
1/14

eversinc33.com /posts/driver-reversing.html

Driver Reverse Engineering 101

 

                                                          o88                  

ooooooo     ooooooo

 oooooooo8 oooo   oooo ooooooooo8 oo oooooo    oooooooo8 oooo  oo oooooo    

ooooooo o88    888o o88    888o

888oooooo8   888   888 888oooooo8   888    888 888ooooooo  888   888   888 

888     888   88888o      88888o

888           888 888  888          888                888 888   888   888 

888       88o    o888 88o    o888

  88oooo888     888      88oooo888 o888o       88oooooo88 o888o o888o o888o  

88ooo888  88ooo88     88ooo88

---

08/15/2025

---

A few months ago, while hunting for vulnerable drivers to abuse for BYOVD on operations, I stumbled
upon a repository of 47GBs of signed Windows drivers. After fuzzing them with ioctlance, a symbolic
execution based fuzzer, I was able to identify many previously unknown loldrivers. In this post I do not
want to talk about exploiting drivers, but about how to approach reverse engineering of Windows WDM
drivers. I often get asked questions on how to approach this, so I figured I might as well write it down
once. The good news is: reversing IOCTL based WDM drivers (the most prevalent way drivers are
developed) is very easy, as they always follow the same structure.

This is the dummy dummy explanation if your goal is to get reversing quickly. Of course I advise you to
learn the basics of driver development, IOCTLs, IRPs and more, to really understand whats happening
here. But at the end of this tutorial, you should be able to get going with simple driver reverse engineering
of IOCTL communications using IDA.

WTF is WDM?

Windows Driver Model (WDM) is the "old school" way of writing drivers. A lot of newer drivers are written
using the Kernel Mode Driver Framework (KMDF), which takes care of lots of boilerplate code for the
developer and is generally recommended. Still, a lot of drivers you will encounter in the wild are based on
WDM.

https://eversinc33.com/posts/driver-reversing.html
https://undefined/
https://driverpack.io/en/foradmin
https://github.com/zeze-zeze/ioctlance
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-wdm


2/14

A driver in the end is just a regular PE that is loaded and executed with kernel privileges, usually by
creating a service. The basic skeleton of a WDM driver looks as follows:

First, we have a driver entry, where we usually create a device object and a symbolic link to it. This
symbolic link can then be used by usermode processes to get a handle to our driver (e.g. by calling
CreateFile on \??\BasicWdmLink) and send messages (IOCTLs) to it to communicate (this is just
one way for usermode to kernelmode communikation, albeit the most common one). As usual, error
handling and some code hidden for brevity:

#include <ntddk.h>

PDEVICE_OBJECT g_DeviceObject = NULL;

UNICODE_STRING g_DeviceName = 

RTL_CONSTANT_STRING(L"\\Device\\BasicWdmDevice");

UNICODE_STRING g_SymbolicLink = RTL_CONSTANT_STRING(L"\\??\\BasicWdmLink");

NTSTATUS

DriverEntry(

    _In_ PDRIVER_OBJECT DriverObject,

    _In_ PUNICODE_STRING RegistryPath

)

{

    // Create device

    status = IoCreateDevice(

        DriverObject,

        0,

        &g_DeviceName,

        FILE_DEVICE_UNKNOWN,

        0,

        FALSE,

        &g_DeviceObject

    );

    // Create symbolic link

    status = IoCreateSymbolicLink(&g_SymbolicLink, &g_DeviceName);

Usually, in this function the driver registers different dispatch routines. These describe what the driver
does when its interacted with:

    // Set dispatch routines

    DriverObject->MajorFunction[IRP_MJ_CREATE] = DispatchCreate;

    DriverObject->MajorFunction[IRP_MJ_CLOSE] = DispatchClose;

    DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = DispatchIoctl;

    DriverObject->DriverUnload = DriverUnload;



3/14

    return STATUS_SUCCESS;

}

These can be implemented as follows:

VOID

DriverUnload(

    _In_ PDRIVER_OBJECT DriverObject

)

{

    IoDeleteSymbolicLink(&g_SymbolicLink);

    IoDeleteDevice(DriverObject->DeviceObject);

}

NTSTATUS

DispatchCreate(

    _In_ PDEVICE_OBJECT DeviceObject,

    _Inout_ PIRP Irp

)

{

    Irp->IoStatus.Status = STATUS_SUCCESS;

    Irp->IoStatus.Information = 0;

    IoCompleteRequest(Irp, IO_NO_INCREMENT);

    return STATUS_SUCCESS;

}

NTSTATUS

DispatchClose(

    _In_ PDEVICE_OBJECT DeviceObject,

    _Inout_ PIRP Irp

)

{

    UNREFERENCED_PARAMETER(DeviceObject);

    Irp->IoStatus.Status = STATUS_SUCCESS;

    Irp->IoStatus.Information = 0;

    IoCompleteRequest(Irp, IO_NO_INCREMENT);

    return STATUS_SUCCESS;

}

Most interesting is usually the IOCTL dispatcher routine though, as this handles the calls from a
usermode program that sends an IOCTL via DeviceIoControl. The macro CTL_CODE is used to build
a unique 32-bit value to identify an IOCTL, based on some options. More on that later. For now all you
need to know is that an IOCTL code to us reverse engineers looks like a random 32 bit value, that
actually encodes some information (which can be decoded e.g. with OSR Ioctl Decoder) .

https://www.osronline.com/article.cfm%5Earticle=229.htm


4/14

#define IOCTL_ECHO_DATA CTL_CODE(FILE_DEVICE_UNKNOWN, 0x800, 

METHOD_BUFFERED, FILE_ANY_ACCESS)

NTSTATUS

DispatchIoctl(

    _In_ PDEVICE_OBJECT DeviceObject,

    _Inout_ PIRP Irp

)

{

    // Get IOCTL code sent to our driver

    PIO_STACK_LOCATION stack = IoGetCurrentIrpStackLocation(Irp);

    ULONG code = stack->Parameters.DeviceIoControl.IoControlCode;

    switch (code) {

    case IOCTL_ECHO_DATA:

    {

        // HANDLE THE DATA FROM USERMODE

        break;

    }

    default:

        status = STATUS_INVALID_DEVICE_REQUEST;

        break;

    }

    Irp->IoStatus.Status = status;

    Irp->IoStatus.Information = info;

    IoCompleteRequest(Irp, IO_NO_INCREMENT);

    return status;

}

A usermode program can now sent the ECHO_DATA IOCTL in our driver using the same CTL_CODE. In
this case, we send a TestMessage string to our driver:

#define IOCTL_ECHO_DATA CTL_CODE(FILE_DEVICE_UNKNOWN, 0x800, 

METHOD_BUFFERED, FILE_ANY_ACCESS)

int main() {

    HANDLE hDevice = CreateFileW(

        L"\\\\.\\BasicWdmLink",

        GENERIC_READ | GENERIC_WRITE,

        0,

        NULL,

        OPEN_EXISTING,

        FILE_ATTRIBUTE_NORMAL,



5/14

        NULL

    );

    const char input[] = "TestMessage";

    char output[64] = {0}; // buffer for the output, which the driver may 

write into

    DWORD bytesReturned = 0;

    DeviceIoControl(

        hDevice,

        IOCTL_ECHO_DATA,

        (LPVOID)input,

        sizeof(input),

        output,

        sizeof(output),

        &bytesReturned,

        NULL

    );

}

There are different methods for IOCTL communication, here METHOD_BUFFERED is used (which again, is
very common). This essentially means, that a buffer is shared for both input and output of the operation.

How can the driver access this? Through a huge union structure called IRP, which in turn contains
another huge union, the IO_STACK_LOCATION. We will not dive deep here, but this will be important
when reversing in IDA later, as we need to choose the right union depending on the method. See here
and here for the struct definitions.

Essentially, this is enough knowledge to get going. So let's start disassembling a random driver:

Static Reverse Engineering

We are going to use the driver afd.sys, since this one will be present on your Windows version as well,
so you can follow along. I chose this deliberately, but if you are wondering, this is the driver that is used
for socket communication - so malware can, instead of using the winsock API, talk to this driver directly
via IOCTLs to create socket connections and send data.

Open C:\Windows\system32\drivers\afd.sys in IDA, and you will be asked if you want to resolve
symbols from the MS Symbol Server:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_irp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_io_stack_location
https://github.com/mandiant/capa-rules/issues/537


6/14

Usually, we would say yes, because this makes reverse engineering almost like reading source code, but
since our goal is to get a methodology that works regardless of the presence of symbols, we are going to
say no here. After some analysis time, you should be greeted with the DriverEntry (think main)
function. If you do not see pseudocode but disassembly, press F5:

As you can see this is just some boilerplate wrapper to the actual main entry, which will be
sub_1C00871F0 in this case. You can see this, since the DriverObject and RegistryPath are
passed to that function, and at least the DriverObject is needed for the initial setup of a classic IOCTL
based driver.

If you double click this function and scroll down a little, you can see a call to the creation of a unicode
string \\Device\\Afd and a call to IoCreateDevice. You can note down the device name, since this
will be what we can open a handle to to send commands and potentially exploit our target driver:



7/14

If you scroll down a bit, you will usually at one point find a block of code that looks like the following:

This is essentially the equivalent of our code block in the beginning, where we registered our dispatch
routines, except that IDA does not resolve the numbers to the enums automatically.

    // Set dispatch routines

    DriverObject->MajorFunction[IRP_MJ_CREATE] = DispatchCreate;

    DriverObject->MajorFunction[IRP_MJ_CLOSE] = DispatchClose;

    DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = DispatchIoctl;

    DriverObject->DriverUnload = DriverUnload;

If you consult the following table, you should be able to spot the IRP_MJ_DEVICE_CONTROL (the "IOCTL
Handler") in afd.sys. Tip: click on a number and press h to convert from decimal to hex and vice versa



8/14

Since 0x0e resolves to 14 in decimal, our function of interest is sub_1C005C790. We can rename it to
HandleIOCTL by pressing n. To add proper typing for parameters and return values, also cast it to
PDRIVER_DISPATCH by pressing y:

The call to memset64 is something you will often see: this usually just sets all routines to a stub that
signals an unsupported routine, so that if an operation is not supported, the driver does not crash.



9/14

As an exercise, you can try finding out what the other functions being registered do. For now let us jump
into the handler:

Now this might seem intimidating at first, but there is one trick which makes this a lot more readable. Do
you remember how I told you earlier that an _IO_STACK_LOCATION is a massive union? If you are
aware of unions, essentially they mean that one type can mean different things. How can IDA choose the
right union? It can not, which is why you usually need to select the correct one by right clicking or
pressing alt+y to select a union field where CurrentStackLocation, the _IO_STACK_LOCATION
member of the IRP is used:



10/14

Since we are an an IOCTL handler, it is likely that this field references the IoControlCode:

Now the pseudocode makes a lot more sense. I renamed variables and added comments to explain what
it does:

Essentially, it extracts the function code from the incoming IOCTL, verifies it is as expected by checking
against a whitelist and finally calls a function from a function table. We can double click the function table
you can see all the different functions (that can be called through this IOCTL handler) in an array:



11/14

Now theres two ways in which IOCTL functions are called from an IOCTL handler (of course there is
endless possibilities, but those are the two you will encounter most often):

The function code is extracted from the IOCTL and used as an index to a table of functions
A huge switch statement

Let us look at an example of the latter as well. For this we open mountmgr.sys and follow the exact
same steps to end up in the IOCTL handler which has an if/else/switch statement handling different
codes:



12/14

From here you can either follow the function calls and see if you find vulnerabilities in themselves, or if
you found a vulnerable IOCTL through fuzzing, you now know how to find it from the DriverEntry on.

If we look into one example function of this driver, there is yet again the IRP that is used to pass on
information to the function call. And again, it is important to select the correct union:



13/14

As you can see, IDA default selected MasterIrp in line 8, when accessing the IRP. However, this is
usually not the right union. Most of the time, you would want to choose SystemBuffer here, which
would be the buffer passed from userland and back when calling the IOCTL from userland:

You can try out different union members and see what makes sense or actually go methodological and
parse the IOCTL number with a tool like OSR Ioctl Decoder and choose the right union based upon
the Method:



14/14

Method (IoControlCode &
0x3) IRP Union Member to Use

METHOD_BUFFERED (0) Irp->AssociatedIrp.SystemBuffer
METHOD_IN_DIRECT (1) Irp->AssociatedIrp.SystemBuffer (input), Irp->MdlAddress (output)
METHOD_OUT_DIRECT (2) Irp->AssociatedIrp.SystemBuffer (input), Irp->MdlAddress (output)

METHOD_NEITHER (3) Parameters.DeviceIoControl.Type3InputBuffer (input), Irp-
>UserBuffer (output)

Now this should be enough to get going.

If you want to actually learn exploiting drivers, I recommend playing around with HackSys Extreme
Vulnerable Driver.

Going Dynamic

One fallacy that novice reverse engineers (including myself) fall to early in their learnings, is that reverse
engineering is looking at pseudo-C in IDA (or worse, disassembly) and renaming variables until you are
basically at source code level. But most of the time, dynamic analysis is much more important, after you
figured out the basic structure of the binary through static reversing.

This is a whole different topic, but there are many guides on that already. Here is a no bullshit guide on
how to setup remote kernel debugging.

What you want to do is essentially:

Setup 2 VMs (One Debugger, One Debugee)
Enable Kernel Debugging on the Debugee
Configure it to do remote kernel debugging (ideally via network) and connect back to your
debugger VMs IP
Run WinDbg on your Debugger VM

I hope this little intro gave you some tips on how to get started!

Happy Hacking!

---

back to top

helloskiddie.club <3

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://idafchev.github.io/research/2023/06/28/Windows_Kernel_Debugging.html
https://helloskiddie.club/

