Going for Broke(ring) — Offensive Walkthrough for
Nested App Authentication

specterops.io/blog/2025/08/13/going-for-brokering-offensive-walkthrough-for-nested-app-authentication
August 13, 2025

Hope Walker

45 . net fecl2bBbd-blcc-

pilBallkc2lz”,

TL,DR: Microsoft uses nested app authentication (NAA) for many applications. Access
and refresh tokens for select applications, such as administrator portals, can be
exchanged for tokens to other applications with a brokered request to authentication

endpoints.

117

https://specterops.io/blog/2025/08/13/going-for-brokering-offensive-walkthrough-for-nested-app-authentication/

Introduction

Starting in October 2024, Microsoft made NAA generally available with the goal to
“[provide] better security and greater flexibility in app architecture, enabling the creation
of rich, client-driven applications.” NAA is available for many Microsoft applications and
can be integrated into custom applications as well. The idea is that certain applications
which a user is already authenticated to can broker authentication requests to other
applications to improve security and user experience. While the official name is nested
app authentication or NAA, SpecterOps and other researchers gave it an alternative
name: BroCl, an abbreviation for “brokered client IDs” as this functions similar to family
of client IDs (FOCI). Since NAA is an acronym used commonly in SCCM tradecraft, you
may see instances of BroCl used instead to avoid confusion. For this post, | will be using
NAA primarily, but keep in mind that BroCl is the same thing.

Great work has already been done to enumerate and operationalize NAA for offensive
purposes. The goal of this blog is to cover details about how an operator can use NAA to
pivot to additional resources in Azure and Entra ID. We will cover the details of how to
create token requests and go through some examples of exchanging tokens to access
resources by hand and using tools such as EntraTokenAid, roadtx, and SpecterOps’s
own Maestro.

Other Research

In January 2025, SpecterOps hosted a hackathon where Chris Thompson, Darrius
Robinson, Costa Papadatos, and myself first came across brokering while looking at a
token delegation endpoint. At the time, we designated this BroCl for brokered client IDs,
since it had similarities to FOCI. Chris Thompson implemented the process for brokered
requests into Maestro so we could easily test this process more.

Information at that time was scarce; however, since then, Dirk-jan Mollema

implemented brokering into roadtx. Honestly, this was very encouraging for us even
though we were not making much progress. If Dirk-jan was looking into it, then there had
to be something cool. Dirk-jan, along with Fabian Bader, also recently released
entrascopes where more information about applications and permissions are in a
searchable format. They presented this information recently at TROOPERS where they
also informally referenced the method as BroCl; so this may be a term that comes up
related to NAA as more attention is drawn to it. | want to take a moment to give a huge
thank you to Dirk-jan for chatting with me and helping me troubleshoot ROADtools while
| wrote this blog.

Following our initial internal discovery, in February 2025, zh54321 did a phenomenal job
enumerating applications, extensions, and default permissions related to brokered NAA
requests in the repository GraphPreConsentExplorer. This project has a web GUI that
loads a YAML file with information about applications and copyable commands to use
with EntraTokenAid.

2/17

https://learn.microsoft.com/en-us/office/dev/add-ins/outlook/faq-nested-app-auth-outlook-legacy-tokens#when-is-naa-generally-available-for-my-channel
https://learn.microsoft.com/en-us/office/dev/add-ins/outlook/faq-nested-app-auth-outlook-legacy-tokens#what-is-nested-app-authentication-naa
https://github.com/secureworks/family-of-client-ids-research
https://x.com/_Mayyhem
https://github.com/Mayyhem/Maestro
https://x.com/_dirkjan
https://github.com/dirkjanm/ROADtools/blob/317ab0ed7c671c195d226fce284995431d024455/roadtx/roadtools/roadtx/main.py#L989
https://x.com/fabian_bader
https://entrascopes.com/
https://dirkjanm.io/assets/raw/Finding%20Entra%20ID%20CA%20Bypasses%20-%20the%20structured%20way.pdf
https://github.com/zh54321
https://github.com/zh54321/GraphPreConsentExplorer
https://github.com/zh54321/EntraTokenAid

So, for this blog, | am not revealing anything new as these folks did a great job with a lot
of the work. Instead, | am going to dig into how operators can leverage NAA in a security
assessment to access resources.

Use Cases

NAA can be very useful in offensive engagements when trying to gain access to different
resources. To access many applications and extensions from the portal, new tokens are
needed, which may not already be in the user cache. For example, say you want to
activate a PIM role for the user, but the user has not accessed PIM for an extended
period. With NAA, you can use a refresh token from the Azure Portal to access PIM as
the user without needing to wait for Azure to issue a token.

Multi-factor authentication (MFA) claims to also carry over in brokered NAA requests.
So, in a scenario where you may have tokens and the plaintext username and password
but no way to complete an MFA prompt, you can use NAA with administrator portal
tokens that already have MFA claims. Those claims will carry over to other tokens and
satisfy MFA requirements. Since Microsoft instantiated conditional access policies
(CAPs) in most tenants that require MFA to access administrator portals, this can be
useful for satisfying those requirements.

For this blog, we will look at four example scenarios for how brokering NAA can be used
in an offensive engagement. The following scenarios will cover:

1. Building_a request by hand to get CAPs

2. Using_EntraTokenAid to activate a PIM role
3. Using_roadtx to get a Key Vault secret

4. Using_Maestro to get Intune devices

For all of the scenarios, we will assume that the refresh token is already in our
possession and the target user has the necessary permissions to perform the action.

Scenario 1: Building a Request by Hand to Get CAPs

Before we jump into examples, | want to spend a little time talking about the components
needed for brokering NAA. The first thing we will dive into is understanding the
parameters required for a NAA request. First and foremost, we will need an access or
refresh token that one of the administrator portals which conducts the brokering issues.
To keep the blog focused, we are only going to include refresh tokens from Azure Portal.
You can also use other applications such as Intune and M365 administrator portals for
brokering.

There are a few parameters for a NAA request which include:

e grant_type
o Atoken, either: refresh_token or access_token
e redirect_uri

317

e client_id
e scope
e brk client_id

e brk_redirect_uri

For our example, we will start with just a regular token issued after logging into the Azure
Portal and then we will target the ADIbizaUX to get the CAPs. The reason we want to
target this application is because when the user interacts with the Portal, this is the
actual application being used through the browser. Using roadtx, we will start by looking
at the current token.

43-3bb8-49c]1 -bd 7d- 974253 cbd FIc™,

anagement . oore. W i

BaClke2lz",

417

We can see the appid is Azure Portal and the aud is
"https://management.core.windows.net/" for the current token. If we try to use this
token to get CAPs, we will get an unauthorized message like this one:

EX Windows PowerShell - | »

PS5 C:\Usersi\hwalker> curl.exe

e”:"E","Ring™:"5", "ScalelUnit™:"

of in.microsoftonline.c |::-|'n..-" C OMmmCH .."' oa

a-

n.microsoftonline . com/commo
nonce="eylAeXAi0iIEVIQiLC]

e: Wed, 25 Jun 2825 17:46:44 GMT

¥

™ :{ "code™: "InvalidAuthenticationToken™

"message”:"Access token validation failure. Invalid
. 9812-4

", Melient-requ
PS C:\Users\hiwalkers

So, instead, let’s target the ADIbizaUX application, as this will allow us to access the
CAPs. We are going to start building out the pieces of our request, starting with the
endpoint. The request needs to go to login.microsoftonline.com and include the
tenant id. We are going to build out the request by hand to use with curl so the request
will be a POST request to the token endpoint:

https://login.microsoftonline.com/<tenant ID>/oauth2/v2.0/token

Typically, these requests have broker information included in the URL; however, since
we’re building it by hand, we will slim the request down to only what is necessary. In
addition to the URL, we need to build out our headers, so let's go ahead and get those
out of the way:

e Content-Type: application/x-www-form-urlencoded;charset=utf-8
This header tells the server what type of content is in the payload
e User-Agent:
This header can be anything, but the request will fail without a user agent
string
e Origin: https://portal.azure.com
Again, this header can be anything but needs to be included

Next, we need to build our payload for the request. This is where we include the
parameters for NAA and what we want brokered. As with other areas, there are
additional parameters typically included in these requests, but we are keeping it to the

5/17

bare minimum of what is needed. If detection or stealth is a portion of the assessment,
we would want the requests to match information as closely as possible to normal
requests.

To get tokens for different applications, we will indicate which one we want to target. This
is where the client_id parameter comes in. While it is seemingly straightforward, there
are a few nuances we should be aware of. If the client ID is not included in our request,
it will result in tokens for MS Graph so we will have access to MS Graph resources.
Additionally, the application we target must be enabled for the tenant. If it is not, then we
will not be able to acquire tokens. Lastly, the application must be in the list of
applications that can be brokered. We can check this in GraphPreConsentExplorer by
filtering for “Brk Refresh Flow” or here in entrascopes. The format for the client ID will
look like this:

client_1id=74658136-14ec-4630-ad9b-26e160ff0Ofc6

This is the client ID for the ADIbizaUX. This is a great one to use because it has a ton of
Graph API permissions. This is pretty typical and if we were to watch the flow of a user
navigating the portal, this is what would be used as well. If we look at it in
GraphPreConsentExplorer, we can see there are a lot of permissions included there:

GraphPreConsentExplorer €,

m Load YML File

74658136-14ec-4630-ad9b-26e160ff0fct Enabled only | | With permission only | | Filter by Auth Flow V‘ | er by FOCI

AppName ¢ ClientID ¢ Graph API Permissions ¥ AuthFlow ¢ FOCI¢

AccessReview.ReadWrite.All, Application.Read.All, AuditLog.Read All, ChangeManagement.Read.All,
ConsentRequest Create, ConsentRequest Read, ConsentRequest.ReadApprove All, ConsentRequest ReadWrite.All,
CustomSecAttributeAssignment Read All, CustomSecAtiributeAuditl ogs.Read All, Device-
OrganizationalUnit.ReadWrite-All, Directory.AccessAsUser.All, Directory.Read.All, Directory.ReadWrite.All,
Directory Wiite Restricted, DirectoryRecommendations.Read.All, DirectoryRecommendations. ReadWirite Al
Domain.ReadWrite.All, email, EntilementManagement.Read.All, Group.ReadWrite.All,
HealthMonitoringAlert ReadWrite All, HealthMonitoringAlertConfig ReadWrite All, IdentityProvider ReadWrite All,
ADIbizaUX 74658136-14ec-4630-ad9b-26e160ff0fcé True IdentityRiskEvent.ReadWrite.All, IdentityRiskyServicePrincipal.ReadWrite.All, IdentityRiskyUser.ReadWrite.All, BrkRefresh False
IdentityUserFlow.Read All, LifecycleWorkflows.ReadWrite All, OnPremDirectorySynchronization.Read All, openid,
OrganizationalUnit.ReadWrite All, Policy.Read All, Policy.Read.IdentityProtection,
Policy ReadWrite AuthenticationFlows, Policy.ReadWrite AuthenticationMethod, Policy. ReadWrite Authorization,
Policy ReadWirite Conditional Access, Policy ReadWiite Externalldentities, Policy.ReadWrite IdentityProtection,
Policy.ReadWrite.MobilityManagement, profile, Reports.Read All, RoleManagement.ReadWrite.Directory,
SecurityEvents.ReadWrite All, TrustFrameworkKeySet Read All, User. Export All, User.ReadWrite.All,
UserAuthenticationMethod.ReadWrite.All, User-OrganizationalUnit.ReadWrite.All

Next is the redirect URI. This is the redirect for the broker. The format for this starts with
brk then the application client ID GUID, followed by the URL for the portal or application.
Since we are using the Azure Portal for our broker it will look like this:

redirect_uri=brk-c44b4083-3bb0-49c1-b47d-974e53cbdf3c://portal.azure.com

This is the GUID for the Azure Portal application appended with "://" and the URL for
the portal.

Next, we need to specify the scopes. This is the scopes we want to request for the
application we are targeting. If a scope is not specified, then tokens are issued with the
default scopes for the application. In the request, the scope will look like this:

scope=https://graph.microsoft.com/.default

6/17

https://github.com/zh54321/GraphPreConsentExplorer
https://entrascopes.com/?naa=true

This is the scope we want to request for the token. To keep it simple for this request, we
will remove everything except for the default. Additional scopes can be added with a
space between each scope. If we want specific scopes, we can add them here; |
recommend using quotes to ensure it is interpreted correctly.

Next, we need to tell the server what type of token we are going to redeem. In this
example, let’s stick with a refresh token. This is what is typically used and probably a
better choice depending on our situations since refresh tokens have a much longer
lifetime than access tokens and can be reused more. The grant type will take this format
for refresh token and access token respectively:

grant_type=refresh_token

grant_type=access_token

In our examples, we will use the first option. This will tell the server that we are providing
a refresh token. So, of course, the next parameter will be the token we told the server to
use.

refresh_token=<refresh token contents>

Then we finish it out by including our brk_client_id and brk_redirect_uri.
brk_client_id=c44b4083-3bb0-49c1-b47d-974e53chdf3c

brk_redirect_uri=https://portal.azure.com/

The brk_client id is going to be the Azure Portal, because that is the application we
want to broker our request. The brk_redirect_uri is the URL for the Azure Portal since
that handles our brokering.

In the end, our payload should look like this:

client_1id=74658136-14ec-4630-ad9b-26e160ffOfc6&redirect_uri=brk-c44b4083-
3bb0-49c1-b47d-
974e53chdf3c://portal.azure.com&scope=https://graph.microsoft.com/.default
&grant_type=refresh_token&refresh_token=<refresh token
contents>&brk_client_id=c44b4083-3bb0-49c1-b47d-
974e53chdf3c&brk_redirect_uri=https://portal.azure.com/

Assuming all parameters are correct, we should submit this and receive a response with
access, refresh, and ID tokens. Now let’s look at using the newly minted token.

7/17

C_wlFOJ2LLGdfw"™,

DOH7NR1SLECF4Q vak1ze4vhésiLg

EVRA s
tLog.Read.All Cha . r r L d ConsentRequl
1alUnit.Readkri

Looks good to me. Let’s try to use it now. We are going to request the CAPs for the
tenant and since our scope was graph.microsoft.com and in the token, we can see the
audience ("aud") is also graph, that is where we will send the request. The request will
be a POST request to the /v1.0/$batch endpoint. Here is what it will look like:

https://graph.microsoft.com/v1.0/$batch

Then we need to include our new token.

Authorization: Bearer <access token>

This will be the access token with all of the permissions we just requested for our token.
The final header will be to tell the server what content type we are sending in the
payload.

Content-Type: application/json

We need to have our payload, which is where we make the request for the tenant CAPs.
This is also very slimmed down to only what is necessary.

8/17

{"requests":
[{"id":"1", "method" :"GET", "url":"/identity/conditionalAccess/policies"}]}

The ID here is a request ID. This tracks the request for troubleshooting or whatever. I'm
being flippant here because we just need to have the parameter for the request to work.
We don’t really care about tracking the requests. Maybe there is something that would
show up in the logs but, for now, we won’t worry about setting this to something valid.
Using this with curl, our command will look like this:

curl.exe --path-as-is -i -s -k -X 'POST' -H 'Authorization: Bearer
<access_token>" -H 'Content-Type: application/json' --data-binary
"{\"requests\":

[{\"1d\":\"2\" ,\"method\" :\"GET\", \"urI\":\"/identity/conditionalAccess/po
licies"}]}' 'https://graph.microsoft.com/v1.0/$batch'

E¥ Windows PowerShell - [m] X

Our output will be a JSON format of the CAPs. Although not the easiest to read as
GUIDs are displayed, it is a way to acquire the CAPs from the tenant.

Scenario 2: Using EntraTokenAid to Activate a PIM Role

We just walked through a lot of information, so you might be asking yourself if there is a
faster or easier way to do it. Luckily, there is. Now that we have covered an in-depth
example, let’s look at some tooling that will make this process easier.

For this scenario, we’ll use EntraTokenAid to mint our tokens then use the access token
to activate a PIM role for our user. GraphPreConsentExplorer shines again here. When
we search for PIM in the interface, we can not only get the information about the
application, but also the EntraTokenAid command is easily copied out with all of the
necessary options

9/17

Microsoft_Azure_PIMCommon
Client ID: 50aaa389-5a33-4f1a-91d7-2c45ecd8dac8
Enabled: True

Graph API Permissions:

Application.Read.All

openid

PrivilegedEligibilitySchedule.Read

Write.AzureADGroup

RoleManagement.Read.Directory

CustomSecAttributeDefinition.Rea
d.All

Policy.Read.ConditionalAccess

profile

RoleManagementPolicy.ReadWrite
AzureADGroup

PrivilegedAccess.ReadWrite. Azure
AD

RoleAssignmentSchedule. ReadWri
te.Directory

RoleManagementPolicy.ReadWrite
-Directory

Group.Read.All

Privileged AssignmentSchedule.Re
adWrite.AzureADGroup

RoleEligibilitySchedule.ReadWrite.
Directory

Auth Flow: BrkRefresh
FOCL: False

Reply Addresses:
* brk-c44b4083-3bb0-49c1-b47d-974e53cbdf3c//portal.azure.com

Authentication Commands:

EntraTokenAid
BrkRefresh: i
$tokens = Invoke-Refresh -RefreshToken $PortalArmToken -ClientID 'G@aaa389-5a33-4fla-91d7-2c45ecdBdac8’ -BrkClientId -]

' c44b4083-3bbB-49c1-b47d-974e53cbdf3c’ -RedirectUri ‘brk-c44b4883-3bb8-49c1-b4a7d-974e53cbdf3c://portal.azure.com’ -Origin
“https://portal.azure.com’

To use this directly in PowerShell, the refresh token needs to be stored in the
$PortalArmToken variable. The command will return the token to the $tokens variable.
For us to use the token, we need to convert the access token to a secure string, then it
becomes usable with the connect -MgGraph PowerShell command to authenticate to the
tenant. The process should look like this:

PS C:\Users\hwalker\Downloads\EntraTokenAid-main> %tok Invoke-Refresh

[#] Sending request to token endpoint

[+] Got an access token and a refresh token

[i] Audience: https://graph.microsoft.com / Expires at: ©86/11/2825 16:17:06

PS C:\Users\hwalker\Downloads\EntraTokenAid-main» $access ConvertTo-5ecureString
en

PS C:\Users\hwalker\Downloads\EntraTokenAid-main> Connect-MgGraph

elcome to Microsoft Graph!

s.access_tok

Connected wia userprovidedaccesstoken access using 50aaa389-5a33-4f1a-91d7-2c45ecd8dac8
Readme: https://aka.ms/graph/sdk/powershell

: https://aka.ms/graph/sdk/powershell/docs

: https://aka.ms/graph/docs

MOTE: You can use the -NoWelcome parameter to suppress this message.

PS C:\Users\hwalker\Downloads\EntraTokenAid-main> _

$tokens = Invoke-Refresh -RefreshToken $PortalArmToken -ClientID
'50aaa389-5a33-4f1a-91d7-2c45ecd8dac8' -BrkClientId 'c44b4083-3bb0-49cl-
b47d-974e53cbdf3c' -RedirectUri 'brk-c44b4083-3bb0-49c1-b47d-
974e53chdf3c://portal.azure.com' -Origin 'https://portal.azure.com'

$access = ConvertTo-SecureString -string $tokens.access_token -AsPlainText
-Force

Connect-MgGraph -AccessToken $access

Then we need to build the request body to activate our role. At this point, we will assume
we have already enumerated the eligible roles and the information we need to activate
the role.

EX Windows PowerShell - O *

PS C:‘\UsersihwalkeryDownloads\EntraTokenAid-main>
action
rincipalld
roleDefinitionId
directoryScopeld
justification
scheduleInfo = @

tartDateTime = [System.DateTime]::Parse(
expiration = @{

type

duration

Then we use the New-MgRoleManagementDirectoryRoleAssignmentScheduleRequest
command with our parameters to request role activation.

EN Windows PowerShell — O it

PS C:\Users\hwalker\Downloads\EntraTokenAid-main> New-MgRoleManagementDirectoryRole gnmentScheduleRequest

Approvalld CompletedDateTime CreatedDateTime CustomData Id Status

PS C:\Users\hwalker\Downloads\EntraTokenAid-mains

If we check in the portal, we can now see that our role is active:

11/17

R Search resources, services, and docs (G+/) L] Copilot

Home » Privileged |dentity Management | Microsoft Entra roles > SpecterOps Development

2 SpecterOps Development | My roles = X

Privileged Identity Management | Microsoft Entra roles
[+ < O Refresh D Open in mobile Q'j Got feedback?

&4 Quick start -
Eligible assignments Active assignments Expired assignments

HE overview

% authentication

> Tasks

Role T4 Scope T4 Membership TJ State End time Action
~ Manage
. Authentication Admi... Directory Direct Activated 6/11/2025, 9:17:46 PM Deactivate
4o Roles
A 3
4. Assignments
BN Alerts
I= Access reviews
Discovery and insights
* (Preview)
83 settings
> Activity

Although our role is active, the current token we minted earlier does not have that
information unless additional scopes were requested. We will need to acquire a new
token to use the role we activated.

Scenario 3: Using Roadtx to Get a Key Vault Secret

Don’t worry. I'm not just going to gloss over MFA. Many tenants these days have MFA
requirements configured in their CAPs (even if they didn’t want it), so it is important to at
least touch on. The cool thing with brokering is that MFA claims carry over from one
token to the other. For this next example, let’'s use roadtx from ROADtools to request a
new token and get a secret from Key Vault.

To start, let us assume we have the refresh token we need. We are going to request
tokens which will let us get a secret out of a key vault, which we will assume we have
already enumerated and identified. For this, we have a CAP which requires the user to
have MFA to access all applications.

The first command will be with roadtx to get new tokens. To use NAA and brokering, we
need to use the refreshtokento command and provide the correct options.

e --refresh-token
The refresh token we acquired
e -s "https://vault.azure.net/.default openid profile offline_access"
o Scope for the request
o The URL will be the aud in our token
o The following options are the scopes we are requesting in our token
e --broker-client "c44b4083-3bb0-49c1-b47d-974e53chdf3c"
This is going to be the application doing the brokering, in this case, Azure
Portal app ID

12/17

e -Cc '"3686488a-04fc-4d8a-h967-61f98ec4lefe"
o This is the client ID we are going to target
o This is the Microsoft Azure Key Vault portal extension
e --broker-redirect-url "brk-c44b4083-3bb0-49c1-b47d-
974e53chdf3c://portal.azure.com"
This is our redirect_uri option from when we built the request by hand and
starts with "brk"
e --origin https://portal.azure.com
This is needed to show that is a cross-origin request

Enough talk. Send it!

EN Windows PowerShell — O X

PS C:\users\hwalker> roadtx refreshtokento

sers\hwalker\AppData‘\Local\Programs\Python\Python313\Lib\site-packages\seleniumwire\thirdparty\mitmproxy\contrib\kaitaist
ruct\tls_client_hello.py:1@: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg
|_resources.html. The g resources package is slated for removal as early as 2 -11-38. Refrain from using this p age or p

in to Setuptools<81.
from pkg_resources import parse_version
Requesting token with scope https://vault.azure.net/.default openid profile offline_ access
Tokens were written to .roadtools_auth
PS C:\users\hwalker>

Bam! New tokens. Let’s check if our MFA carried over.

EX Windows PowerShell

wmIalpMog

13/17

We can check this in the amr, or Authentication Method Reference, of the token. This
token has both pwd and mfa, which means our MFA carried over.

We will pull out the access token and then we can make our request to the Key Vault.
For this, we are just going to make a direct request to the Key Vault endpoint for the
secret we want. Since this is a resource with its own URL, making the request is
relatively straightforward. We are going to use curl again to show the required

parameters. For this request, the bare minimum of what we need for headers is going to
be:

e Authorization: Bearer <access_token>
e User-Agent: <value>
e Origin: https://portal.azure.com

One small note: for the request to work, if we are getting the copyable information for the
key vault endpoint, we will need to add the API version to the end like this: ?api -
version=7.4. Now we are all set to get secrets.

E¥ Windows PowerShell — (m] X

PS C:\users\hwalker> curl.exe

HTTP/1.1 280 OK

Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/json; charset=utf-8

Expires: -1

x-ms -keyvault-region: eastus

Access-Control-Allow-Origin: https://portal.azure.com
x-ms-request-id: 482c1b@4-f294-4e76-9deb-9dedel1B6866F

x-ms -keyvault-service-version: 1.9.2455.1

x-ms -keyvault-network-info: conn_type=Ipv4;addr: ;act_addr_fam=InterNetwork;
x-ms -keyvault-rbac-assignment-id: d®7aB8c55b1194f0896ee7c27eddcbedl
X-Content-Type-Options: nosniff

Strict-Transport-Security: max-age=31536000;includeSubDomains
Date: Fri, 13 Jun 2025 20:29:58 GMT

Content-Length: 262

{"value"”:"Hello_Chat","id":"https:// .vault.azure.net/secrets/ ", fattri
butes™:{"enabled":true,"created”:1749763271, "updated”:1749763271, "recoverylLevel™: "Recoverable+Purgeable”, "recoverableDays":90
), tags™:{}}

PS C:\users\hwalker>

Success! We have retrieved the secret from the key vault.

Scenario 4: Using Maestro to Get Intune Devices

For this scenario, let us take a look at using Maestro. If you are not familiar with
Maestro, you can read the release blog here. For this example, Maestro is a great option
because it has a ton of Intune functionality built in. The author, Chris Thompson, has
also included brokering capabilities into Maestro. This makes it as easy as two
commands to go from an Azure Portal refresh token to listing Intune devices in a tenant.

To start, we will take our Azure Portal refresh token and use it with Maestro to get a new
token. Since we are looking to get Intune information, we are going to target the
Microsoft Intune portal extension. We can find information about this extension in
GraphPreConsentExplorer.

14/17

https://github.com/Mayyhem/Maestro
https://posts.specterops.io/maestro-9ed71d38d546

Microsoft Intune portal extension

Client ID: 5926fc8e-304e-4f59-8bed-58ca97cc39a4
Enabled: True

‘Graph APl Permissions:

CloudPC.Read.All CloudPC.ReadWrite.All DeviceManagementApps.ReadWrite.All DeviceManagementConfiguration.ReadWr
ite. All

DeviceManagementManagedDevices.Privi DeviceManagementManagedDevices.Rea DeviceManagementRBAC.ReadWrite.All DeviceManagementServiceConfiguration.
legedOperations.All dWrite.All ReadWrite. All

Directory.AccessAsUser.All email openid profile
Sites.Read.All

Auth Flow: BrkRefresh

FOCI: False

Reply Addresses:
s brk-c44b4083-3bb0-49c1-b47d-974e53cbdf3c//portal.azure.com

This will help as reference for the options we need for the request. For Maestro, we will
need the following flags:

e get
The get command for Maestro
access-token
o Used to tell Maestro to get a new access token
o Arefresh token is acquired too
--refresh-token
Our Azure Portal refresh token
--broker
Indicates that this will be a brokered NAA request
--brk-client-id
o Client ID for the Azure Portal which will be our broker
o The value will be the GUID "c44b4083-3bb0-49c1-b47d-974e53chdf3c"
e --client-id or -c
o Client ID for the Microsoft Intune portal extension we want the token for
o Since we are targeting Microsoft Intune extension portal our client ID will be
"5926fc8e-304e-4f59-8bed-58ca97cc39a4"
® --SCOpe or -s
o Scopes for the token
o To keep it simple, we are just going to use ".default" but additional scopes
can be added
--token-method or -m
o Authentication method for access tokens
o Options:
m 0: /oauth2/v2.0/token
m 1: /api/DelegationToken
m 2: MSAL (default: 0)
o As we learned earlier, we want option 0 for our endpoint

15/17

® --resource or -r
o Audience for the token
o Since we are targeting a portal extension, we will use
"https://portal.azure.com"
e --tenant-id
Tenant ID

For our request, the command with Maestro will ook like this:

.\Maestro.exe get access-token --refresh-token $RefToken --broker --brk-
client-id "c44b4083-3bb0-49c1-b47d-974e53chdf3c" -c "5926fc8e-304e-4f59-
8bed-58ca97cc39a4" -s ".default" -m "O@" -r 'https://portal.azure.com' --
tenant-id "6c12b0b0-b2cc-4a73-8252-0b94bfca2145"

E¥ Windows PowerShell - o %

\Users\hwalker\Downloads> .\Maestro.exe get access-token

uTC - [INFO]
uTC - [INFO]

uTtC - [INFO]
9 utCc - [INFO]

[INFO] D token 1in

C - [INFO] le 1.AVEAs) g LY FItH2ZXT1PL3zXxRAEVRAA.

2025-07-02 16:05:17.746 uTC - [INFO] Completed execution in 00:00:07.4242920

After we get the token, we can save the access token in a variable and easily use it with
Maestro. Next, we will save the access token into a variable and use it with Maestro. We
are going to get all of the devices in Intune with the following command:

.\Maestro.exe get intune devices --access-token $accesstoken

16/17

EX Windows PowerShell - O X

iPS C: \USEI s\hwalker\Downloads> .\Maestro.exe get intune devices
7 .917 uTC [INFO] Execution started
.386 uTC [INFO] Using provided access token
e [INFO] Requeat1ng devices from Intune
43.542 UTC [INFO] Requesting IntuneDevices from Microsoft Graph
:44.418 uUTC [INFO] Found 18 IntuneDevices matching query in Microsoft Graph

"deviceName" AADJo1n IntuneE"
managedDeJ1ceName

"managementState’ g -
"enrolledDateTime": "2024-07-01T16:51:552",
"lastSyncDateTime": "2025-07-02711:11:292",
"configurationManagerClientEnabledFeatures™: null,
"model™: "virtual Machine",
”operatingSystem "Windows",

‘akuFam11y 'Pro"

osVe|s1on "10.0. 22621.4317",

"joinType": azureADJoined“,
"azureADRegistered" true,
dev1ceEnro11mentType "windowsAzureADJoin",
"azureADDeviceId"

dew1ceReg1=t|at1on§tate "reqistered”,
"userId"

‘uﬁenpr1nc1pa1Name

"userDisplayName": " ,
"enrolledByUserPrincipalName”: null,
"usersLoggedon™: []

Now we have all of our Intune devices with just two commands in Maestro starting from
an Azure Portal refresh token. While this was all done through the command line, one
great feature for Maestro is that Chris designed it to be used through command and
control (C2) agents. This is especially helpful when CAP restrictions or stealth are a
requirement in assessments.

Conclusion

Nested app authentication can open more opportunities for resource access by using
the brokering process Microsoft implemented. Internally, we have been referring to this
as brokered client IDs or BroCl since it works similarly to FOCI. With work on tooling by
other researchers, this method is ready to use in a variety of applications.

Post Views: 3,014

17/17

