Hyper-V Internals
a

ernel Debugger (static mode)

on h veloped by Arthur Khudyaev (@gerhart_x)
veloped by Arthur Khudyaev (@gerhart_x)

artitionId = 0x3, Full VM)

want to explore

Hyper-V utility. LiveCloudKd: evolution and architecture technical
analysis

«LiveCloudKd: Pioneering Virtual Machine Introspection for Memory Forensics Back in
2010, I released LiveCloudKd—a forensics tool that was the first of its kind to enable
Virtual Machine introspection for Hyper-V v1 environments. Mark Russinovich and Ken
Johnson were impressed enough after my presentation at BlueHat in Seattle that they
incorporated similar functionality into LiveKd 5.0 shortly afterward. What made my
approach particularly clever was that | implemented it entirely in user-mode by exploiting
several architectural quirks in the Hyper-V vmwp.exe process. | discovered that the
process lacked proper isolation and—even more astonishing—Memory Block handles
were actually raw kernel-mode pointers rather than proper opaque handle values. While
Microsoft hadn't officially documented vmwp.exe, vid.dll, or the drivers winhv.sys and
vid.sys, | managed to leverage leaked headers from Microsoft's Singularity research
project to reverse engineer the virtualization interface. Through careful analysis and
strategic use of the Vid.dll APIs, | created a bridge between user-mode tools and the
previously inaccessible memory space of virtual machines, fundamentally changing how
we approach virtualization forensics and memory analysis in hypervisor environmentsy.

Matt Suiche (Mar 6, 2025)

Big thanks Matt (https://www.x.com/msuiche) for introduction!

This article is about the functions of LiveCloudKd, which is now version 3.0 and features
some new additions, including support for virtual machines on new Windows Preview
OSes and memory reading and writing on local OS. After that version was issued, |
decided to describe it, because logically utility was finished, but can be improved of
course on others architectures or, probably, platforms.

1/35

https://hvinternals.blogspot.com/2025/08/hyper-v-utility-livecloudkd-evolution.html
https://www.x.com/msuiche

Technically, the current version of LiveCloudKd looks similar as LiveKd 5.0
(https://learn.microsoft.com/en-us/archive/blogs/markrussinovich/livekd-for-virtual-
machine-debugging and https://media.blackhat.com/bh-dc-
11/Suiche/BlackHat_DC_2011_Suiche_Cloud_Pocket-wp.pdf), but with some
improvements. It is open source: https://github.com/msuiche/LiveCloudKd and fork -
https://github.com/gerhart01/LiveCloudKd, has improved performance and includes
memory write functions (including writing options to local OS memory). These functions
are available under administrative mode (thanks Joseph Bialek
(https://x.com/JosephBialek or @josephbialek@infosec.exchange) for advice). Later |
asked MSRC, if the local writing mode being enabled
(https://x.com/gerhart_x/status/1888665136413515996), but there was no response from
them. Therefore, | think it is not so important whether this function is enabled or disabled.

Active development starts again in 2018, and currently is added some small features and
bugfixes. Many features have been added over time, but only the most thoroughly tested
ones have been included in the public version. Features such as container support, the
WHPX library, and nested virtualization work in limited mode (only certain OS versions
have been tested), so they haven't been added to the public version, but the source code
of prototypes is available at
https://github.com/gerhart01/LiveCloudKd/blob/master/hvmm/hvmm/vid.c#L253.

Also, considering that Microsoft copies key part of the LiveCloudKd debugger algorithm
for securekernel debugging (https://x.com/gerhart_x/status/1915104209948791211.
There was discussion about this, but it finished very fast
https://x.com/gerhart_x/status/1947173362448380058), sharing of those functions
becomes unsafe and likely will not be done in later future. Microsoft has Microsoft
Defender antivirus, therefore they can decompile all packed and protected software. They
are really dangerous in that case and they like Copilot (&) (who doesn’t know — it is
means “Copy a lot”).

Initially, Microsoft blocked the ability to work directly with Hyper-V virtual machines
(https://x.com/gerhart_x/status/1014249371695828992), leaving access only at the kernel
mode level or through injection into the protected vmwp.exe process, but only for
Microsoft-signed libraries. | had to develop a separate vidaux.dll library, which is injects
into the vmwp.exe process (it is not particularly safe, owing to live migration operations
for virtual machines at a minimum) and uses vid.dll functions through named pipes;
however, currently only kernel mode functionality remains. You can still find old
LiveCloudKd builds with vidaux.dll support—they still contain the old LiveCloudKdSdk.dl!
library and can worked with Windows Server 2012 and 2016. Some of its code is
available in the Bin2Dmp source code
(https://github.com/MagnetForensics/Bin2Dmp/tree/master/Bin2Dmp). On Windows
Server 2012, the old mode with vid.dll still works without a driver, if anyone is still using it.
At one point, there were certain problems related to changes in the dbgeng.dll library, but
currently the latest versions of WinDBG and kd.exe are supported with hooks, as well as
the EXDi interface.

2/35

https://learn.microsoft.com/en-us/archive/blogs/markrussinovich/livekd-for-virtual-machine-debugging
https://media.blackhat.com/bh-dc-11/Suiche/BlackHat_DC_2011_Suiche_Cloud_Pocket-wp.pdf
https://github.com/msuiche/LiveCloudKd
https://github.com/gerhart01/LiveCloudKd
https://x.com/JosephBialek
https://x.com/gerhart_x/status/1888665136413515996
https://github.com/gerhart01/LiveCloudKd/blob/master/hvmm/hvmm/vid.c#L253
https://x.com/gerhart_x/status/1915104209948791211
https://x.com/gerhart_x/status/1947173362448380058
https://x.com/gerhart_x/status/1014249371695828992
https://github.com/MagnetForensics/Bin2Dmp/tree/master/Bin2Dmp

LiveCloudKd enables you to connect to a Hyper-V guest virtual machine using Microsoft
Debugging Tools kd.exe or WinDBG and allows you to examine the kernel of a running
Hyper-V virtual machine without needing to enable debug mode and disable Secure Boot
on either the guest or host. You can execute debugger commands, inspect memory, and
modify it.

It is particularly useful for examining the internal structures of a virtual machine, whether
you are troubleshooting, researching, or conducting memory forensics. You can dump the
physical memory of a virtual machine into a raw file or a complete crash dump, which is
useful for subsequent analysis. It supports a range of Windows versions, such as
Windows 10, Windows 11, and Windows Server 2016 through 2025.

Evolution from 2010 to 2025

LiveCloudKd development spans fifteen years of continuous adaptation to evolving
Windows and Hyper-V architectures. The initial 2010 release followed research on Hyper-
V v1 (Windows Server 2008, Windows Server 2008 R2 — 2025 already is v2),
implementing an entirely user-mode solution, that exploited vmwp.exe design flaws. This
groundbreaking work led to Microsoft inviting Matt Suiche to speak at BlueHat Security
Briefings and subsequently influenced LiveKd 5.0 development.

The period from 2012 to 2016 saw continued development for integrating vid.dll API
functions, including

VidDmMemoryBlockQueryTopology
VidQueryMemoryBlockMbpCount

VidReadMemoryBlockPageRange

The tool employed brute-force enumeration of vmwp.exe memory space to collect kernel
pointers, with each virtual machine having one vmwp.exe process containing one partition
handle and multiple memory block handles.

Period from 2018 to 2024 contains migration of functionality in kernel mode, migrate
some core functionality to hvlib.dll library (Hyper-V memory manager library), including
results of Hyper-V memory researches (prototypes of different Hyper-V memory types),
Hyper-V scheduler research, that can possible to create dynamic LiveCloudKd debugging
for Windows kernel and securekernel (interesting, that securekernel.exe is part of Hyper-
V, if you see cabs_HyperV-OptionalFeature-VirtualMachinePlatform-Client-Disabled-FOD-
Package~31bf3856ad364e35~amd64~~.cab archive from Windows Insider Preview
distributive), improvements with WinDBG integration, added WinDBG with modern Ul
integration.

3/35

Recent developments include the version 3.x (2024-2025), which features are Windows
Server 2025 support, enhanced EXDi plugin options, and improved Windows
securekernel address space viewing. Local memory interface support was added also.

The current version runs on x64 Windows, ARM64 version still needs to change
disassembler engine, because distorm3 engine doesn’t support ARM64.

And finally, one uses it by running it on the Hyper-V host alongside WinDBG, where it
uses Hyper-V memory manager library for Hyper-V guest OS memory access. It offers
options for static Hyper-V guest OS kernel debugging (eq standard dump viewing),
producing memory dumps, and connecting via an EXDi plugin for more advanced
debugging techniques. Compared to LiveKd, it is significantly faster—approximately
1,000 times quicker at reading memory—and permits writing to the Hyper-V virtual
machine's memory. Additionally, whilst certain specific Hyper-V virtual machine
configurations may cause BSODs, the driver is sufficiently stable (but additional stress
tests still won't interfere).

The utility has the following capabilities:

1. Attaching to a virtual machine or the local OS using WinDBG, kd, or WinDBG with
modern Ul, either natively or via the EXDi plugin to access the NT kernel or secure
kernel.

2. Dumping Hyper-V virtual machines to raw dump or Microsoft dump format.
3. Dumping local memory to raw dump or Microsoft dump format.

4. Editing Hyper-V virtual machine memory or local memory using WinDBG, kd, or
WinDBG with modern Ul.

5. Attaching kd, WinDBG, or WinDBG with modern Ul directly to Hyper-V with guest
Windows or local virtual machines, or launch the EXDi plugin for these purposes.

6. Dumping partition memory blocks from Windows or other virtual machines running
inside Hyper-V.

Btw, what Al systems think about LiveCloudKd? It's also actual now. Answer from one:

«Virtualization-Based Security (VBS) and Hyper-V are Microsoft’s fortress for securing
Windows, but what happens when you need to peek under the hood of a running VM?
Whether you're chasing a kernel exploit, analyzing malware in a sandbox, or just curious
about securekernel internals, LiveCloudKd is a game-changer. Originally built by Matt
Suiche and now maintained by Gerhart, this tool lets you debug Hyper-V guest VMs and
dump their memory without mucking around with bootloader settings. Let’s dive into how
LiveCloudKd works, why it's a must-have for security researchers, and how to wield it
effectively with WinDbg

4/35

It achieves this by leveraging Hyper-V’s Memory Manager plugins (hvlib.dll and
hvmm.sys), giving you direct access to a VM’s memory without the guest OS knowing
you’re there. Think of it as a stealthy backdoor for virtualization forensics (note — yes, like
a LiveKd from Sysinternals Suite).

Why Should You Care?

If you're in exploit development or red teaming, LiveCloudKd is a Swiss Army knife. Need
to inspect a Docker container running in Hyper-V isolation? — (note - yes it's support it, but
in not public builds and not tested enough for integrated in release build). Want to dump
the memory of a VM running Credential Guard to hunt for secrets? Or maybe you’re
reverse-engineering a rootkit hiding in a VBS-protected process? LiveCloudKd gets you
there without tripping over Hyper-V’s security or fighting with bcdedit. Plus, it’s faster than
snapshot-based forensics and doesn’t require pausing the VM».

LiveCloudKd offers three methods for read and write memory access:

» ReadInterfaceWinHv/WritelnterfaceWinHv: uses Hyper-V hypercalls to read
memory in the same manner as LiveKd. Whilst slower, it is stable and therefore
ideal for production virtual machines.

e ReadInterfaceHvmmDrvinternal/WritelnterfaceHvmmDrvinternal: a kernel driver
(hvmm.sys) accesses memory directly. This method is faster but may cause
crashes during live migration or on virtual machines with dynamic memory enabled.
It is therefore useful for virtual machine clones on dedicated hosts for inspection, or
within special debugging environments.

o ReadLocalMemory/WriteLocalMemory: kernel driver hvmm.sys get access to
memory using Microsoft kernel API functions MmMaploSpaceEx for writing or
ZwMapViewOfSection for reading mode.

You can see detailed description of the tool's functions at the end of this article.

The tool enumerates running virtual machines, enables you to select one, and establishes
a debugging session or memory dump. The EXDi plugin is particularly effective—it
enables debugging without altering the virtual machine's state, which is crucial for secure
kernel analysis or examining VTL1 code. For memory forensics, it can generate raw
dumps or structured crash dumps, which can be analysed with olatility to extract process
lists, kernel objects, or LSASS credentials.

To demonstrate how to launch LiveCloudKd and explore its capabilities:

1. Launch a Hyper-V virtual machine and attach LiveCloudKd.exe to it.

5/35

2. LiveCloudKd.exe can be attached not only to fully launched virtual machines, but
also at early boot stages after pausing the virtual machine. Additionally, you can edit
memory for this virtual machine and execute standard WinDBG commands.

3. Various WinDBG plugins and scripts can be utilized whilst working with live virtual

machines.

Functionality and performance (how make dump of VM)

O B UveCloudkd: Windows 11 (sec X +

LiveCloudKd - 3.0.0.20250226

Microsoft Hyper-V Virtual Machine Physical Memory Dumper & Live Kernel Debugger (static mode)
Copyright (C) 2010-2025, Matthieu Suiche (www.msuiche.com)
Copyright (C) 2020, Comae Technologies DHCC <https://www.comae.com>

Microsoft Hyper-V VM memory access operations based on hvlib developed by Arthur Khudyaev (@gerhart_x)
EXDI debug engine for Hyper-V virtual machine developed by Arthur Khudyaev (@gerhart x

Copyright (C) 2019-2025
AU rights reserved.

Please, select type of 0S you want to attach

6] Hyper-V VM
> [1] Local 0S

Virtual Machines:

—-> [0] Windows 11 (Secure Boot) (PartitionId = 0x3, Full VM)

Please, select the ID of the virtual machine you want to explore

You selected the following virtual machine:

Action List:

0] Live kernel static debugger
1] Start EXDI plugin (WinDBG or Kd)

[2] Linear physical memory dump
[3] Microsoft crash memory dump
[4] RAW memory chunk (start position, size)

[5] Resume partition
[6] Dump all VMs

Please, select the Action ID
>

CommandLine: C:\Distr\Test\WinDBG1024H2x64\kd.exe -z indows\hvdd . dmp"

whknknknknin® Preparing the environment for Debugger Extensions Gallery repositories xwxwxixkxkuks

ExtensionRepository : Implicit

UseExperimentalFeatureForNugetShare : true

AllowNugetExeUpdate : true
NonInteractiveNuget : true

AllowNugetMSCredentialProviderInstall : true
AllowParallelInitializationOfLocalRepositories : true

EnableRedirectToV8JsProvider : false

O B LiveCloudKd: Windows 11 (Sec X + v

Loading Dump File [C:\Windows\hvdd.dmp]
Kernel Complete Dump File: Full address space is available

Comment: 'LiveCloudKd full memory dump

saxkxrareares Path validation summary *xxssksxssksss
Response Time (ms)

Deferred

Location
SRV#C:\Symbols*https://msdl.microsoft . con/download/synbols

Symbol search path is: SRV+C:\Symbols*https://msdl.microsoft.com/download/symbols

Executable search path is:

Windows 10 Kernel Version 26100 MP (2 procs) Free x64

Product: WinNt, suite: TerminalServer SingleUserTS

Edition build lab: 26100.1.amd64fre.ge_release.240331-1435

Kernel base = Oxfffff807'ba800000 PsLoadedModuleList = Oxffff£807'bb6fu730
:35.850 2037 (UTC - 7:00)

Debug session time: Sat Aug 15 09:
System Uptime: © days 2:13:29.300
Loading Kernel Symbols

Loading User Symbols

Loading unloaded module list

For analysis of this file, run lanalyze -v

0: kd> lm

start end

FFFF£B07 4200000 {807 4auu2000
FFFFFB07 4c050000 {807 U4cO5bO00
FFFFFB07 4c060000 {807 U4cO6bOOO
FFFFFB07 4c070000 {807 4cO9cO00
FFFFFB07 4c020000 807 4c126000
FFFFFB07 4c130000 FFFFF807 4c203000
FFFFFB07 4c210000 807 4c225000
FFFFFB07 4c230000 FFFF807 4c24bO0O
FFFFFB07 Uc250000 FFFFF807 Uc25d000
FFFFFB07 Uc260000 FFFFF807 Uc363000
FFFFFB07 Uc370000 FFFFF8O7 UclObOOO
FFFFFB07 Ucli10000 FFFFF8OT Ucl3c000
FFFFFBO7 UcUUO000 FFFFF8OT Ucla2000
FFFFFBO7 UcUbO0OO FFFFF8O7 UclbfoRO
FFFFFB07 Uclid00OO FFFFF8O7 Ucle6000
FFFFFBO7 UcUfO000 FFEFF8O7 UclfdOno
FFFFFB07 Uc500000 FFFF807"Uc607000
FFFFFB07 Uc610000 FFF£807 Uc62f000
FFFFFB07 Uc610000 FFFF807 UcT2f000
FFFFFBO7 UCTUO000 FFFF8O7 UcT57000

For example:

¢ You can view lists of processes or virtual memory layouts. You can perform the
same operations as with a dump file, but with updatable memory (for instance, try to
obtain a list of updated processes in the virtual machine by flushing the cache from
WinDBG). Complete WinDBG commands usage, for example, can be found in
Dmitry Vostokov's dumps anthology (https://www.dumpanalysis.org/advanced-

module name
mcupdate_GenuineIntel —(deferred)
kd

(deferred)

symcryptk (deferred)
tn

CLFS
cng
winaccel

(deferred)
(deferred)
(deferred)
(deferred)
(deferred)
(deferred)
(deferred)
(deferred)
(deferred)
(deferred)
(deferred)

werkernel (deferred)

ntosext
c

(deferred)
(deferred)

globmerger (deferred)

Wd£01000
WDFLDR

(deferred)
(deferred)

software-debugging-reference).

6/35

https://www.dumpanalysis.org/advanced-software-debugging-reference

¢ You can create standard dump files of the operating system or processes
(Isass.exe, for instance) using the following commands:

The current version of LiveCloudKd has the following options:

Usage: LiveCloudKd.exe [/a {0-6}][/b][/m {0-2}][/n {0-9}][/o path][/p][/v {0-2}][/w][/y <path to
directory with WinDBG>][/?]

/a

/b

/m

/n

/o

v

w

1?

Pre-selected action:
0 - Live kernel debugging
1 - Start EXDi plugin (WinDBG)
2 - Produce a linear physical memory dump
3 - Produce a Microsoft full memory crash dump
4 - Dump guest OS memory chunk
5 - Dump raw guest OS memory (without KDBG scanning)
6 - Resume virtual machine
Close LiveCloudKd automatically after exiting from kd or WinDBG.
Memory access type:
0 - Hypercalls (HvReadGPA and HvWrite GPA)
1 - Raw memory
2 - Local OS
Pre-selected virtual machine number.
Destination path for the output file (Actions 2-5).
Pause partition.
Verbose output level.
Run WinDBG instead of kd (kd is the default).
Set path to WinDBG or WinDBG with modern Ul (for starting the EXDi plugin).

Print this help message.

7/35

LiveCloudKd works with Hyper-V partitions in two modes: using native Hyper-V calls
(HvReadGpa and HvWriteGpa), or using the Hyper-V memory layout, which can be
accessed through ring 0. Additional information can be found in article in blog:

https://hvinternals.blogspot.com/2019/09/hyper-v-memory-internals-guest-os-memory-
access.html

LiveCloudKd also supports a local interface in both read and write modes. | think, that
LiveKd remains sufficiently stable for read operations. However, if you wish to explore the
local OS and modify it (for instance, to explore some Windows features), you can use
LiveCloudKd for these purposes as well.

O LiveCloudKd

Please, select type of OS you want to attach
——> [0] Hyper-V VM

-—> [1] Local 0S

>

Virtual Machines:
——> [0] Windows 11 x64 (PartitionId = 0x2, Full VM)

Please, select the ID of the virtual machine you want to explore
>

You selected the following virtual machine:

Action List:

—-> [0] Live kernel static debugger

—-—> [1] Start EXDI plugin (select type)

—-=> [2] Linear physical memory dump

—--> [3] Microsoft crash memory dump

——> [4] RAW memory chunk (start position, size)
——> [5] Resume partition

-—> [6] Dump all VMs

Please, select the action ID
>

Please, select EXDI type:

—-=> [0] kd.exe

--> [1] WinDBG

‘[> [2] WinDBG with modern UI
>

After launch, you can choose to access either local memory or a Hyper-V virtual machine
to which you wish to attach.

8/35

https://hvinternals.blogspot.com/2019/09/hyper-v-memory-internals-guest-os-memory-access.html

B KDion - plese sz whe deos dbacing

wplicic
avattsnars

JRTT— S

panse Ly —
opasiate iel Microsase fon

sarssace

d

u
Edition
b

Coutiurstion Versia

Generstan:
Hotes:

Sunansay Mooy Neowoseng

P (0 S 83 47508 -G, D1 Kanetion i - W69 12451560
[T — Vol Sabimn Soww o]
1 p P 1
) Step i Sep o
ok Lo eafbac
5 Popinr Tmp -

B LN U ———
ory of maglle At EeFFrTAITCRAMAG. . .

"

oy

e FOB nstn of ntkraina.pn
nage ntkerlng § gxPEEFTEBT cBcasans

sunt 3 setantial PE inage St Gefef(FGEIcBBGOER. Sanning insga hasfanz
Analying canig CARrtory of maclls A GefClICEETCELOGIEE.

Reading dsbuz dire affzze ..

‘iz micosal

ol "https - /medl mid
SmBELa et R ¢ i

ound target versloralock st o
Connested Ta Wingous 18 26188 XES Target at ua 28 Ba:a7:25.021 2828 (UTC - 7ise)), EE

Cereraerree s math walidation sumary $9SRRSEEIIRe
rinadl micrasart. con
rlozd/synt

ntkenlng. 2xe
uild lab:

02 Teoze 208331-1835
Kernel base - BuFFFEEE7 <000AB0 Psloadediof el ist = B FFIFEaT" coatiesn
sesaion tine: Fr 25.329 2025 (UTC - 7109)

iz

& ko] E
Lo - AR - g%
hame e e = braad -

oxe W0 GSwapComents 476 (FEROT co2acis)

e w0 o Canles 06T 11007 926361

i w0 ot
aan ne Comten
o ns Contes

TR AT 136

el | e

Additionally, you can edit local Windows memory using standard WinDBG commands. To
verify the success of this operation, you can either restart the debugger or flush the
debugger's cache using the command '.cache flushall', and then execute the same
command again.

9/35

O LiveCloudKd: local

X + [~

System Uptime: © days 11:30:28.874
Loading Kernel Symbols

Loading User Symbols

Loadi nloaded module list

For analysis of this file, run l!analyze -v

0: kd> dc ndis

806" 3fd00EOO
806 3fd00016
fffff806 "' 3fd00020
ffff£806 "' 3fd00O30
ffff£806 " 3fdOOOLO
ffff£806 " 3fd00O50
806 3fd0OO6O
fffff806' 3fd00070
0: kd> eb ndis 90
0: kd> dc ndis

ffff£806 ' 3fd00OOO
ffff£806 " 3fd00016
806 3fd00020
fffff806 ' 3fd00030
ffff£806 " 3fdOOOLO
ffff£806 ' 3fd00O50

00905ald 000E0003 0000000U EEEOFFff

000000b8 00000000 0OEEEEUO 00000000 .
00000000 00OOEEOO 0OOOEEEE 0000EOOO .
00000000 0OOOEEOO EOOEEEOL 00000160 .

Oebalf@e cdo9bu0O UcO1b821 685421cd
70207369 7267672 63206d61 6f6e6e61
65622074 6757220 2066920 2053ufuy
65646f6d 0a0dod2e 00000024 ©OOOOOOO
90 90 90

is program canno
t be run in DOS

909090960 060000003 000EEEEY 00OOFfff ...
000000b8 00OEOEOO 0OOOOOUE 0EEEEOOO .
00000000 0OOOEEEO OOOOEEEO 0000EOOO .
00000000 00OOOEEO OOOOOEEO 00000160 .

Oebalf@e cd09buU0O UcOH1b821 685u21cd
70207369 7267672 63206d61 6f6e6e61

is program canno

fffff806 3fd00060 65622074 6e757220 2066920 2053UfuUl t be run in DOS
fffff806 3fd00O70 656U6f6d 0a@dOd2e 0OOOOE2U 00OOOOOO
0: kd>

You can create a dump for a Hyper-V virtual machine using the 'Microsoft crash memory
dump' option. This option works, when LiveCloudKd and the hvlib engine can verify the
correct Hyper-V guest OS version and KDBG structure, which are needed to generate the
correct dump header.

J B Administrator: Windows Powt X

2450 MBs. ..
2475 MBs. ..
2500 MBs. ..
2525 MBs. ..
2550 MBs...
2575 MBs. ..
2600 MBs. ..
2625 MBs. ..
2650 MBs. ..
2675 MBs. ..
2700 MBs. ..
2725 MBs. ..
2750 MBs. ..
2775 MBs. ..
2800 MBs. ..
2825 MBs. ..
2850 MBs. ..
2875 MBs. ..
2900 MBs. ..
2925 MBs. ..
2950 MBs. ..
2975 MBs. ..
3000 MBs...
3025 MBs. ..
3050 MBs...

kd.exe was closed.
PS C:\LiveCloudKd>

In other cases, use the 'Linear physical memory dump' option. It can dumps all virtual
machines in specifying directory, including Linux, Apple MAC OS (for example:
https://github.com/Qonfused/OSX-Hyper-V), Cisco Hyper-V virtual machine
(https://x.com/gerhart_x/status/1380488855481159680), Android virtual machines, and
others, which can be launched on Hyper-V.

10/35

https://github.com/Qonfused/OSX-Hyper-V
https://x.com/gerhart_x/status/1380488855481159680

) 5 Administrator: PowerShell 7 (5 X oy

PS C:\LiveCloudKd> .\LiveCloudKd.exe
veCloudKd - 3.0.0.20250423
crosoft Hyper-V Virtual Machine Physical Memory Dumper & Live Kernel Debugger (static mode)
Copyright (C) 2010-2025, Matthieu Suiche (www.msuiche.com)
Copyright (C) 2020, Comae Technologies DMCC <https://www.comae.com>

Microsoft Hyper-V VM memory access operations based on hvlib developed by Arthur Khudyaev (@gerhart_x)
EXDI debug engine for Hyper-V virtual machine developed by Arthur Khudyaev (@gerhart_x)

Copyright (C) 2019-2025
All rights reserved.

Please, select type of 0S you want to attach
--> [0] Hyper-V VM

--> [1] Local 0s

>

Virtual Machines:
—--> [0] Windows 11 (Secure Boot) (PartitionId = ©x3, Full VM)

Please, select the ID of the virtual machine you want to explore
>

You selected the following virtual machine:

Action List:
Live kernel static debugger
Start EXDI plugin (select type)

inear physical memory dump

Microsoft crash memory dump
RAW memory chunk (start posi:
Resume partition

=5 Dump all VMs

Please, select the action ID
>

Destination path for the virtual machine physical memory dump
>

Set block size (bytes):
>

Set block's start physical address
>

hvlib:Guest 0S securekernel.exe base address = Oxfffff80684350000
hvlib: WinDBG reload string:.reload /f securekernel.exe=@xfffff80684350000
hvlib:Guest 0S NT-kernel base address = Oxfffff806ec400000

PageCountTotal = @x1

Starting

kd.exe was closed.
PS C:\LiveCloudKd>

Option 5 allows you to resume a partition if it was suspended early:

O ™ Administrator: Command Pro

Please, select type of 0S, you want to attach
—> [0] Hyper-V VM
-> [1] Local 0S

>

Virtual Machines:
—> [0] Windows 11 x64 (PartitionId = 0x2, Full VM)
—=> [1] Windows 11_2 x64 (PartitionId = @x3, Full VM)

Please, select the ID of the virtual machine you want to explore
>

You selected the following virtual machine:

Action List:
[0] Live kernel static debugger
[1] Start EXDI plugin (select type)
[2] Linear physical memory dump
[3] Microsoft crash memory dump
[4] RAW memory chunk (start positi
[5] Resume partition
[6] Dump all VMs

Please, select the action ID
>

kd.exe was closed.

C:\LiveCloudKd>|

Option 6 allows you to dump all virtual machines into one directory.

11/35

) LiveCloudKd

1775 MBs. ..
1800 MBs...
1825 MBs...
1850 MBs. ..
1875 MBs. ..
1900 MBs...
1925 MBs. ..
1950 MBs...
1975 MBs...
2000 MBs...
2025 MBs...

hvlib:Guest 0S NT-kernel base address = Oxfffff8058de20000
Dumping Windows 11_2 xé64 ...

Starting... 0 MBs...
25 MBs. ..
50 MBs...
75 MBs. ..
100 MBs. ..
125 MBs. ..
150 MBs. ..
175 MBs. ..
200 MBs. ..
225 MBs. ..
250 MBs...
275 MBs. ..

Parameter descriptions:

[HKEY_LOCAL_MACHINE\SOFTWARE\LiveCloudKd\Parameters]

"LogLevel"=dword:00000002 — This is the log-level option, ranging from 0 to 4. Level 0
provides only standard output, whilst level 4 is the most verbose.

"ReloadDriver"=dword:00000000 — Reloads the driver after application start. This can be
used if a previous launch of LiveCloudKd has failed.

"ReadMethod"=dword:00000001 — Specifies the read memory method. See the
READ_MEMORY_METHOD enumeration.

ReadInterfaceHvmmDrvinternal
ReadInterfaceWinHv

ReadlInterfaceHvmmLocal

"WriteMethod"=dword:00000001 — set of write memory methods. See enum
WRITE_ MEMORY_METHOD.

WritelnterfaceHvmmDrvinternal

12/35

WritelnterfaceWinHv

WritelnterfaceHvmmLocal

"VSMScan"=dword:00000001 — scan for securekernel. Can be disabled, but after version
3.0 was enabled by default.

"ForceFreezeCPU"=dword:00000000 — freeze cpu, when memory reading of writing.

"PausePartition"=dword:00000000 — pause partition, when memory reading of writing.

"WinDbgPath" = "C:\\Distributive\WinDBG1025H2x64\\" — path to WinDBG folder (with
slashes at the end or not).

Available VmOpsConfig values:

READ_MEMORY_METHOD ReadMethod;
WRITE_MEMORY_METHOD WriteMethod;
SUSPEND_RESUME_METHOD SuspendMethod;
ULONG64 LogLevel,

BOOLEAN ForceFreezeCPU,

BOOLEAN PausePartition;

HANDLE ExdiConsoleHandle;

BOOLEAN ReloadDiriver;

BOOLEAN NestedScan;

BOOLEAN UseDebugApiStopProcess;
BOOLEAN SimpleMemory;

BOOLEAN ReplaceDecypheredKDBG;
BOOLEAN FullCrashDumpEmulation;
BOOLEAN EnumGuestOsBuild;

BOOLEAN VSMScan;

13/35

Technically it can be using, if Hyper-V memory manager SDK is used. LiveCloudKd uses
that parameters in some cases.

Code for activate VmOpsConfig->PausePartition option:

if (VmOpsConfig->PausePartition & VmOpsConfig->ForceFreezeCPU)

{

log_u(log_er, L"PausePartition and ForceFreezeCPU was selected. Switch to use onlu
ForceFreezeCPU instead\n");

VmOpsConfig->PausePartition = FALSE;

}

if (VmOpsConfig->PausePartition & VmOpsConfig->ForceFreezeCPU & ((VmOpsConfig-
>ReadMethod != ReadInterfaceHvmmLocal)))

{

log_u(log_er, L"hvlib:PausePartition and ForceFreezeCPU was selected. Switch to use
only ForceFreezeCPU instead\n");

VmOpsConfig->PausePartition = FALSE;

}

Code for attaching to local Windows memory:

if (ActionType == ACTION_TYPE_LOCAL_KERNEL_ATTACH)

{

g_VmOperationsConfig.ReadMethod = ReadInterfaceHvmmLocal;
g_VmOperationsConfig.WriteMethod = WritelnterfaceHvmmLocal;
g_MemoryReadlnterfaceType = ReadlnterfaceHvmmLocal;
g_MemoryWritelnterfaceType = WritelnterfaceHvmmLocal;

DumpLocalMachine();

14/35

return TRUE;

If you wish to launch the utility automatically, you can use the following parameters:

 Memory access type;

» Action type;

 Virtual machine number;

e OS type (Hyper-V or local).

LiveCloudKd /a0 /n0/u0/m1

O B¥ LiveCloudKd: Windows 11 (Sec X + v

PS C:\LiveCloudKd> ./LiveCloudkd /a © /n @ /u ® /m 1
LiveCloudKd - 3.0.0.20250707
Microsoft Hyper-V Virtual Machine Physical Memory Dumper & Live Kernel Debugger (static mode)
Copyright (C) 2010-2025, Matthieu Suiche (www.msuiche.com)
Copyright (C) 2020, Comae Technologies DMCC <https://www.comae.com>

Microsoft Hyper-V VM memory access operations based on hvlib developed by Arthur Khudyaev (@gerhart_x)
EXDI debug engine for Hyper-V virtual machine developed by Arthur Khudyaev (@gerhart_x)

Copyright (C) 2019-2025
ALl rights reserved.

Virtual Machines:
—=> [0] Windows 11 (Secure Boot) (PartitionId = @x4, Full VM)

You selected the following virtual machine:

Action List:
> [0] Live kernel static debugger
> [1] Start EXDI plugin (select type)
> [2] Linear physical memory dump
> [3] Microsoft crash memory dump
>
>
>

[4] RAW memory chunk (start position, size)
[5] Resume partition
[6] Dump all VMs

hvlib:Guest 0S securekernel.exe base address = Oxfffff801510a0000
hvil WinDBG reload string:.reload /f securekernel.exe=0xfffff801510a0000

hvlib:Guest 0S NT-kernel base address = Oxfffff891ba200000

CommandLine: C:\Program Files (x86)\Windows Kits\1@\Debuggers\x64\kd.exe -z "C:\Windows\hvdd.dmp"

*kkkkxkkkkrrk Preparing the environment for Debugger Extensions Gallery repositories wkkkiikkikkkks
ExtensionRepository : Implicit
UseExperimentalFeatureForNugetShare : true
AllowNugetExeUpdate : true
NonInteractiveNuget : true
AllowNugetMSCredentialProviderInstall : true
AllowParallelInitializationOfLocalRepositories : true

EnableRedirectToV8JsProvider : false
-~ Configuring repositories
-> Repository : Locallnstalled, Enabled: true
-> Repository : UserExtensions, Enabled: true

>>>>>>>>>>>>> Preparing the environment for Debugger Extensions Gallery repositories completed, duration ©.600 seconds

*kkxxxkkkkxnk Waiting for Debugger Extensions Gallery to Initialize kikkkxkikixxk

If you use Start EXDI plugin option, you see three options for launching:

LiveCloudKd /lu0/a1/n0/m1

15/35

J B Administrator: Windows Powt X L

PS C:\LiveCloudKd> ./LiveCloudkd /u ® /a1 /n 0 /m 1
LiveCloudKd - 3.0.6.20250707
Microsoft Hyper-V Virtual Machine Physical Memory Dumper & Live Kernel Debugger (static mode)
Copyright (C) 2010-2025, Matthieu Suiche (www.msuiche.com)
Copyright (C) 2020, Comae Technologies DMCC <https://www.comae.com>

Microsoft Hyper-V VM memory access operations based on hvlib developed by Arthur Khudyaev (@gerhart_x)
EXDI debug engine for Hyper-V virtual machine developed by Arthur Khudyaev (@gerhart_x)

Copyright (C) 2019-26
ALl rights reserved.

Virtual Machines:
—-> [0] Windows 11 (Secure Boot) (PartitionId = 0x3, Full VM)

You selected the following virtual machine:

Action List:
Live kernel static debugger
Start EXDI plugin (select type)
Linear physical memory dump
Microsoft crash memory dump
RAW memory chunk (start position, size)
Resume partition
Dump all VMs

Please, select EXDI type:

—>

~> [2] WinDBG with modern UI

Registration was successfully completed.
CommandLine: C:\Program Files (x86)\Windows Kits\10\Debuggers\x64\kd.exe -v -kx exd ={53838F70-0936-44A9-ABUE-ABB568401508} , Kd=Guess
kd.exe was closed.
PS C:\LiveCloudKd>
Fkkkkkkikkkkk Preparing the environment for Debugger Extensions Gallery repositories ki ki
ExtensionRepository : Implicit
UseExperimentalFeatureForNugetShare : true
AllowNugetExeUpdate : true
NonInteractiveNuget : true
AllowNugetMSCredentialProviderInstall : true
AllowParallelInitializationOfLocalRepositories : true

EnableRedirectToV8JsProvider : false

LiveCloudKd.exe /a0 /n0/u0/m 1 /w

BY LiveCloudKd: Windows 11 (Sec X +

PS C:\LiveCloudKd> .\LiveCloudKd.exe /a & /n 8 /u @ /m 1 /w
LiveCloudKd - 3.6, 9250707
Microsoft Hyper-V Virtual Machine Physical Memory Dumper & Live Kernel Debugge:
100 second Copyright (C) 2010-2025, Matthieu Suiche Cwww.msuiche.com)
Copyright (C) 2020, Comae Technologies DMCC <https://wuw.comae.com>

Microsoft Hyper-V VM memory access operations based on hvlib developed by Arthi
EXDI debug engine for Hyper-V virtual machine developed by Arthur Khudyaev (@g9q

Copyright (C) 2019-2025
All rights reserved.

© . con-dovnload- symbol Virtual Machines:
-=> [0] Windows 11 (Secure Boot) (PartitienId = ©x3, Full VM)

You selected the following virtual machine:

Action List:
[6] Live kernel static debugger
[1] Start EXDI plugin (select type)
[2] Linear physical memory dump
ot ha e [3] Microsoft crash memory dump
[4] RAW menmory chunk (start position, size)
[5] Resume partition
--> [6] Dump all VMs

hvlib:Guest 0S securekernel.exe base address = Oxfffff8012b950000
WinDBG reload string:.reload /f securekernel.exe=8xfffff80812b950008

Also, you can see information about loaded securekernel in EXDi log:

16/35

B KD log

O @ LiveCloudKd

Found Module Name ntkrnlmp
Found target VersionBlock at Oxfffff8019800a7c8
Connected to Windows 10 26100 x64 target at (Thu Jul 10 00:07:50.119 2025 (UTC - 7:00)), ptr64 TRUE

*kkkkkkkkkkxk Path validation SUMmary kst kk
Response Time (ms) Location

Deferred SRV*C:\Symbols*https://msdl.microsoft.com/download/symbols
Symbol search path is: SRVxC:\Symbols*https://msdl.microsoft.com/download/symbols
Executable search path is:

Windows 10 Kernel Version 26100 MP (2 procs) Free x64

Product: WinNt, suite: TerminalServer SingleUserTS

Edition build lab: 26100.1.amd6U4fre.ge_release.240331-1435

Kernel base = Oxfffff801'97200000 PsLoadedModuleList xfFff£801980fU730

Debug session time: Wed Sep 30 06:08:06.717 2037 (UTC - 7:00)

System Uptime: © days 2:18:50.189

nt!PpmIdleGuestExecute+0x1d:

ffff£801'976517ed U8cle220 shl rdx,20h

0: kd> .reload /f securekernel.exe=0xfffff8012b950000

0: kd> x securekernel!*

Ffff£801'2ba2f90f securekernel!RtlCSparseBitmapBitCheck$filt$e (void)
FfffF801'2ba2f3e0 securekernel!IumpReadSecureKernelDebuggerInfo$filt$e (void)
FfF££801'2b9ffd88 securekernel!SkpKsrSecretKeyHandle (void)

FFffF801'2ba2f112 securekernel!IumArg_GENERIC$filt$l (void)

FFFF801'2ba2f142 securekernel!IumArg_GENERIC$Filt$e (void)

F£££801'2ba2f3e0d securekernel!SkpQuerySystemProcessorInformation$filt$e (void)
FFFf801'2ba2f79d securekernel!SkobpCaptureObjectIdentity$filt$e (void)
FFff£801'2ba2f2b0 securekernel!IumpCaptureUnicodeStringAndCalculateLengthRequired$filt$0 (void)
ffff£801'2ba2f6d8 securekernel!SkhalQuerySystemFirmwareTableInformation$filt$e (void)
fffff801'2ba2f6a8 securekernel!SkhalQuerySystemFirmwareTableInformation$filt$l (void)
fffff801'2ba2f5u6 securekernel!NtFreeVirtualMemory$filt$® (void)

FFFf£801'2ba2f7f1 securekernel!NtQueryInformationThread$filt$e (void)
Fff£801'2ba2f2b0 securekernel!NtGetCurrentProcessorNumberEx$filt$e (void)
Fffff801'2ba2f0bb securekernel!RtlpLookupUserFunctionTable$filt$® (void)
fff££801'2b9ffaall securekernel!SkpKsrGetSecureCleanup (void)

Fffff801'2ba2f2b0 securekernel!IumSanitizeReturnLength$filt$e (void)
ffff£801'2ba2f3U6 securekernel!IumArg_PWORKER_FACTORY_DEFERRED_WORK$filt$0 (void)
Fffff801'2ba2f316 securekernel!IumArg_PWORKER_FACTORY_DEFERRED_WORK$filt$1l (void)
Fffff801'2ba2f2e6 securekernel!IumArg_PWORKER_FACTORY_DEFERRED_WORK$filt$2 (void)
FFFF£801'2b9ff9d8 securekernel!SkpKsrCallNormalMode (void)

Fffff801'2ba2f178 securekernel!IumArg_PSID$filt$e (void)

Ffff£801'2b9ffc10 securekernel!SkpKsrRebootNotify (void)

- please close when done debugging - O X

hvlib:Guest secur

hvlib:

hvlib:Guest

WinDBG reload i eload | "ne xfffff8012b950000

trator: Windows Powt X +

PS C:\LiveCloudKd> .\LiveCloudKd.exe /o D:\dump\dump.dmp /a 3 /n @ /u @ /m 1
LiveCloudKd - 3.0.0.20250707
Microsoft Hyper-V Virtual Machine Physical Memory Dumper & Live Kernel Debugger (static mode)
Copyright (C) 2010-2025, Matthieu Suiche (www.msuiche.com)
Copyright (C) 2020, Comae Technologies DMCC <https://www.comae.com>

Microsoft Hyper-V VM memory access operations based on hvlib developed by Arthur Khudyaev (@gerhart_x)
EXDI debug engine for Hyper-V virtual machine developed by Arthur Khudyaev (@gerhart_x)

Copyright (C) 2019-2025

All

rights reserved.

Virtual Machines:
——> [0] Windows 11 (Secure Boot) (PartitionId = 8x3, Full VM)

You

selected the following virtual machine:

Action List:

Live kernel static debugger
Start EXDI plugin (select type)
near physical memory dump
Microsoft crash memory dump
RAW memory chunk (start position, size)
Resume partition
[6] Dump all VMs

Destination path for the virtual machine physical memory dump

>

hvlib:Guest 0S securekernel.exe base address = Oxfffff8012b950000

hvlib:

WinDBG reload string eload /f securekernel.exe=0xfffff8012b950000

hvlib:Guest 0S5 NT-kernel base address = Oxfffff80197200000

Starting. .. 0 MBs...
25 MBs.
50 MBs.
75 MBs.

100
125
150
175
200
225
250
275
300
325
350
375
400
425

MBs. ..
MBs. ..
MBs...
MBs. ..
MBs...
MBs. ..
MBs...
MBs. ..
MBs...
MBs. ..
MBs...
MBs. ..
MBs. ..
MBs. ..

17/35

If you use the 'p' key and the partition has been paused, you can return it to its usual state
using the 'Resume partition' option.

(J B Administrator: Windows Powe X + ~

Copyright (C) 2019-2025
All rights reserved.

Please, select type of 0S, you want to attach
--> [@] Hyper-V VM
-=> [1] Local 0S

>

Virtual Machines:
—-> [@] Windows 11 (Secure Boot) (PartitionId = ©x3, Full VM)

Please, select the ID of the virtual machine you want to explore
>
You selected the following virtual machine:

Action List:

——> [0] Live kernel static debugger

——> [1] Start EXDI plugin (select type)

——> [2] Linear physical memory dump

—=> [3] Microsoft crash memory dump

—=> [4] RAW memory chunk (start position, size)
——> [5] Resume partition

——> [6] Dump all VMs

Please, select the action ID
>

kd.exe was closed.
PS C:\LiveCloudKd>

Memory dumping mechanisms (most of the implementation was created by Matt Suiche,
but required modifications for newer WinDBG versions).

LiveCloudKd implements comprehensive memory dumping capabilities through multiple
action modes. Linear physical memory dumps provide complete virtual machine memory
in raw format, whilst Microsoft full memory crash dumps generate standard Windows
crash dump files compatible with WinDbg. The tool also supports guest OS memory
chunk dumps for targeted analysis and raw guest OS memory dumps for forensic
investigation.

EXDi integration and debugging capabilities

The Extended Debugger Interface (EXDi) integration represents a significant
advancement in LiveCloudKd's debugging capabilities. This integration enables WinDBG
to debug VMs without enabling kernel debugging in bootloader configurations.

EXDi capabilities include live debugging of Hyper-V VMs, VTLO/VTL1 (Virtualization Trust
Level) context switching for secure kernel debugging, software breakpoints supporting up
to 0x1000 breakpoints, single-step debugging functionality, and secure kernel debugging
for VBS-enabled VMs. The EXDi plugin architecture allows integration with hardware
debuggers, JTAG interfaces, and custom debugging implementations.

It is enough deep technology and can be described later.

Live debugging integration

18/35

The live debugging functionality represents one of LiveCloudKd's most sophisticated
features. The tool implements Export Address Table (EAT) hooking of WinDBG/kd.exe to
create live debugging sessions, redirecting memory read/write operations to Hyper-V VM
memory while presenting VM memory as a virtual crash dump file to debuggers.

Dynamic debugging option with that EXDi plugin started developed from the beginning of

2020 and was briefly mentioned at Black Hat 2020 by Saar Amar (https://x.com/AmarSaar

or @amarsaar@infosec.exchange) in the presentation 'Breaking VSM by Attacking
Secure Kernel: Hardening Secure Kernel through Offensive Research'
(https://github.com/microsoft/MSRC-Security-
Research/blob/master/presentations/2020_08 BlackHatUSA/Breaking_VSM_by_Attackin

g_SecureKernel.pdf). Additionally, this debugger usage was described by Yarden Shafir
(https://x.com/yarden_shafir): https://windows-internals.com/secure-kernel-research-with-
livecloudkd. Whilst the functionality remains effective, there is scope for improvements in
both functionality and stability.

Annex:

Complete dump format implementation

The crash dump format follows Microsoft's specifications:

Signature: 'EGAP' (0x50414745—PAGE reversed)

ValidDump: 'PMUD' for 32-bit systems, '46UD' for 64-bit systems

DumpType: DUMP_TYPE_FULL (1) for complete dumps

Comment: 'Hyper-V Memory Dump. (c) 2010 MoonSols SARL'

Memory layout is described through PHYSICAL_MEMORY_DESCRIPTORG64:

e Supports up to 32 memory runs (Run[0x20] variable)
e Each run contains BasePage and PageCount

e Enables sparse memory representation

Context Management
The tool manages processor contexts for all virtual CPUs:

* X64 contexts: 3,000-byte buffer in the dump header

19/35

https://x.com/AmarSaar
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2020_08_BlackHatUSA/Breaking_VSM_by_Attacking_SecureKernel.pdf
https://x.com/yarden_shafir
https://windows-internals.com/secure-kernel-research-with-livecloudkd

o Segment register fixup: Ensures kernel-mode selectors are properly configured
o CS: KGDT64_R0O_CODE (0x10)
o SS: KGDT64_R0_DATA (0x18)

o DS/ES: KGDT64_R3_DATA | RPL_MASK

KDBG injection: Placed at the KdDebuggerDataBlockPa offset

The memory dumping process leverages the hvlib.dll library for memory access
abstraction, uses page-based operations with boundary checking to prevent read and
write errors, and implements virtual machine state management with suspend and
resume capabilities to ensure memory consistency during dump operations.

Key implementation details:
Magic handle: 0x1337 identifies VM memory mappings
Header injection: Crash dump header prepended at offset 0

Dynamic context updates: Real-time CPU state reflection

This integration enables real-time debugging of virtual machines without traditional kernel
debugging setup, supports standard WinDBG commands for memory analysis, and
maintains compatibility with the Windows Symbol Server for symbol resolution. The
debugging integration works seamlessly with both legacy and modern versions of
WinDBG.

ReadInterfaceHvmmDrvinternal Implementation. You can see it in driver source code:

https://github.com/gerhart01/LiveCloudKd/blob/master/hvmm/hvmm/vid.c#L 477

This high-performance method, that is used in hvmm kernel driver:

Packs memory requests into GPA_INFO structures

Obtains partition handles via nt!ObReferenceObjectByHandle

Accesses FILE_OBJECT through FsContext pointers

Uses nttMmMapLockedPagesSpecifyCache for virtual address mapping

Achieves ~1000x performance improvement over LiveKd

20/35

https://github.com/gerhart01/LiveCloudKd/blob/master/hvmm/hvmm/vid.c#L477

In addition requires custom signed driver or test signing mode on ARM64 Windows
Server or Client version.

ReadInterfaceWinHv Implementation

Uses official Windows Hypervisor Platform APlIs:

e Calls HYReadGPA/HvWrite GPA through winhvr.sys

Provides maximum compatibility across Windows versions

Implements proper page boundary checking

Slower, but more stable than driver methods

No special privileges required beyond VM access

ReadlInterfaceVidNative Implementation

Maintains compatibility with Windows Server 2012-2016:
 Direct vid.dll function calls:
o VidReadMemoryBlockPageRange
o VidWriteMemoryBlockPageRange
o VidQueryMemoryBlockMbpCount
o VidDmMemoryBlockQueryTopology
¢ Requires memory block handle enumeration

o Limited by Microsoft's API restrictions since Windows Server 2019

Hooking and patching mechanisms

LiveCloudKd's hooking mechanisms represent advanced exploitation techniques for
debugging integration. The tool implements sophisticated API interception through Import
Address Table (IAT) modification and memory-mapped file redirection.

APl Hooking Architecture

21/35

Actualizing with

https://media.blackhat.com/bh-dc-11/Suiche/BlackHat_DC_2011_Suiche_Cloud_Pocket-
wp.pdf

The hooking system uses a FUNCTION_TABLE structure allocated at address
OxFFFO000000 in the target debugger process. This table contains:

Original function pointers for all hooked APls

VM metadata including partition handles and memory topology

Context information for up to MAX_PROCESSORS CPUs

KDBG structure

Hook functions are injected at specific offsets:

o CREATEFILE_OFFSET: MyCreateFile hook (0x300 bytes)

o CREATEFILEMAPPINGA_OFFSET: MyCreateFileMappingA (0x100 bytes)
o CREATEFILEMAPPINGW_OFFSET: MyCreateFileMappingW (0x100 bytes)
o MAPVIEWOFFILE_OFFSET: MyMapViewOfFile (0x1B00 bytes)

o UNMAPVIEWOFFILE_OFFSET: MyUnmapViewOfFile (0x100 bytes)

o GETFILESIZE_OFFSET: MyGetFileSize (0x100 bytes)

« VIRTUALPROTECT OFFSET: MyVirtualProtect (0xDOO bytes)

Memory Redirection Mechanism

The core innovation lies in MyMapViewOfFile(), which intercepts memory mapping
requests:

¢ Detects special handle 0x1337 indicating VM memory access
 Allocates local buffers aligned to page boundaries

o Translates file offsets to VM physical addresses

22/35

https://media.blackhat.com/bh-dc-11/Suiche/BlackHat_DC_2011_Suiche_Cloud_Pocket-wp.pdf

¢ Reads memory through SdkReadPhysicalMemory with configured access method
* Injects processor contexts and KDBG structures at runtime

» Maintains mapping table for proper cleanup
The hook implements sophisticated context injection:
if ((ContextPagelndex][i] >= Position) && (ContextPagelndex]i] < (Position +
NumberOfPages))) {

/I Inject saved context at correct memory location

/I Adjust segment selectors for kernel mode if needed

}

Write-Through Implementation

MyVirtualProtect() enables memory modification in live debugging:

Detects VirtualProtect calls on mapped VM memory

Validates address ranges against mapping table

Reads current memory content from VM

Applies modifications from debugger

Writes changes back through VidWriteMemoryBlockPageRange

Updates local cache for consistency

This creates a crash dump debugging experience for VM introspection, enables real-time
debugging without traditional kernel debugging setup, and maintains compatibility with
standard WinDBG debugging workflows.

Component integration and workflow

The various source files work together through a sophisticated integration architecture.
The main livecloudkd.c orchestrates VM selection, debugging coordination, and WinDBG
integration, while memoryblock.c manages Hyper-V memory blocks and VM memory
topology discovery. Partition.c handles partition discovery and validation, implementing
brute-force enumeration of vmwp.exe memory space.

23/35

The dump.c component implements memory dump generation for various output formats,
while hooker.c manages EAT hooking for WinDBG integration. Kd.c handles kernel
debugger integration and launching, file.c manages file operations for dump output and
configuration, and misc.c provides utility functions and helper routines.

This integrated architecture enables LiveCloudKd to provide comprehensive VM
introspection capabilities, from basic memory dumping to sophisticated live debugging
scenarios. The tool's modular design allows for flexible deployment across different
Windows versions and debugging requirements while maintaining high performance and
reliability.

Appendix 1:

Detailed function description

This section provides a description of functions, implemented in LiveCloudKd's source
files, detailing their purpose, implementation, and role in the overall architecture.

livecloudkd.c Functions

wmain()

Purpose: Main entry point for LiveCloudKd executableParameters: Standard argc/argv
command line argumentsimplementation:

Parses command-line arguments through ParseArguments()

e Imports NT functions via ImportGlobalNtFunctions()

o Enumerates available Hyper-V partitions using SdkEnumPartitions()
e Presents interactive VM selection menu

o Executes selected action (live debug, memory dump, etc.)

» Manages cleanup through SdkCloseAllPartitions()
ParseArguments()
Purpose: Processes command-line arguments and sets global configurationParameters:

argc (count), argv (argument array)lmplementation:

e Parses switches: /w (WinDbg), /x (WinDbgX), /I (Live mode), /e (EXDi), etc.

24/35

o Sets memory access method through g_MemoryReadInterfaceType
o Configures output paths and pre-selected VMs

¢ Validates argument combinations

WriteEXDiPartitionld()

Purpose: Writes selected VM ID to registry for EXDi pluginParameters: VmId (selected
virtual machine ID)Return: BOOLEAN success statusimplementation:

o Creates/opens registry key at HKLM\SOFTWARE\LiveCloudKd\Parameters
o Writes Vmld as DWORD value

o Enables EXDi plugin to identify target VM

dump.c Functions
DumpMemoryBlock()

Purpose: Dumps specified memory region from VMParameters:

PartitionEntry: Target VM handle

o DestinationFile: Output file path

o Start: Beginning physical address

¢ Size: Number of bytes to dump

e DumpMode: Type of dump (standard/raw)

o Creates destination file with CreateDestinationFile()

o Allocates BLOCK_SIZE buffer (1MB)

e Reads memory in chunks using SdkReadPhysicalMemory()
o Writes to file with WriteFileSynchronous()

o Handles read failures by writing zeros

DumpVirtualMachine()

25/35

Purpose: Creates complete linear physical memory dumpParameters: PartitionEntry,
DestinationFilelmplementation:

* Retrieves VM memory size via SdkGetData(InfoMmMaximumPhysicalPage)
e Dumps entire physical memory space page by page
e Shows progress every 10MB

e Handles sparse memory regions

DumpCrashVirtualMachine()

Purpose: Creates Microsoft-compatible crash dumpParameters: PartitionEntry,
DestinationFile

Implementation:

e Fills crash dump header using DumpFillHeader()

Writes header followed by memory contents

Injects CONTEXT structures at appropriate locations

Inserts KDBG data block at correct offset

Ensures WinDbg compatibility

DumpLiveVirtualMachine()

Purpose: Enables live debugging sessionParameters: PartitionEntry,
VmldImplementation:

Creates temporary crash dump file in Windows directory

Populates FUNCTION_TABLE with VM metadata

Hooks debugging functions for live access

Launches appropriate debugger (kd/WinDbg/WinDbgX)

Cleans up temporary files on exit

DumpFillHeader()

26/35

Purpose: Determines appropriate dump header formatParameters: PartitionEntry, Header
(output), HeaderSize (output)Return: Success statusimplementation:

e Checks machine type (x86/x64)
o Calls appropriate header filling function

e Currently only supports x64 (returns error for x86)

DumpFillHeader64()

Purpose: Creates 64-bit crash dump headerParameters: PartitionEntryReturn: Populated
DUMP_HEADERG64 structurelmplementation:

« Fills signature fields (DUMP_SIGNATURE, DUMP_VALID_DUMP64)
o Sets Windows version from NtBuildNumber

o Populates kernel structures (DirectoryTableBase, PfnDatabase, etc.)
o Creates fake bug check code (‘MATT")

¢ Builds physical memory descriptor

e Copies CONTEXT from guest

e Adjusts segment registers for kernel mode

hooker.c Functions
HookKd()

Purpose: Hooks debugger process for VM memory redirectionParameters:
ProcessHandle, ProcessldReturn: Success statusImplementation:

Takes snapshot of target process modules

Finds dbgeng.dll in module list

Allocates memory in target process for hook table

Writes hook functions to target process

Patches IAT entries to redirect API calls

27/35

e Supports both legacy and modern APl names

PatchlAT()

Purpose: Modifies Import Address Table entriesParameters: ModuleBase,
ImportModuleName, FunctionName, Addressimplementation:

Parses PE headers to find import descriptors

Locates target DLL in import table

Walks thunk tables to find function

Replaces function pointer with hook address

MyCreateFile()

Purpose: Hooked CreateFile to intercept hvdd.dmp accessParameters: Standard
CreateFileW parametersimplementation:

o Checks if flename ends with "hvdd.dmp"
o Stores handle in FunctionTable.CrashDumpHandle

o Calls original CreateFileW for actual operation

MyMapViewOfFile()

Purpose: Core memory access hookParameters: Standard MapViewOfFile
parametersimplementation:

Detects special handle (0x1337) for VM memory

Allocates local buffer for requested size

Copies crash dump header if at offset 0

Reads VM physical memory using configured method

Injects CONTEXT and KDBG structures at correct offsets

Tracks mapped regions for later unmapping

28/35

MyCreateFileMappingA/W()

Purpose: Intercepts file mapping creationParameters: Standard CreateFileMapping
parametersimplementation:

e Checks if handle matches crash dump file
¢ Returns magic handle (0x1337) for VM access

e Passes through other requests unchanged

MyUnmapViewOfFile()

Purpose: Cleans up mapped VM memoryParameters: Base address to
unmaplmplementation:

o Searches tracked mappings for address
e Frees allocated memory

o Clears tracking entry

MyGetFileSize()

Purpose: Reports VM memory size as file sizeParameters: File handle, high-order
sizelmplementation:

e Checks for crash dump handle
¢ Returns calculated VM memory size

¢ Includes header size in calculation

MyVirtualProtect()

Purpose: Handles memory protection changes with write-throughParameters: Standard
VirtualProtect parametersimplementation:

¢ Detects operations on mapped VM memory
» Reads current page content from VM

» Applies changes from source buffer

29/35

o Writes modified pages back to VM

o Updates local cache

kd.c functions

LaunchKd()

Purpose: Launches kd.exe with hooked memory accessParameters: DumpFile path,
PartitionEntrylmplementation:

o Creates kd.exe process in debug mode

o Waits for initial breakpoint

o Duplicates partition handle to target process
o Calls HookKd() to install hooks

e Manages debug event loop

o Handles thread creation events

LaunchWinDbg()

Purpose: Launches WinDbg with EXDi integrationParameters:
PartitionEntrylmplementation:

Builds EXDi connection string

Ensures EXDi COM registration

Creates WinDbg process with appropriate arguments

Handles path resolution
LaunchWinDbgX()
Purpose: Launches WinDbg Preview with EXDiParameters:

PartitionEntrylmplementation:

o Similar to LaunchWinDbg but for Store version

30/35

o Handles different executable location

¢ Notes command-line limitations

LaunchWinDbgLive()

Purpose: Launches WinDbg in live debugging modeParameters:
PartitionEntrylmplementation:

¢ Uses different EXDi CLSID for live mode

o Configures for real-time VM debugging

EXDiRegistration()

Purpose: Ensures EXDi COM component registrationReturn: Success
statusimplementation:

o Checks registry for COM registration
e Runs regsvr32.exe if needed

» Verifies successful registration
CheckEXDiRegistration()
Purpose: Verifies EXDi COM registration statusReturn: Registration

statuslmplementation:

e Opens COM class registry key

e Checks for InprocServer32 entry

file.c functions

CreateDestinationFile()

Purpose: Creates output file for memory dumpsParameters: Filename, Handle

(output)Return: Success status

Implementation:

31/35

o Creates file with FILE_FLAG_NO_BUFFERING
o Ensures proper alignment for direct I/O

» Returns handle for subsequent operations

WriteFileSynchronous()

Purpose: Performs synchronous write with verificationParameters: Handle, Buffer,
NbOfBytesToWriteReturn: Success status

Implementation:
¢ |ssues WriteFile operation
o Handles ERROR_IO_PENDING case
o Verifies all bytes written

o Ensures data reaches disk

misc.c Functions

ImportGlobalNtFunctions()

Purpose: Loads NTDLL functions dynamicallyReturn: Success statusimplementation:
e Loads ntdll.dll
o Resolves function pointers:

o NtAllocateVirtualMemory

o

NtDuplicateObject

(o]

NtOpenProcess

[e]

NtQueryObject

(o]

NtQuerySystemInformation

o Stores in global g_NtDII structure

GetMmNonPagedPoolLimit()

Purpose: Calculates non-paged pool memory limitsParameters: MmNonPagedPoolStart,
MmNonPagedPoolEnd (outputs)Return: Success statusimplementation:

32/35

Queries system basic information

Calculates PFN database size

Determines non-paged pool boundaries

Used for memory range validatio

GetConsoleTextAttribute()

Purpose: Retrieves current console text colorParameters: Console handleReturn: Text
attribute valuelmplementation:

e Gets console screen buffer info
o Extracts attribute field

o Used for color preservation

White(), Red(), Green()

Purpose: Colored console output functionsParameters: Format string and variadic
argumentsimplementation:

Saves current console color

Sets specific color (white/red/green)

Outputs formatted text

Restores original color

Data Structures and File Formats

Crash Dump Header Structures
DUMP_HEADERG64

Purpose: 64-bit Windows crash dump headerSize: 8192 bytes (2 pages)Key Fields:

o Signature: 'EGAP' (PAGE backwards)

33/35

e ValidDump: '46UD' for 64-bit dumps

e MajorVersion/MinorVersion: Windows version

o DirectoryTableBase: CR3 value

o KdDebuggerDataBlock: Pointer to KDBG

e PhysicalMemoryBlock: Memory run descriptors
o ContextRecord: Processor context

e BugCheckCode: 'MATT'

PHYSICAL_MEMORY_DESCRIPTORG4

Purpose: Describes physical memory layoutFields:

e NumberOfRuns: Count of memory regions
o NumberOfPages: Total page count

¢ Run[]: Array of memory runs

X64 CONTEXT
Purpose: 64-bit processor contextSize: 1232 bytes

Contains: All CPU registers including:

General purpose (RAX-R15)

Segment registers

Debug registers

XMM registers

Control registers

Function Table Structure
FUNCTION_TABLE

Purpose: Central data structure for hooking system

34/35

Key Fields:

Function pointers for hooked APls

VM metadata (partition handle, memory size)

Context information for all CPUs

Memory mapping tracking

KDBG location and contents

35/35

