators alike to live inside of python.exe.

Conclusion

Python as a platform for malware deployment is often an undervalued target. It is easy to install, provides high-quality built-in libraries, and is an excellent target process for operations. It won’t replace

current unmanaged operational techniques but provides a convenient and practical alternative when other techniques are not feasible.

Unknown Title about:blank

13 of 13 4/27/2025, 6:19 PM

