leftarcode.com Iposts/afd-reverse-engineering-part1/

Under the Hood of AFD.sys Part 1: Investigating
Undocumented Interfaces

Mateusz Lewczak : : 16/07/2025

A quick look at how | used WinDbg and NtCreateFile to craft a raw TCP socket via AFD.sys on Windows
11, completely skipping Winsock.

Posted Jul 16, 2025
By Mateusz Lewczak

18 min read

Under the Hood of AFD.sys Part 1: Investigating Undocumented Interfaces

Introduction

This is the first post in a series about my deep-dive into the AFD. sys driver on Windows 11. The idea is
that both this write-up and the library that comes out of it will be a one-stop doc set - and a launchpad -
for poking at other drivers that don’t ship with an official spec.

On Windows, the go-to (and easiest) way to do network stuff is Winsock. It gives you a bunch of high-
level calls for TCP/UDP and raw sockets over IPv4/IPv6. Under the hood Winsock rides on
mswsock.d11, which is lower-level, but most apps never need to touch that because Winsock already

covers 99 % of everyday networking needs.

In this first part we’re focusing purely on creating the socket itself. Step #1 is to open a TCP socket to any
host on the LAN using nothing but I/O requests aimed at \Device\Afd. Instead of the usual Winsock
calls (or anything in mswsock.d11) we're going to slam everything through NtDeviceIoControlFile,

hand-crafting the IRPs (I/O Request Packets) the AFD driver expects. That’ll show us, in real life, how to
build the call sequence, buffer layouts, and flags you need to spin up a TCP session.

The actual data exchange over that socket - the whole TCP conversation - will come in later posts.

Right now I've already collected all the data to pull off the TCP three-way handshake. Took me a few
evenings to get there, so I'm just jotting down what | did so far. I'll keep adding the rest as | go - at least
that’s the plan!

What is AFD.sys?

The AFD.sys - or Ancillary Function Driver - is a small but absolutely basic Windows kernel driver. It sits
in C:Windows32drivers and starts up with the system, because it’'s the one that translates the Winsock
calls of your applications (send, recv, connect...) into lower-layer intelligible TRP (I//O request packet),

1/12

https://leftarcode.com/posts/afd-reverse-engineering-part1/
https://leftarcode.com/

which tcpip.sys and co. are already taking over. If it were missing, the browser, Spotify or remote desktop
wouldn’t see the network - all TCP/UDP traffic would simply stop.

Rationale

The first reason for talking directly to AFD. sys instead of going through Winsock is to dodge the hooks
used by some protection systems - like anti-cheat or anti-malware (though the latter usually rely on NDIS
filters in kernel mode). A lot of these protections work by intercepting and modifying calls to functions
exported by Ws2 32.1ib - usually by injecting their own DLLs or patching stuff directly in process
memory. But if you're not using Winsock, those hooks have nothing to latch onto, which makes their job
way harder from a technical standpoint.

Normal Path

Your app M| ws2_32.lib |—p mswsock.dll

A Hooks \

Anti Cheat AFD.sys pP—Pp| NIC

e

T,
e
e
e,
0

Our goal /

Our app

The second reason - and honestly the one that matters most to me - is the educational value. Working
directly with AFD. sys gives you a deep look under the hood of how Windows handles networking. That
kind of insight just isn’t possible when you stick to high-level APIs.

The goal of this whole project is to build a library for talking directly to the AFD. sys driver on Windows
11, completely skipping the Winsock layer. The core will be written in C/C++ and will include all the low-

level logic for building and sending IRPs. On top of that, I'm planning to add clean, easy-to-use bindings
for Python - great for quick prototyping or scripting - and also for Rust.

Dumb Copy&Paste

The very first thing we have to nail down is a socket the driver will actually accept, so we can start talking
on the wire. While combing the internet | ran into a PoC for CVE-2024-38193 (killvxk). That was the first
real bit of code that spat out a socket for me:

1 NTSTATUS AfdCreate (PHANDLE Handle, ULONG EndpointFlags)
2 A
3 UNICODE STRING DevName;

2/12

https://undefined/assets/afd_re/part_1/idea.png

4 RtlInitUnicodeString (&DevName, L"\\Device\\Afd\\Endpoint");
5 const wchar t* transportName = L"\\Device\\Tcp";

6

7 BYTE bExtendedAttributes[] = {...};

8

9 OBJECT ATTRIBUTES Object;

10 Object = { 0 };

11 Object.ObjectName = &DevName;

12 Object.Length = 48;

13 Object.Attributes = 0x40;

14

15 IO _STATUS BLOCK IoStatusBlock;

16

17 return NtCreateFile (Handle, 0xC0140000, &Object, &IoStatusBlock, 0, 0, 3,

18 FILE OPEN IF, 0x20, &bExtendedAttributes, sizeof (bExtendedAttributes)):;
}

Right away | learned that what AFD calls a “socket” is really just a HANDLE. With the rest of that PoC |

could bind the socket, but | still couldn’t connect. So the hunt continued - was my
EXTENDED ATTRIBUTES struct busted? Or was the problem somewhere else?

Next stop: a thread on the UnKoWnCheaTs blog (unknowncheats.me |Coded post). It's basically only
code, no explanation, so | copied the snippet and tried to run it like this:

int main () {
HANDLE socket;

1
> NTSTATUS status = AfdCreate (&socket, AF INET, SOCK STREAM, IPPROTO TCP);
3 if (!NT SUCCESS(status)) {
4 std::cout << "[-] Could not create socket: " << std::hex << status <<
5 std::endl;
6 return 1;
}
7
8 std::cout << "[+] Socket created!" << std::endl;
9 . .
10 sockaddr in server = { AF INET, htons(27015), {inet addr("127.0.0.1")}, {0} };
11 status = AfdBind(socket, &server);
12 if (!NT SUCCESS(status)) {
13 std::cout << "[-] Could not bind: " << std::hex << status <<
14 std::endl;
15 return 1;
16)
17 std::cout << "[+] Socket bound!" << std::endl;
18
19 status = AfdDoConnect (socket, &server);
50 if (!NT SUCCESS(status)) {
21 std::cout << "[-] Could not connect: " << std::hex << status <<
20 std::endl;
23 } return 1;
24

std::cout << "[+] Connected!" << std::endl;

That time the socket came to life again, but bind flat-out failed. So | went spelunking for reversed
structure definitions in publicly available code. | ran into plenty of candidates - ReactOS (ReactOS
Project), Dr. Memory’s AFD bits (DynamoRIO / Dr. Memory), even an old issue thread (Dr. Memory - GH
issue#376). None of them truly pieced the puzzle together, so | was still stuck at bind.

Why’s it blowing up? A few theories:

1. Different Windows builds and AFD. sys versions might expect slightly different structures.

3/12

2. Flags in the CVE-2024-38193 PoC are tuned for exploitation, not for my vanilla use case - so
they’re probably wrong here.
3. Insert literally any other reason...

Kernel Debugging Time

At this point | realized that blindly copy-pasting other people’s code wasn’t going to cut it - | needed to do
a few experiments with WinDbg. So | spun up a Windows 11 VM and started grabbing calls that hit
AFD.sys. The plan:

1. Find some code that makes legit requests to AFD. sys.

2. Capture the 1/0-request buffers that code sends.
3. Re-create those buffers on my host and see if the driver is happy.
4. Reverse-engineer the structs so we actually know what each field is and which values make sense.

Side note: I'm skipping the whole “turn on kernel debugging, set up the connection” dance. Microsoft’s
docs and half the internet explain that step-by-step.

What's the fastest way to make a process fire off valid AFD. sys requests? Write a dead-simple TCP

client with Winsock:

#define WIN32 LEAN AND MEAN

1 #include <windows.h>

2 #include <winsock2.h>

3 #include <ws2tcpip.h>

4 #include <iostream>

5 #pragma comment (lib,"Ws2 32.1ib")

6

7 int main() {

8 std::cout << "PID: " << GetCurrentProcessId() << "\nPress <Enter> to continue..."
9 << std::endl;

10 std::cin.get ();

11

12 WSADATA wsa;

13 if (WSAStartup (MAKEWORD (2, 2), &wsa)) return 1;

14

15 SOCKET s = Socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
16 if | == INVALIDfSOCKET) return 1;

17

18 sockaddr in addr{};

19 addr.sin family = AF INET;

20 addr.sin port = htons(80);

21 InetPtonA (AF _INET, "192.168.1.1", &addr.sin_ addr);

22

23 if (connect (s, reinterpret cast<sockaddr*>(&addr), sizeof (addr)) == SOCKET_ ERROR)
24 {

25 std::cerr << "connect error: " << WSAGetLastError () << '\n';
26 } else {

27 std::cout << "Connected\n";

28 }

29

30 closesocket (s) ;

31 WSACleanup () ;

32 return 0;

4/12

We know the very first thing Winsock does is create a socket by opening a HANDLE to \Device\Afd. So
our next task is to break on nt ! NtCreateFile. You might wonder why | print the PID and then pause -
if | simply slapped a breakpoint on NtCreateFile, I'd hit every call system-wide, which is useless. |
only want the calls from this process.

Now what'’s left is to run this program and set the appropriate breakpoint - of course NtCreateFile isn’t
just used for driver communication, so you’ll have to click around a few times until you find something like
NtCreateFile ("Device). It's probably possible to do this as an automation in WinDbg, but | don’t

know how - sKkill issue.
A wiec pokolei zaczynamy dziata¢ w WinDbg:
1. Set a process-specific breakpoint on nt ! NtCreateFile:

1 .foreach /pS 1 (ep { !process 0 0 afd re.exe }) { bp /p ${ep} nt!NtCreateFile }
2. Dump the 3rd arg (Microsoft) (register r8 on x64 / Microsoft ABI (Microsoft)) as an
_OBJECT ATTRIBUTES.:

10: kd> dt nt! OBJECT ATTRIBUTES (@r8

éBreakpoint 2 hit
5 +0x000 Length : 0x30
2 +0x008 RootDirectory : (null)
5+Ox010 ObjectName : 0x00000018°06f1£5p0 UNICODE STRING
c "\Device\Afd\Endpoint"
7 +0x018 Attributes : 0x42
8+OxO2O SecurityDescriptor : (null)
+0x028 SecurityQualityOfService : (null)
3. If ObjectName shows \Device\Afd. . ., bingo. Otherwise go and wait for the next hit.

4. The last two NtCreateFile args live on the stack. Through trial and error | found they sit at
rsp+0x50:.

14: kd> dg @rsp+50 L2
2 fffffc04°df00£438 00000018 06£f1£f5c0 00000000 00000039

5. What we can see here is the address of the EXTENDED ATTRIUTES buffer (i.e. the extra data we
pass to the file/driver when creating the HANDLE) and its size. It is consecutively 0x1806£f1£5c0
and 0x39.

6. What is important! The address of this buffer is the address of the memory page in the context of
the user process that triggered this system call - we are currently in kernel-space. So before we
can start reading it, we still need to switch to that process.

1 .process /r /p Q@S$proc
7. Read those 0x39 bytes:

4: kd> db 1806£f1£5c0 L39
00000018 06£1£5c0O0 00 00 00 00 00 0Of le 00-41 66 64 4f 70 65 6e 50

é AfdOpenP

000000187 06f1£f5d0 61 63 6b 65 74 58 58 00-00 00 00 00 00 00 00 0O
3acketXX
é 00000018 06f1f5e0 02 00 00 00 01 00 00 00-06 00 00 00 00 00 00 0O

00000018 06f1£f5f0 18 ba 5a 4a 33 01 00 00-64 ..72J3...4d
8. What have we learned so far? And what is useful to us?

5/12

1. the Winsock (or rather mswsock.d11) opens a handle to the \Device\Afd\Endpoint

driver.
2. the expected structure is 0x39 bytes in length.

9. We are left to convert this set of bytes into code in C++:

NTSTATUS AfdCreate (PHANDLE handle) {

1 UNICODEisTRING devName;

2 RtlInitUnicodeString (&devName, L"\\Device\\Afd\\Endpoint");
3

4 BYTE bExtendedAttributes|[] = {

5 0x00, 0x00, 0x00, 0x00, 0x00, OxOF, Oxle, 0x0O0,
6 0x41, Ox66, 0Ox64, 0x4F, 0x70, 0x65, Ox6E, 0x50,
7 0x6l1, 0x63, 0x6B, 0x65, 0x74, 0x58, 0x58, 0x00,
8 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
9 0x02, 0x00, 0x00, 0x00, 0Ox01, 0x00, 0x00, 0x00,
10 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
11 0x18, Oxba, Oxb5a, Ox4a, 0x33, 0x01, 0x00, 0x00,
12 0x64

13 };

14

15 OBJECT ATTRIBUTES Object;
16 Object = { 0 };
17 Object.ObjectName = &devName;
18 Object.Length = 48;
19 Object.Attributes = 0x40;
20
21 IO _STATUS BLOCK IoStatusBlock;
22 return NtCreateFile (handle, GENERIC READ | GENERIC WRITE | SYNCHRONIZE, &Object,
23 &IoStatusBlock, 0, O, FILE SHARE READ | FILE SHARE WRITE, FILE OPEN IF, 0x20,
24 gbExtendedAttributes, sizeof (bExtendedAttributes));
}

Analyzing retrieved data

After executing this code, we get information that our HANDLE (i.e. socket in practice) has been

successfully created. Now gathering data from publicly available code, we can reconstruct the contents of
our workingly named AFD OPEN PACKET EA structure.

| used the previously mentioned sources and (DeDf) to recreate the structure. Let’s first try to label
specific portions of bytes for ourselves, and then we will create a struct from this:

1 BYTE bExtendedAttributes[] = {

2 0x00, 0x00, 0x00, 0x00, // NextEntryOffset - 4 bytes
3 0x00, // Flags - 1 byte
4 0x0F, // EaNameLength - 1 byte
5 Oxle, 0x00, // EaValuelength - 2 bytes
6 // START AfdOpenPacketXX 0xf bytes of name + leading zero
7 0x41, Ox66, O0x64, 0x4F, 0x70, 0x65, 0Ox6E, 0x50,

8 Ox6l, 0x63, 0Ox6B, 0x65, 0x74, 0x58, 0x58, 0x00,

9 // END AfdOpenPacketXX

10 0x00, 0x00, 0x00, 0x00, // EndpointFlags = 0

11 0x00, 0x00, 0x00, 0x00, // GroupID = 0

12 0x02, 0x00, 0x00, 0x00, // AddressFamily = AF INET
13 0x01, 0x00, 0x00, 0x00, // SocketType = SOCK_STREAM
14 0x06, 0x00, 0x00, 0x00, // Protocol = IPPROTO_TCP

15 0x00, 0x00, 0x00, 0x00, // SizeOfTransportName

16

17 // unknown 9 bytes

18 0x18, Oxba, Ox5a, 0Ox4a, 0x33, 0x01, 0x00, 0x00, 0Ox64
19 };

6/12

So what do we have? What do we know?

1. NextEntryOffset - this is the offset where the next entry for EXTENDED ATTRIBUTES is
located. Possibly a typical field for I/O, in our case none so we have zeros.

2. Flags - these are some flags for our EXTENDED ATTRIBUTE structure, in this case it is zero.
Unknown at this point.

3. EaNameLength - the length of the name of our EXTENDED ATTRIBUTE, which in this case is 15
bytes.

4. EaValueLength - a size expressed in bytes representing the size of some internal structure. This
structure will be EndpointFlags to the end, along with unknown bytes.

5. EndpointFlags - more flags, but probably already relating to our sockets. Following (killvxk) we
can use the enum available there. After reproducing the identical steps, but for UDP communication
and the field value is 0x11. Which would mean AFD ENDPOINT FLAG CONNECTIONLESS |
AFD ENDPOINT FLAG MESSAGEMODE.

1 // 4 bytes

2 enum _ bitmask AFD ENDPOINT FLAGS ({

3 AFD_ENDPOINT_FLAG_CONNECTIONLESS = 0x000000000001,
4 AFD ENDPOINT FLAG MESSAGEMODE = 0x000000000010,
5 AFD ENDPOINT FLAG RAW = 0x000000001000,
6 AFD ENDPOINT FLAG MULTIPOINT = 0x000000010000,
7 AFD_ENDPOINT_FLAG_CROOT = 0x000001000000,
8 AFD ENDPOINT FLAG DROOT = 0x000010000000,
9 AFDiENDPOINTiFLAGilGNORETDI = 0x001000000000,
10 AFD ENDPOINT FLAG RIOSOCKET = 0x010000000000,
111}

6. GroupID - the identifier of the socket group (Microsoft), looks like some legacy of the old fiches.

7. AddressFamily, SocketType, Protocol - these are standard fields describing our address
family, socket type and protocol used.

8. sizeOfTransportName - in some instances of sockets creation | have seen authors refer to
DeviceAfd in addition to referring to DeviceTcp and similar drivers. The length of this string
should be specified here, whereas during debugging, not once did | see this field actually filled in.

9. unknown 9 bytes - this is nowhere to be found, | have not come across it anywhere before. By
trial and error | figured out that the last two bytes are optional. Without any problem AFD. sys will

accept such a buffer as well. And even more interestingly, they can take any value, this is also a
valid EXTENDED ATTRIBUTE.

1 BYTE bExtendedAttributes[] = {

2 [SAME VALUES]

3 // unknown 9 bytes, but only 7 provided
4 0Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff
51}

Staying with our unknown bytes, below | have examples for a few more calls of our code:

1c8 27 £f£ 09 16 02 00 00 64
298 b8 85 4a a3 02 00 00 64

In this case, a static analysis of mswsock.d11 would need to be carried out to better understand what

they might be.

7/12

Reverseing mswsock.dll

| used Binary Ninja (free, v5.0.7) to do the reverse engineering. | started by finding a function that uses
NtCreateFile, | found 5 functions in total and one of them is SockSocket:

nminted t SockSocket(int3?2 t+ aral. int32 t ara?. int3? t aral. int1

AllocationSize = ©;

NTSTATUS rax_40 = NtCreateFile(&FileHandle,
DesiredAccess, &0ObjectAttributes,
&var_f8, AllocationSize,
SECURITY_ANONYMOUS, var_1b8_1,
var_1b0_1, var_1a8_1,
SocketGloballLock_7,

(uint32_t)rbx_3 + 6x1b);

At this point we know that the penultimate argument of the NtCreateFile call is our

AFD OPEN PACKET EA structure, and the last argument is the length of that structure. So it's worth

naming them now. And additionally create a custom structure in Binary Ninja, then the analyser will
interpret the operation on our structure correctly.

(=) Change Type

Types (C syntax):

‘struct AFD_OPEN_PACKET_EA __packed
{

uint32_t

NextEntryOffset;

uint8_t Flags;
uint8_t EaNamelLength;

uintl6_t

EaValuelLength;

char EaName[0x10];

uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t

EndpointFlags;
GroupID;
AddressFamily;
SocketType;
Protocol;
SizeOfTransportName;

uint8_t UnknownBytes[0x9];

https://undefined/assets/afd_re/part_1/bn_ntcreatefile.png
https://undefined/assets/afd_re/part_1/bn_afd_open_packet_ea_struct.png

With this, Binary Ninja generated us this Pseudo C code, which looks promising:

EXTENDED_ATTRIBUTE = &var_a8;
label_18000c6d5:
EXTENDED_ATTRIBUTE->NextEntryOffset
EXTENDED_ATTRIBUTE->Flags = O;
EXTENDED_ATTRIBUTE->EaNamelLength = Oxf;
__builtin_strcpy(&EXTENDED_ATTRIBUTE->EaName,
"AfdOpenPacketXX");
EXTENDED_ATTRIBUTE->EaValuelLength =
EXTENDED_ATTRIBUTE_INNER_LEN;
EXTENDED_ATTRIBUTE->SizeOfTransportName =
(uint32_t)TransportName.Length;

if (! (*(uint8_t*)(BaseAddress + 06x45) & 0x10))
memcpy (&EXTENDED_ATTRIBUTE->UnknownBytes,
TransportName.Buffer,
(uint64_t)TransportName.Length + 2);

EXTENDED_ATTRIBUTE->AddressFamily = SocketGloballLock_5;
EXTENDED_ATTRIBUTE->SocketType = SocketType;
EXTENDED_ATTRIBUTE->Protocol = SocketGloballLock_4;
EXTENDED_ATTRIBUTE->EndpointFlags = 0;

| also messed around with other variables that can be inferred from the context of the code such as
TransportName etc. It remained to check where the SockSocket function refers to our unknown bytes.
To my surprise there is only one place. The mswsock.d11 library only operates on them when it copies
TransportName and in no other place. So either actually these bytes don’t matter much and are just
added random values when not using TransportName or another function operates on them.

What do our sources say about this? Unfortunately | don’t see any information on this, and it looks like at
least seven of those odd five bytes are required for AFD. sys to accept a request from us to create a new
sockets. | did, however, find information about what happens when we specify a TransportName and
when we don'’t specify it (diversenok). But this unfortunately does not answer our question. So this is
something new that we discovered during our research! On the positive side, this leaves us room for
further exploration. | think we can leave it for now and possibly come back to it later when it is needed.
After all we correctly managed to create a TCP socket.

What is TDI?

It's worth going one level down from AFD.sys for a moment, because underneath lies its true interface to
the TCP/IP stack - the Transport Driver Interface (TDI) as TDI will appear in many places in later parts
of our series. TDl is the “upper edge” of the transport layer in the Windows kernel - an abstraction that,
back in the days of NT 3.51, unified communication with various protocols (TCP/IP, NetBIOS, AppleTalk).
From a kernel-mode point of view, there are two entities:

9/12

https://undefined/assets/afd_re/part_1/bn_afd_open_packet_ea_re.png

The AFD acts as an intermediary-client: it receives our IOCTLs from user space and then ‘builds’ the

e Transport Provider - the driver of the protocol itself, e.g. \Device\Tcp.

e TDI Client - anyone who sends IRPs to it with codes TDI SEND, TDI RECEIVE, TDI CONNECT,

etc.

corresponding IRPs (TdiBuildSend, TdiBuildReceive macros) and passes them to the transport

driver. For example, if we had specified TransportName in our EXTENDED ATTRIBUTES we would
have had to communicate with AFD. sys given the TDI structures. Instead of SOCKADDR it would be

TransportAddress.

Next steps

In the next part of this series we will focus on trying to set up a TCP handshake with localhost on port 80.

For this we will use AfdBind and AfdConnect, functions provided by AFD. sys available as an /O

request.

Final code

Below you can find the full code that creates a socket without using any networking library.

o ~J oy U b wNE

)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

#include <stdint.h>

#include <Windows.h>

#include <winternl.h>

#include <iostream>

#pragma comment (lib, "ntdll.lib")

enum AFD ENDPOINT FLAGS : uint32 t {

AFD ENDPOINT FLAG CONNECTIONLESS

0x000000000001,

AFD ENDPOINT FLAG MESSAGEMODE = 0x000000000010,

AFD _ENDPOINT FLAG RAW
AFD ENDPOINT FLAG MULTIPOINT

0x000000001000,
0x000000010000,

AFD ENDPOINT FLAG CROOT = 0x000001000000,

AFD ENDPOINT FLAG DROOT
AFD ENDPOINT FLAG IGNORETDI

0x000010000000,
0x001000000000,

AFD _ENDPOINT FLAG RIOSOCKET = 0x010000000000,

}:

struct AFD OPEN PACKET EA {

uint32 t
uint8 t
uint8 t
uintl6 t
char

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint8 t

}:

nextEntryOffset;
flags;
eaNameLength;
eaValuelLength;
eaName [0x10];
endpointFlags;
grouplID;
addressFamily;
socketType;
protocol;
sizeOfTransportName;
unknownBytes [0x9];

NTSTATUS createAfdSocket (PHANDLE socket) {
const char* eaName = "AfdOpenPacketXX";
UNICODE STRING devName;

RtlInitUnicodeString (&devName, L"\\Device\\Afd\\Endpoint");

10/12

38

OBJECT ATTRIBUTES object;

&object,

39 object = { 0 };
40 object.ObjectName = &devName;
41 object.Length = 48;
42 object.Attributes = 0x40;
43
44 AFD OPEN_ PACKET EA afdOpenPacketEA;
45 afdOpenPacketEA.nextEntryOffset = 0x00;
46 afdOpenPacketEA.flags = 0x00;
477 afdOpenPacketEA.eaNamelLength = 0xO0F;
48 afdOpenPacketEA.eaValuelength = Oxle;
49 afdOpenPacketEA.endpointFlags = 0x00;
50 afdOpenPacketEA.groupID = 0x00;
51 afdOpenPacketEA.addressFamily = AF INET;
52 afdOpenPacketEA.socketType = SOCK_STREAM;
53 afdOpenPacketEA.protocol = IPPROTO TCP;
54 afdOpenPacketEA.sizeOfTransportName = 0x00;
55 memset (afdOpenPacketEA.eaName, 0x00, 0x10);
56 memcpy (afdOpenPacketEA.eaName, eaName, 0x10);
57 memset (afdOpenPacketEA.unknownBytes, O0xFF, 0x9);
58
59 IO _STATUS BLOCK IoStatusBlock;
60 return NtCreateFile (socket, GENERIC READ | GENERIC WRITE | SYNCHRONIZE,
61 &IoStatusBlock, 0, 0, FILE SHARE READ | FILE SHARE WRITE,
62 FILE OPEN IF,
63 FILE SYNCHRONOUS IO NONALERT, &afdOpenPacketEA,
64 sizeof (afdOpenPacketEA)) ;
65 }
66
67 int main () {
68 HANDLE socket;
69 NTSTATUS status = createAfdSocket (&socket);
70 if (!NT SUCCESS (status)) {
71 std::cout << "[-] Could not create socket: " << std::hex << status <<
72 std::endl;
73 return 1;
74 }
75 std::cout << "[+] Socket created!" << std::endl;
return 0;
}
References

1. Vittitoe, Steven. “Reverse Engineering Windows AFD.sys: Uncovering the Intricacies of the
Ancillary Function Driver.” Proceedings of REcon 2015, 2015, https://doi.org/10.5446/32819.
2. killvxk. CVE-2024-38193 Nephster PoC. 2024, https://github.com/killvxk/CVE-2024-38193-

Nephster/blob/main/Poc/poc.h.
3. unknowncheats.me ICoded post. Native TCP Client Socket. n.d.,

https://www.unknowncheats.me/forum/c-and-c-/500413-native-tcp-client-socket.html.

4. ReactOS Project. Afd.h. n.d.,
https://github.com/reactos/reactos/blob/master/drivers/network/afd/include/afd.h.

5. DynamoRIO / Dr. Memory. afd_sharedh. n.d.,
https://github.com/DynamoRIO/drmemory/blob/master/wininc/afd_shared.h.

6. Dr. Memory - GH issue#376. Issue #376: AFD Support Improvements. n.d.,
https://github.com/DynamoRIO/drmemory/issues/376.

7. Microsoft. NtCreateFile Function (Winternl.h). n.d., https://learn.microsoft.com/en-
us/windows/win32/api/winternl/nf-winternl-ntcreatefile.

11/12

10.
11.

12.

. ---. X64 Calling Convention. n.d., https://learn.microsoft.com/en-us/cpp/build/x64-calling-

convention?view=msvc-170.

. ---. X64 Calling Convention. n.d., https://learn.microsoft.com/pl-pl/windows/win32/api/winsock2/nf-

winsock2-wsasocketa.

DeDf. AFD Repository. n.d., https://github.com/DeDf/afd/tree/master.

Allievi, Andrea, et al. Windows® Internals Part 2 - 6th Edition. 6th ed., Microsoft Press (Pearson
Education), 2022, https://learn.microsoft.com/sysinternals/resources/windows-internals.
diversenok. \Textttntafd.h — Ancillary Function Driver Definitions. commit 2dda0dd, Hunt & Hackett,
April 2025, https://github.com/winsiderss/systeminformer/blob/master/phnt/include/ntafd.h.

12/12

