
1/14

www.securityjoes.com /post/weaponizing-windows-drivers-a-hacker-s-guide-for-beginners

Weaponizing Windows Drivers: A Hacker's Guide for
Beginners
Security Joes ⋮ ⋮ 15/07/2025

https://www.securityjoes.com/post/weaponizing-windows-drivers-a-hacker-s-guide-for-beginners

2/14

In the never-ending cat-and-mouse game of cybersecurity, every advancement in defense inevitably
drives attackers to evolve their tactics, exploiting new gaps and vulnerabilities. From the early days of
signature-based antivirus solutions in the 1980s to today’s sophisticated behavioral and machine
learning-driven detection tools, the landscape of cyber defense has become increasingly complex and
robust. Yet, despite this progress, attackers continue to find creative ways to bypass even the most
advanced protections.

One of the most persistent challenges in this arms race lies within the Windows kernel. While userland
malware remains common, it is often detected through its interaction with monitored Windows APIs.
Kernel-mode threats, on the other hand, operate at a much deeper level, directly interfacing with core
components of the operating system, making them significantly stealthier and difficult to detect.

3/14

Recognizing this advantage, attackers began developing kernel-mode malware in the early 2000s,
prompting Microsoft to implement key countermeasures such as Kernel Patch Protection (PatchGuard),
kernel callbacks, and Driver Signature Enforcement (DSE). These mitigations helped curb the spread of
rootkits and unauthorized kernel modifications. However, modern attackers have adapted by leveraging a
technique known as Bring Your Own Vulnerable Driver (BYOVD), which involves exploiting legitimate but
flawed drivers that are already signed and trusted by the system. A 2024 Kaspersky report highlights the
growing prevalence of this technique, noting a 23% increase in related attacks.

In this context, understanding how to analyze and exploit vulnerable drivers is critical—not just for
offensive security professionals conducting red team operations, but also for defenders aiming to stay
ahead of evolving threats.

This article marks the beginning of a four-part playbook designed to guide readers through the process of
reverse engineering and exploiting Windows drivers. Starting with static analysis, we will identify
vulnerabilities, develop a working exploit, and ultimately demonstrate how such drivers can be
weaponized. Whether you're seeking to strengthen defensive strategies or simulate real-world attacks,
this series offers a practical foundation for engaging with one of the most complex and high-impact areas
of Windows security.

The article in a nutshell:

[+] Introduction to the growing threat of kernel-mode attacks and the

limitations of traditional security measures in detecting them.

[+] It highlights the rise of the BYOVD (Bring Your Own Vulnerable Driver)

technique, where attackers exploit signed but flawed drivers to bypass kernel

protections.

[+] Aimed at both red teamers and defenders, the guide begins with static

analysis and sets the foundation for understanding and exploiting kernel-

level vulnerabilities.

Security Joes is a multi-layered incident response company strategically located in nine different time-
zones worldwide, providing a follow-the-sun methodology to respond to any incident remotely. Security
Joes' clients are protected against this threat.

Contact us at response@securityjoes.com for more information about our services and technologies and
get additional recommendations to protect yourself against this kind of attack vector.

https://web.archive.org/web/20061124094344/http://blogs.msdn.com/windowsvistasecurity/archive/2006/08/11/695993.aspx
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-#signing-requirements-by-version
https://www.securityjoes.com/post/security-s-achilles-heel-vulnerable-drivers-on-the-prowl
https://www.kaspersky.com/about/press-releases/kaspersky-detects-23-increase-in-attacks-targeting-vulnerable-windows-drivers
https://undefined/mailto:response@securityjoes.com

4/14

What is a Windows Driver?

A driver is a software component that can be dynamically loaded or unloaded by the operating system. It
interfaces with the Windows kernel and, in many cases, manages hardware resources. However, not all
drivers are tied to physical hardware. A useful way to conceptualize a driver is as a container of
subroutines that the operating system invokes to perform specific tasks—some hardware-related, others
purely software-based.

For example, an Endpoint Detection and Response (EDR) driver may not control any hardware directly
but operates by registering callbacks in the kernel to monitor and respond to security-related system
events. Because drivers run in kernel mode, they possess high privileges and unrestricted access to
system resources. This makes them a high-value target for attackers aiming to escalate privileges,
disable security mechanisms such as EDR callbacks, and achieve full control over the system.

The figure below outlines the Windows architecture and its corresponding layers, some of which will be
explored in more detail throughout this article.

Windows architecture and its corresponding layers.

Windows Driver Loading Process

For testing and exploitation purposes, it is strongly recommended to install and load drivers under
analysis within a virtual machine. This precaution helps avoid compromising or crashing the host system
during development or testing.

In Windows, drivers can be installed as services using the CreateService API or the built-in service
control utility, sc.exe. When a driver is registered as a service, a corresponding registry entry is created
under:

5/14

HKLM\SYSTEM\CurrentControlSet\Services

Windows drivers use the .SYS file extension and can be installed using sc.exe with the following
commands:

sc create <Service Name> type=kernel binPath=<Driver Path>

sc start <Service Name>

While installing a driver using sc.exe is straightforward, we’ll also demonstrate an alternative method
using a more user-friendly tool that may be familiar to some: OSR Driver Loader.

After downloading and extracting the utility, launch the OSRLOADER.exe executable. In the Driver
Path field, specify the full path to the .SYS driver file.

Then, click Register Service, followed by Start Service to load the driver into the system, as shown in
the figure below:

https://www.osronline.com/article.cfm%5Earticle=157.htm

6/14

Graphical interface of OSR Driver Loader

For testing purposes, we will use the irec.sys driver, which is known to contain documented vulnerabilities
that allow a local attacker to execute arbitrary code and escalate privileges, as detailed in CVE-2023-
41444. The driver can be downloaded from this link.

Anatomy of Windows Drivers

https://www.cvedetails.com/cve/CVE-2023-41444/
https://www.loldrivers.io/drivers/d74fdf19-b4b0-4ec2-9c29-4213b064138b/

7/14

Before beginning static analysis in IDA Pro, it's essential to develop a basic understanding of the driver's
source code written in C. Below is the implementation of the DriverEntry function, which acts as the
standard entry point for any Windows driver. In kernel mode, DriverEntry serves a role similar to the
main function in user-mode applications.

When a driver is loaded, its image is mapped into kernel memory, and a DRIVER_OBJECT is created,
registered, and partially initialized by the Object Manager. This structure represents the driver within the
system and is passed by the I/O Manager to the DriverEntry function. Within this function, the driver
performs necessary initialization and registers the routines required to handle I/O requests from user-
mode applications or other system components.

The RegistryPath parameter passed to DriverEntry contains the registry path where the driver's
configuration settings are stored. However, for the purpose of our analysis, this parameter is not relevant
and can be safely ignored.

extern "C" NTSTATUS

DriverEntry(

 In PDRIVER_OBJECT DriverObject,

 In PUNICODE_STRING RegistryPath

) {

 ...

 DriverObject->DriverUnload = SecJoesDriverUnload;

 DriverObject->MajorFunction[IRP_MJ_CREATE] = SecJoesCreateClose;

 DriverObject->MajorFunction[IRP_MJ_CLOSE] = SecJoesCreateClose;

 DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] =

SecJoesIoDeviceControl;

 UNICODE_STRING devName =

RTL_CONSTANT_STRING(L"\\Device\\SecJoesDevice");

 PDEVICE_OBJECT DeviceObject;

 NTSTATUS status = IoCreateDevice(DriverObject, 0, &devName,

 FILE_DEVICE_UNKNOWN, 0, FALSE, &DeviceObject

);

 if (!NT_SUCCESS(status)) { ... }

 UNICODE_STRING symLink = RTL_CONSTANT_STRING(L"\\??\\SecJoesDevice");

 status = IoCreateSymbolicLink(&symLink, &devName);

 if (!NT_SUCCESS(status)) {...}

 ...

}

The DRIVER_OBJECT structure is a partially opaque data structure, though its full definition is available
in the Windows Driver Kit (WDK) header files. While it contains numerous fields, we will focus only on
those most relevant to our analysis. Below we describe ach of them with details:

8/14

DriverUnload: Holds a pointer to the function responsible for releasing resources allocated by the
driver and reversing any initialization performed in DriverEntry. If this function is not properly
implemented or invoked, it can result in a resource leak that persists until the system is rebooted.

In the provided code, the cleanup function is SecJoesDriverUnload. This callback function
adheres to the following format:

DRIVER_UNLOAD DriverUnload;

void DriverUnload(

 [in] _DRIVER_OBJECT *DriverObject

)

{...}

MajorFunction: This array contains numerous pointers to DRIVER_DISPATCH routines, each
responsible for handling a specific type of I/O request—such as Create, Read, Write, and others.
These entries are indexed using constants prefixed with IRP_MJ_, which represent the major
function codes for different I/O operations.

In essence, when user-mode applications invoke certain Windows API functions to communicate
with the device managed by this driver, those calls are internally translated into I/O Request
Packets (IRPs). The I/O Manager then dispatches these IRPs to the appropriate handler function
defined in this array. The mapping between IRP codes and their corresponding dispatch routines is
illustrated in the table below:

Major Function Index Description
IRP_MJ_CREATE 0 Typically invoked for CreateFile or ZwCreateFile calls
IRP_MJ_CLOSE 2 Typically invoked for CloseHandle or ZwClose calls
IRP_MJ_READ 3 Typically invoked for ReadFile or ZwReadFile calls
IRP_MJ_WRITE 4 Typically invoked for WriteFile or ZwWriteFile calls

IRP_MJ_DEVICE_CONTROL 14 Typically invoked for DeviceIoControl or
ZwDeviceIoControlFile calls

In the code example above, the SecJoesCreateClose function is designated to handle both Create and
Close operations, while the SecJoesIoDeviceControl function manages DeviceIoControl requests.
DeviceIoControl is a Windows API that allows user-mode applications to send custom I/O control codes
(IOCTLs) to kernel-mode drivers. This mechanism enables communication between user-mode programs
and drivers, allowing for hardware control or the execution of specialized operations.

Due to its flexibility and direct interaction with driver internals, DeviceIoControl is frequently targeted in
attacks against Windows drivers. As such, it will be a central focus throughout this playbook.

9/14

The corresponding callback function for handling these requests follows the format below:

DRIVER_DISPATCH DriverDispatch;

NTSTATUS DriverDispatch(

 [in, out] _DEVICE_OBJECT *DeviceObject,

 [in, out] _IRP *Irp

)

{...}

Another key element within the driver's entry point is the IoCreateDevice function, which is used to
create a device object for the driver. A device object represents either a physical or logical device and
defines its characteristics. In Windows, communication is directed not at the driver itself, but at the device
it manages—this device becomes the target for all I/O operations initiated from user mode.

The structure representing the device is DEVICE_OBJECT. When a device object is created, the driver
can optionally assign a name to it, placing it within the Object Manager’s namespace. By default, device
objects reside in the \Device directory, which is not accessible from user space.

In the example above, the device is assigned the name \Device\SecJoesDevice, and a
DEVICE_OBJECT structure is passed to IoCreateDevice for initialization and configuration.

The prototype for the IoCreateDevice function is shown below:

NTSTATUS IoCreateDevice(

 [in] PDRIVER_OBJECT DriverObject,

 [in] ULONG DeviceExtensionSize,

 [in, optional] PUNICODE_STRING DeviceName,

 [in] DEVICE_TYPE DeviceType,

 [in] ULONG DeviceCharacteristics,

 [in] BOOLEAN Exclusive,

 [out] PDEVICE_OBJECT *DeviceObject

);

If the driver is intended to allow user-mode applications to access the device it manages, it must create a
symbolic link that maps a user-accessible name to the device object located in the \Device directory.

This is typically accomplished using the IoCreateSymbolicLink function. In the example code, a
symbolic link named \??\SecJoesDevice is created. Although \?? appears to denote a virtual object

10/14

directory, in kernel mode it typically resolves to the \GLOBAL?? directory, making the device accessible
from user mode under the defined alias.

The concept of a Directory in the kernel differs from that of a traditional file system directory. In the kernel
context, a Directory is a specialized kernel object that serves as a container for other kernel objects—
including additional Directory objects—forming a hierarchical structure managed by the Object Manager.
This structure is used to organize, manage, and resolve named kernel objects throughout the system.

Tools such as WinObj and ObjectExplorer allow us to visualize and navigate this hierarchy. For example,
using WinObj, you can observe that a symbolic link named IREC appears in the \GLOBAL?? directory
after the irec.sys driver is loaded via the OSR Driver Loader. As a practical exercise, you can explore the
\Device directory to verify the presence of the IREC device object.

WinObj GUI where the Windows drivers hierarchy is presented.

Later in this playbook, we will confirm that these objects were indeed created by the driver during static
analysis using IDA Pro.

Static Analysis

https://scorpiosoftware.net/2022/12/13/unnamed-directory-objects/
https://github.com/zodiacon/ObjectExplorer

11/14

Static analysis plays a crucial role in identifying potential vulnerabilities in software, especially in low-level
components like drivers. Through static code inspection, which involves reviewing the program's structure
and behavior without running it, analysts can identify unsafe functions, insecure coding patterns, and
logic flaws that could be exploited by attackers. Disassemblers are essential tools in this process, as they
allow researchers to inspect compiled binaries, understand program behavior, and trace how data flows
through the code—even in the absence of source code.

You’re free to use any disassembler of your choice; however, be aware that the available features,
interface, and command sets may differ significantly between tools. For this guide, we’ll be using the
freeware version of IDA Pro, one of the most widely used disassemblers for reverse engineering. Once
the driver is loaded into IDA Pro, you’ll be presented with the following screen:

Initial screen loaded in IDA Pro, after loading the driver.

Once IDA completes its initial analysis of the driver file, we can identify the DriverEntry function.
Throughout this article, we will primarily focus on the Pseudocode-A tab, which presents the decompiled
code, rather than the IDA View-A tab — unless we need to examine specific Assembly instructions
directly. The figure below shows both views side by side. We can observe that, initially, the parameter
types for the DriverEntry function are unknown. To resolve this, we will use the Type Libraries provided by
IDA Pro.

12/14

Assembly instructions (left) and pseudocode (right) in driver entry point as seen in IDA Pro.

Type Libraries are collections of high-level type information specific to certain platforms and compilers,
used by IDA Pro and its decompiler to enhance code analysis. They include definitions such as function
prototypes, typedefs, structures, enums, and constants, allowing IDA to accurately identify data types and
improve the readability and precision of the decompiled output.

We’re going to apply the types used by the Windows kernel. To do this, go to View > Open subviews >
Type Libraries (or press Shift+F11). In the Type Libraries window, right-click on an empty area and select
Load type library... (or press Insert). Then, choose the ntddk64 library and click OK. The parameter types
for DriverEntry will be applied automatically, as shown below.

Driver pseudocode after loading the type libraries in IDA Pro.

Before applying the type definitions, we noticed something unusual: the function sub_1400025E0, which
previously took two parameters, is now showing only one. We’ll fix this by explicitly setting the correct
function prototype and examining its behavior. Since execution flow is handed directly to this function
from DriverEntry, We’ll rename it to DriverEntry_.

The function’s code is shown below. We can immediately identify the use of several callback functions
assigned to the MajorFunction array, as well as the initialization of two strings on lines 27 and 28. As we’ll
see later, these strings are used by the IoCreateDevice and IoCreateSymbolicLink functions. We can
also observe, on line 29, which function is responsible for releasing the resources allocated by
DriverEntry. It’s worth noting one small detail: the symbolic link’s name uses the DosDevices prefix

13/14

instead of ??. In this context, the DosDevices directory can be considered equivalent to ??. For more
information, refer to this link.

Pseudocode of function DriverEntry_ as seen in IDA Pro.

Based on the information we've gathered and with some understanding of the code, we can rename
certain functions and variables within the function to make the analysis clearer and easier to follow. The
result is shown below:

Driver's pseudocode after renaming functions to simplify analysis.

The code above, implemented in the DriverEntry function, is responsible for creating a device named
“IREC” using the IoCreateDevice function and establishing a symbolic link with the same name via
IoCreateSymbolicLink. During the driver's initialization, it also registers the unload routine and sets up
the functions that handle system requests, which are configured in the MajorFunction array. Each entry in
this array holds the address of a specific routine designed to handle a particular operation requested by
user-mode applications. Further details about these routines will be discussed in the next article.

https://googleprojectzero.blogspot.com/2015/10/windows-drivers-are-truely-tricky.html

14/14

As previously mentioned, the function responsible for handling DeviceIoControl requests is a common
source of vulnerabilities in drivers and will be the main focus of our next article.

Conclusion

In this article, we covered some essential concepts for analyzing vulnerabilities in our driver and began
our static analysis using IDA Pro. We also loaded type definitions into IDA and performed an initial
examination of the DriverEntry function. In the upcoming chapters, we’ll focus on the routine that
handles DeviceIoControl requests, dive into new concepts, identify a vulnerability, develop an exploit for
it, and ultimately weaponize the irec.sys driver.

The world of Windows driver development is vast and complex, and this series only scratches the
surface. If you’re curious to explore more about drivers, we highly recommend the books Windows
Internals and Windows Kernel Programming—both are indispensable references for deeper learning.

