
1/14

www.elastic.co /security-labs/malformed-authenticode-signature

Investigating a Mysteriously Malformed Authenticode Signature

SubscribeStart free trialContact sales

4 September 2025•Elastic Security Labs

Uncovering the hidden heuristics behind malformed authenticode signatures

16 min read Security operations

https://www.elastic.co/security-labs/malformed-authenticode-signature
https://undefined/security-labs
https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/malformed-authenticode-signature
https://www.elastic.co/security-labs/rss/feed.xml
https://cloud.elastic.co/registration?cta=cloud-registration&tech=trial&plcmt=navigation&pg=security-labs
https://www.elastic.co/contact
https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/malformed-authenticode-signature
https://undefined/security-labs/author/elastic-security-labs
https://undefined/security-labs/category/security-operations

2/14

Introduction
Elastic Security Labs recently encountered a signature validation issue with one of our Windows binaries. The
executable was signed using signtool.exe as part of our standard continuous integration (CI) process, but on this
occasion, the output file failed signature validation with the following error message:

The digital signature of the object is malformed. For technical detail, see security bulletin MS13-098.

3/14

MS13-098 error

The documentation for MS13-098 is vague, but it describes a potential vulnerability related to malformed
Authenticode signatures. Nothing obvious had changed on our end that might explain this new error, so we needed to
investigate the cause and resolve the issue.

While we identified that this issue was affecting one of our signed Windows binaries, it could impact any binary. We
are publishing this research as a reference for anyone else who may encounter the same problem in the future.

Diagnosis
To investigate further, we created a basic test program that called the Windows WinVerifyTrust function against
the problematic executable to manually validate the signature. This revealed that it was failing with the error code
TRUST_E_MALFORMED_SIGNATURE.

WinVerifyTrust is a complex function, but after attaching a debugger, we discovered that the error code was
being set at the following point:

dwReserved1 = psSipSubjectInfo->dwReserved1;

if(!dwReserved1)

 goto LABEL_58;

v40 = I_GetRelaxedMarkerCheckFlags(a1, v22, (unsigned int *)&pvData);

if(v40 < 0)

 break;

if(!pvData)

 v42 = 0x80096011; // TRUST_E_MALFORMED_SIGNATURE

As shown above, if psSipSubjectInfo->dwReserved1 is not 0, the code calls
I_GetRelaxedMarkerCheckFlags. If this function returns no data, the code sets the
TRUST_E_MALFORMED_SIGNATURE error and exits.

When stepping through the code with our problematic binary, we saw that dwReserved1 was indeed set to 1.
Running the same test against a correctly signed binary, this value was always 0, which skips the call to
I_GetRelaxedMarkerCheckFlags.

Looking into I_GetRelaxedMarkerCheckFlags, we saw that it simply checks for the presence of a specific
attribute: 1.3.6.1.4.1.311.2.6.1. A quick online search turned up very little other than the fact that this object

https://learn.microsoft.com/en-us/security-updates/securitybulletins/2013/ms13-098

4/14

identifier (OID) is labeled as SpcRelaxedPEMarkerCheck.

__int64 __fastcall I_GetRelaxedMarkerCheckFlags(struct _CRYPT_PROVIDER_DATA *a1,

DWORD a2, unsigned int *a3)

{

 unsigned int v4; // ebx

 CRYPT_PROVIDER_SGNR *ProvSignerFromChain; // rax

 PCRYPT_ATTRIBUTE Attribute; // rax

 signed int LastError; // eax

 DWORD pcbStructInfo; // [rsp+60h] [rbp+18h] BYREF

 pcbStructInfo = 4;

 v4 = 0;

 *a3 = 0;

 ProvSignerFromChain = WTHelperGetProvSignerFromChain(a1, a2, 0, 0);

 if(ProvSignerFromChain)

 {

 Attribute = CertFindAttribute(

 "1.3.6.1.4.1.311.2.6.1",

 ProvSignerFromChain->psSigner->AuthAttrs.cAttr,

 ProvSignerFromChain->psSigner->AuthAttrs.rgAttr);

 if(Attribute)

 {

 if(!CryptDecodeObject(

 a1->dwEncoding,

 (LPCSTR)0x1B,

 Attribute->rgValue->pbData,

 Attribute->rgValue->cbData,

 0,

5/14

 a3,

 &pcbStructInfo))

 {

 return HRESULT_FROM_WIN32(GetLastError());

 }

 }

 }

 return v4;

}

Our binary did not have this attribute, which caused the function to return no data and triggered the error. The
function names reminded us of an optional parameter that we had previously seen in signtool.exe:

/rmc - Specifies signing a PE file with the relaxed marker check semantic. The flag is ignored for non-PE
files. During verification, certain authenticated sections of the signature will bypass invalid PE markers
check. This option should only be used after careful consideration and reviewing the details of MSRC
case MS12-024 to ensure that no vulnerabilities are introduced.

Based on our analysis, we suspected that re-signing the executable with the “relaxed marker check” flag (/rmc), and
as expected, the signature was now valid.

Root cause analysis

While the workaround above resolved our immediate problem, it clearly wasn’t the root cause. We needed to
investigate further to understand why the internal dwReserved1 flag was set in the first place.

This field is part of the SIP_SUBJECTINFO structure, which is documented on MSDN - but unfortunately, it didn’t help
much in this case:

SIP_SUBJECTINFO structure comment

To find where this field was being set, we worked backwards and identified a point where dwReserved1 was still 0 -
i.e., before the flag had been set. We placed a hardware breakpoint (on write) on the dwReserved1 field and
resumed execution. The breakpoint was hit in the SIPObjectPE_::GetMessageFromFile function:

__int64 __fastcall SIPObjectPE_::GetMessageFromFile(

https://learn.microsoft.com/en-us/windows/win32/api/mssip/ns-mssip-sip_subjectinfo

6/14

 SIPObjectPE_ *this,

 struct SIP_SUBJECTINFO_ *a2,

 struct _WIN_CERTIFICATE *a3,

 unsigned int a4,

 unsigned int *a5)

{

 __int64 v5; // rcx

 __int64 result; // rax

 DWORD v8; // [rsp+40h] [rbp+8h] BYREF

 v5 = *((_QWORD*)this + 1);

 v8 = 0;

 result = ImageGetCertificateDataEx(v5, a4, a3, a5, &v8);

 if((_DWORD)result)

 a2->dwReserved1 = v8;

 return result;

}

This function calls the ImageGetCertificateDataEx API which is exported by imagehlp.dll. The value
returned by the fifth parameter of this function is stored in dwReserved1. This value ultimately determines whether
the PE is considered "malformed" in the manner we have been observing.

Unfortunately, ImageGetCertificateDataEx is undocumented on MSDN. However, an earlier variant,
ImageGetCertificateData, is documented:

BOOL IMAGEAPI ImageGetCertificateData(

 [in] HANDLE FileHandle,

 [in] DWORD CertificateIndex,

 [out] LPWIN_CERTIFICATE Certificate,

 [in, out] PDWORD RequiredLength

https://learn.microsoft.com/en-us/windows/win32/api/imagehlp/nf-imagehlp-imagegetcertificatedata

7/14

);

This function extracts the contents of the IMAGE_DIRECTORY_ENTRY_SECURITY directory from the PE headers.
Manual analysis of the ImageGetCertificateDataEx function showed that the first four parameters match those
of ImageGetCertificateData, but with one additional output parameter at the end.

We wrote a simple test program that allows us to call this function and perform checks against the unknown fifth
parameter:

#include <stdio.h>

#include <windows.h>

#include <imagehlp.h>

int main()

{

 HANDLE hFile = NULL;

 DWORD dwCertLength = 0;

 WIN_CERTIFICATE *pCertData = NULL;

 DWORD dwUnknown = 0;

 BOOL (WINAPI *pImageGetCertificateDataEx)(HANDLE FileHandle, DWORD

CertificateIndex, LPWIN_CERTIFICATE Certificate, PDWORD RequiredLength, DWORD

*pdwUnknown);

 // open target executable

 hFile = CreateFileA("C:\\users\\matthew\\sample-executable.exe", GENERIC_READ,

FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL);

 if(hFile == INVALID_HANDLE_VALUE)

 {

 printf("Failed to open input file\n");

 return 1;

 }

 // locate ImageGetCertificateDataEx export in imagehlp.dll

8/14

 pImageGetCertificateDataEx = (BOOL(WINAPI*)

(HANDLE,DWORD,LPWIN_CERTIFICATE,PDWORD,DWORD*))GetProcAddress(LoadLibraryA("imagehlp.dll"

"ImageGetCertificateDataEx");

 if(pImageGetCertificateDataEx == NULL)

 {

 printf("Failed to locate ImageGetCertificateDataEx\n");

 return 1;

 }

 // get required length

 dwCertLength = 0;

 if(pImageGetCertificateDataEx(hFile, 0, NULL, &dwCertLength, &dwUnknown) == 0)

 {

 if(GetLastError() != ERROR_INSUFFICIENT_BUFFER)

 {

 printf("ImageGetCertificateDataEx error (1)\n");

 return 1;

 }

 }

 // allocate data

 printf("Allocating %u bytes for certificate...\n", dwCertLength);

 pCertData = (WIN_CERTIFICATE*)malloc(dwCertLength);

 if(pCertData == NULL)

 {

 printf("Failed to allocate memory\n");

 return 1;

 }

9/14

 // read certificate data and dwUnknown flag

 if(pImageGetCertificateDataEx(hFile, 0, pCertData, &dwCertLength, &dwUnknown) ==

0)

 {

 printf("ImageGetCertificateDataEx error (2)\n");

 return 1;

 }

 printf("Finished - dwUnknown: %u\n", dwUnknown);

 return 0;

}

Running this against a variety of executables confirmed our expectations: the unknown return value was 1 for our
“broken” executable, and 0 for correctly signed binaries. This confirmed that the issue originated somewhere within
the ImageGetCertificateDataEx function.

Further analysis of this function revealed that the unknown flag is being set by another internal function:
IsBufferCleanOfInvalidMarkers.

...

if(!IsBufferCleanOfInvalidMarkers(v25, v15, pdwUnknown))

{

 LastError = GetLastError();

 if(!pdwUnknown)

 goto LABEL_34;

}

...

After cleaning up the IsBufferCleanOfInvalidMarkers function, we observed the following:

DWORD IsBufferCleanOfInvalidMarkers(BYTE *pData, DWORD dwLength, DWORD

*pdwInvalidMarkerFound)

10/14

{

 if(!_InterlockedCompareExchange64(&global_InvalidMarkerList, 0, 0))

 LoadInvalidMarkers();

 if(!RabinKarpFindPatternInBuffer(pData, dwLength, pdwInvalidMarkerFound))

 return 1;

 SetLastError(0x80096011); // TRUST_E_MALFORMED_SIGNATURE

 return 0;

}

This function loads a global list of "invalid markers" using LoadInvalidMarkers, if they are not already loaded.
imagehlp.dll contains a hardcoded default list of markers, but also checks the registry for a user-defined list at the
following path:

HKEY_LOCAL_MACHINE\Software\Microsoft\Cryptography\Wintrust\Config\PECertInvalidMarkers

This registry value does not appear to exist by default.

The function then performs a search across the entire PE signature data, looking for any of these markers. If a match
is found, pdwInvalidMarkerFound is set to 1, which maps directly to the psSipSubjectInfo->dwReserved1
value mentioned earlier.

Dumping the invalid markers

The markers are stored in an undocumented structure inside imagehlp.dll. After reverse-engineering the
RabinKarpFindPatternInBuffer function noted above, we wrote a small tool to dump the entire list of markers:

#include <stdio.h>

#include <windows.h>

int main()

{

 HMODULE hModule = LoadLibraryA("imagehlp.dll");

11/14

 // hardcoded address - imagehlp.dll version:

 // 509ef25f9bac59ebf1c19ec141cb882e5c1a8cb61ac74a10a9f2bd43ed1f0585

 BYTE *pInvalidMarkerData = (BYTE*)hModule + 0xC4D8;

 BYTE *pEntryList = (BYTE*)*(DWORD64*)(pInvalidMarkerData + 20);

 DWORD dwEntryCount = *(DWORD*)pInvalidMarkerData;

 for(DWORD i = 0; i < dwEntryCount; i++)

 {

 BYTE *pCurrEntry = pEntryList + (i * 18);

 BYTE bLength = *(BYTE*)(pCurrEntry + 9);

 BYTE *pString = (BYTE*)*(DWORD64*)(pCurrEntry + 10);

 for(DWORD ii = 0; ii < bLength; ii++)

 {

 if(isprint(pString[ii]))

 {

 // printable character

 printf("%c", pString[ii]);

 }

 else

 {

 // non-printable character

 printf("\\x%02X", pString[ii]);

 }

 }

 printf("\n");

 }

 return 0;

12/14

}

This produced the following results:

PK\x01\x02

PK\x05\x06

PK\x03\x04

PK\x07\x08

Rar!\x1A\x07\x00

z\xBC\xAF'\x1C

ACE

!<arch>\x0A

MSCF\x00\x00\x00\x00

\xEF\xBE\xAD\xDENull

Initializing Wise Installation Wizard

zlb\x1A

KGB_arch

KGB2\x00

KGB2\x01

ENC\x00

disk%i.pak

>-\x1C\x0BxV4\x12

ISc(

Smart Install Maker

\xAE\x01NanoZip

;!@Install@

EGGA

ArC\x01

StuffIt!

-sqx-

PK\x09\x0A

"\x0B\x01\x0B

-lh0-

-lh1-

-lh2-

-lh3-

-lh4-

-lh5-

-lh6-

-lh7-

-lh8-

-lh9-

-lha-

-lhb-

-lhc-

-lhd-

13/14

-lhe-

-lzs-

-lz2-

-lz3-

-lz4-

-lz5-

-lz7-

-lz8-

<#$@@$#>

As expected, this appears to be a list of magic values pertaining to old installers and compressed archive formats.
This aligns with the description of MS13-098, which hints towards certain installers being affected.

We suspected this was related to self-extracting executables. If an executable reads itself from disk and scans its
own data for an embedded archive (e.g., a ZIP file), an attacker could potentially append malicious data to the
signature section without invalidating the signature - since signature data cannot hash itself. This could potentially
cause the vulnerable executable to locate the malicious data before the original data, especially if it scans backwards
from the end of the file.

We later found an old RECon talk from 2012 by Igor Glücksmann, which describes this exact scenario and appears to
confirm our hypothesis.

Microsoft's fix involved scanning the PE signature block for known byte patterns that could indicate this type of abuse.

Investigating the false positive

Upon further debugging, we discovered that the binary was being flagged due to the signature data containing the
EGGA marker from the list above:

EGGA marker

In the context of the list of markers above, the EGGA signature appears to relate to a specific header value used by an
archive format called ALZip. Our code does not make any use of this file format.

Microsoft’s heuristic treated the presence of EGGA as evidence that malicious archive data had been embedded in the
PE signature. In practice, nothing of the sort was present. The signature block itself happened to include those four
bytes as part of the hashed data.

Collisions like this are unusual, but page hashing (/ph) made it more likely. By expanding the size of the signature
block, page hashing increases the surface area for coincidental matches and increases the likelihood of triggering the
heuristic.

The binary didn’t contain any self-extracting routines, so the hit on EGGA was a false positive. In that context, the
warning had no bearing on the file’s integrity. This meant it was safe to re-sign the file with /rmc to restore the
expected validation.

Conclusion

https://learn.microsoft.com/en-us/security-updates/securitybulletins/2013/ms13-098
https://recon.cx/2012/schedule/events/246.en.html
http://justsolve.archiveteam.org/wiki/EGG_(ALZip)

14/14

It is well known that additional data can be embedded in a PE file without breaking its signature by appending it to the
security block. Even some legitimate software products take advantage of this to embed user-specific metadata into
signed executables. However, we were not aware that Microsoft had implemented heuristics to detect specific
malicious cases of this, even though they were introduced back in 2012.

The original error message was very vague, and we were unable to find any documentation or references online that
helped explain the behavior. Even searching for the associated registry value after discovering it
(PECertInvalidMarkers) yielded zero results.

What we uncovered is that Microsoft added heuristic scanning of signature blocks more than a decade ago to counter
specific abuse cases. Those heuristics reside in a hardcoded list of “invalid markers,” many of which are tied to
outdated installers and archive formats. Our binary happened to collide with one of those markers when signed with
page hashing enabled, creating a validation failure with no clear documentation and no public references to the
underlying registry key or detection logic.

The absence of online discussions regarding this failure mode, aside from a single unresolved Visual Studio
Developer Community post from 2018, made the initial diagnosis difficult. By publishing this analysis, we want to
provide a technical reference point for others who may encounter the same problem. In our case, resolving the issue
required deep troubleshooting that few outside this space would normally need to exercise. For teams automating
code signing, the key lesson is to integrate signature validation checks early and be aware that heuristic marker
detection can lead to edge-case failures.

Additional references
The author can be found on X at @x86matthew.

https://learn.microsoft.com/en-us/archive/blogs/ieinternals/caveats-for-authenticode-code-signing
https://developercommunity.visualstudio.com/t/malformed-digital-signature-ms13-098-1/235599
https://x.com/x86matthew

