ETW Forensics - Why use Event Tracing for Windows
over EventLog? -

ﬂ blogs.jpcert.or.jp/en/2024/11/etw_forensics.html

A& F:iH (Shusei Tomonaga)

November 14, 2024

volatility

Email

Many people may think of EventLogs when one mentions Windows OS logs. When
investigating incidents such as malware infections, it is common to analyze the Windows OS
EventLogs to find traces that may help uncover the incident. However, since the EventLog is
not designed to detect suspicious behavior on Windows OS, you may not always find the
information you are looking for when investigating an incident. Therefore, it is necessary to
enable audit logs or install Sysmon to obtain more information.

There is another mechanism in Windows OS that can detect suspicious behavior. It is a
feature called Event Tracing for Windows (ETW). This is a system for managing events
generated by the kernel and processes, and it is used for debugging applications and other
purposes. ETW is also used for collecting and managing EventLogs, and in recent years it
has been used in the detection logic of EDR products and antivirus software. ETW has a
function that can log various behaviors in the OS as events by default, which makes it
possible to obtain more information than EventLogs.

This article explains the structure of ETW and how you can use it for your forensics.

ETW Internals

ETW architecture

Figure 1 shows the components of ETW[1]. Providers such as applications send events, and
after they are stored in buffers, consumers such as EDR receive them.

1/13

https://blogs.jpcert.or.jp/en/2024/11/etw_forensics.html
https://blogs.jpcert.or.jp/en/shu_tom/
https://blogs.jpcert.or.jp/en/shu_tom/
https://blogs.jpcert.or.jp/en/tags/volatility/
mailto:?subject=ETW%20Forensics%20-%20Why%20use%20Event%20Tracing%20for%20Windows%20over%20EventLog%3F%20-&body=https%3A%2F%2Fblogs.jpcert.or.jp%2Fen%2F2024%2F11%2Fetw_forensics.html

|
Enable/Disable _I_ Controller

F

Session Control

Windows Kernel
Event Tracing Sessions

Session 1 Session 2 Session 3 Session 64
Buffer Buffer Buffer Buffer
A e I

v

Events

- ! i
—I_ Provider u_ Consumer

Figure 1: ETW architecture

Provider: Applications and drivers that send events

Consumer: Applications that receive events

Session: Relays events sent from the provider, storing them in a buffer

Controller: Creates, starts, and stops sessions (logman command[2]has controller
functionality)

You can check ETW sessions from the Performance Monitor. It also allows you to create new
sessions and prepare for event collection. As shown in Figure 2, multiple providers can be
registered in a single session.

2/13

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig1.png

'@}:E‘:'“?“:E Aonitor — O -

& R i i :
@ File Action View | LwtMetLog Properties =L =
| 2HE XE

=) Trace Buffers File Directony Stop Condition

© Performance Trace Providers Trace Session Securty

v . Monitoring Tools
BE Performance Mg Praviders:

w | Data Collector Sets Microsoft-Windows-Brokerlnfrastructure ~ Add...
2, User Defined Microsoft-Windows-Dhep-Client
L Systemn Microsoft-Windows-DHCPvE-Client e
..'ﬁ. Ewvent Trace Sessi Microsoft-Windows-DNS-Client Securty. .
.i. Startup Event Tra Microsoft-Windows-Immersive-Shell
'ﬁ Reports Microsoft-Windows-NC5|

Microgoft-Vindows-NDIS
Microsoft-Windows-Ndu

Mirrnanft -Windawe-Metwnde ™ annectinn-Brok ar R
Properties:
Property Value Description Edit ...
Keywords(Amy) Oud00 Events with any of th...
Keywards(All) D Events with all of the...
Level e Everts up to this lev...
Properties Oe0000... These additional dat...
Fitter Dizabled
Cancel Apply

£ =

Figure 2: Example of checking a session from Performance Monitor

You can also check which providers are registered on Windows OS by executing the
following command. By default, more than 1,000 providers are registered.

> logman query providers

With so many providers available by default, you probably thought that you would be able to
collect various logs by using them. In particular, for the purposes of incident investigation and
detecting suspicious behavior such as malware, the following providers would be useful.

» Microsoft-Windows-Threat-Intelligence: Detects behavior related to process injection,
etc., which is used by malware.

* Microsoft-Windows-DNS-Client: Events related to name resolution

» Microsoft-Antimalware-AMFilter: Results of virus scans by Microsoft Defender

* Microsoft-Windows-Shell-Core: Events related to process execution and termination

¢ Microsoft-Windows-Kernel-Process: Events related to processes

o Microsoft-Windows-Kernel-File: Events related to file operations

ETW event format

3/13

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig2.png

There are two main ways for processing ETW events (Stream Mode). One of them is to save
ETW events as an ETL file, and the other is to save ETW events in a buffer and receive them
in real time. In both cases, ETW events are saved in the same format. Figure 3 shows the
format of ETW events.

_WMI_BUFFER_HEADER |ttt

SYSTEMETRACE HEADER - FanIue sy

avidE.c.z.r.e.s.
..d.1.1.,.-.6.3.

=l+ll+ll--ll!-ll+ll

TRACE_LOGFILE_HEADER

||||||||||||||||

I.n:.c.i.d.e.n.t.

.R.e.s.p.0.0n.5.
.00 Tos. 2,
r.s.\.k.a.n.r.i.
x-n-P+F+Duﬂut+ﬁ.-
V.L.o.c.a.1.M.1.
n.c.i.d.e.n.c. .
R.e.s.p.o.n.s.e.

||||||||||||||||

Figure 3: ETW event format (the beginning of ETL file)

It starts with the WMI_BUFFER_HEADER([3]. This header contains information such as the
buffer size and offset, and the date and time the event was created. The next header
depends on the contents that follow. In the case of an ETL file, the

4/13

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig3.png

_SYSTEM_TRACE_HEADER and TRACE_LOGFILE_HEADER follow. If these headers
are included, this indicates that it is the beginning of the ETL file and that no further ETW
events are included. If ETW events are included, it will look like Figure 4.

_WMI_BUFFER_HEADER [ncs

-ibffw-i = n-.!u CRE
I...|1E...Ei.0...

_EVENT_HEADER A 00

48 00 OC 00 01 OO0 39 00 H..... S.
Q00100RAD 35 00 S.Microsoft.Wind
ows.UpdateHealth

Oisswwlel.Infor
pay I Oad mation.PackageVe

rsion..Message..
2023.10.5.¢c.a.r.
t.2.d. .I.n.s.t.
a.l.l1.H.e.a.l.t.
h.T.0.0.1.8.0s4:

S SR S | I
vida.6...pAd -Us.n

~EVENT HEADER

Q00101AD 48 00 OC OO0 OL OO0 35 00 35 00 H.....%. 9 Micros
oft.Windows.Upda
teHealthTools. ..
. .sPoi%, G‘éfléﬁ v
o arrmas armns ¥
v.5 UnifiedInsca
llerStart.Parth
PrivTags..Packag
eVersion. .Global
EvenctCounter. .CV
« +UnifiedInstall
erPlatformiResuylt
. .UnifiedInstall
erPlatformIype. .

Figure 4: ETW event format (ETW event)

The first part of the header still starts with _WMI_BUFFER_HEADER, but the next header is
_EVENT_HEADER, followed by the actual event data.

It is difficult to parse ETW events manually because they have no signature and the type
information contained in each header affects the headers that follow, as described above. On
Windows OS, you can convert ETL files to EVTX files or CSV files as follows, because the

5/13

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig4.png

tracerpt command is installed by default.

> tracerpt test.etl -o test.evtx -of EVTX -1lr

> tracerpt test.etl -o test.csv -of CSV

ETW structure

You can check ETW configuration information to some extent using the performance monitor,
logman command, and registry information introduced earlier. However, not all of the
information can be checked using these methods, and you can also obtain various types of
information from the ETW structure. However, it cannot be obtained in user mode, and so
you will need to obtain it from kernel mode using a debugger or other method. You can trace
the structure of ETW providers as shown in Figure 5.

EtwRegistration GuidEntry ProviderEnablelnfo
(_ETW_REG_ENTRY) (_ETW_GUID_ENTRY) (_TRACE_ENABLE_INFO)
_EPROCESS
Object
Object Type
¥ ProviderEnablelnfo | Loggerld

EtwRegistration

[

Figure 5: Structure of ETW providers

The structure of the ETW provider can be traced from an object with EtwRegistration object
type in the process, and _ETW_GUID_ENTRY and _TRACE_ENABLE_INFO contain
information such as GUID. Therefore, you can check which process is using which ETW
provider. The structure of the ETW consumer can be traced as shown in Figure 6.

6/13

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig6.png

PsGetCurrentServerSiloGlobals()

l EtwSiloState EtwpLoggerContext
(_LETW_SILODRIVERSTATE) (_WMI_LOGGER_CONTEXT)

PspHostSiloGlobals
(_ESERVERSILO_GLOBALS)

TransitionConsumer
(_ETW_REALTIME_CONSUMER)

Loggerld

LoggerName

LogFileName

TransitionConsumer

EtwSiloState EtwpLoggerContext**

BRRE - HEHHHHH%

Figure 6: Structure of ETW consumers

You can trace the structure of the ETW consumer from the data obtained from the
PsGetCurrentServerSiloGlobals function. WMI_LOGGER_CONTEXT and
_ETW_REALTIME_CONSUMER contain various information, and you can check the buffer
size, current buffer usage, number of lost events, and more.

Recover ETW Events

Relations between ETW events and ETW structures

Some ETW events are saved as files by default, but in many cases, they are read from the
buffer into the ETW consumer in real time, and so unless you configure them manually, most
of them are not saved on the system as files. However, since ETW events are stored in the
buffer, if you can collect the data, you may be able to use it for incident response or other
purposes. Furthermore, even if the ETL file is deleted by the attacker, the ETW events may
still be stored in the buffer.

As mentioned earlier, the ETW event format has no signature and cannot be recovered from
disk or memory using file carving. For this reason, we explored methods to extract data from
ETW structure.

As a result, we have identified the members of the structure that store ETW events as
follows:

e GlobalList (_ WMI_LOGGER_CONTEXT)
BufferQueue (_WMI_LOGGER_CONTEXT)
BatchedBufferList (_ WMI_LOGGER_CONTEXT)
CompressionTarget (_ WMI_LOGGER_CONTEXT)
UserBufferListHead (_ ETW_REALTIME_CONSUMER)

7/13

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig5.png

GlobalList and BufferQueue are LIST_ENTRY, and the ETW events stored in the buffer are
connected as a bi-directional linked list as shown in Figure 7. All the ETW events in the
buffer are connected to GloballList.

EtwpLoggerContext ETW Event ETW Event ETW Event
(_WMI_LOGGER_CONTEXT) (_WMI_BUFFER_HEADER) (_WMI_BUFFER_HEADER) (_WMI_BUFFER_HEADER)

BufferSize BufferSize
LoggerName
1
1
BufferQueue SlistEntry SlistEntry

GlobalList GlobalEntry GlobalEntry GlobalEntry

Payload Payload Payload

Figure 7: Relations between _WMI|_LOGGER_CONTEXT and buffer

Because ETW structures are undocumented, it is not clear exactly why multiple members
are related to the buffer in this way, but based on the behavior, it is possible that the ETW
Stream Mode configuration affects it. Figure 8 shows the members considered to be related
to each ETW Stream Mode. When it is set to save to an ETL file, BufferQueue is used, and
when it is set to Real time, UserBufferListHead is used. Although there are differences in
usage depending on the member, all ETW events are linked to GlobalList, and so it is
probably best to refer to GlobalList when recovering ETW events.

8/13

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig7.png

Stream Mode GlobalList

File [—)

BufferQueue L
A

Event Buffer
Real time [—)

Event Buffer Process
(Consumer)
UserBuffer [

Buffer [9 m ListHead
(2 2 2 2|
Event Buffer

Figure 8: Relations between ETW Stream Mode and ETW structure members

ETW Scanner for Volatility3

Based on the above research results, we have created a tool for recovering ETW events
from memory images. This is implemented as a plugin for The Volatility Framework
(hereinafter referred to as "Volatility"), a memory forensics tool. Using this plugin, you can not
only recover ETW events, but also check information about ETW providers and ETW
consumers. Figure 9 shows an example of the plugin running.

9/13

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig8.png

(vol) test@test:~/volatility3$ python3 vol.py

Volatility 3 Framework 2.7.1

Progress:

PID

500
584
652
652
652
710
710
710
120
720
120
710
744
744
744
776
776
776
776
176
176
176

100.00
ImageFileName

SMss. exe

C5I55.

exe

wininit.exe
wininit.exe
wininit.exe
winlogon, exe
winlogon,
winlogon.
winlogon.
winlogon.
winlogon.
winlogon.
services.
services.
services.

1sass.
1sass.
1sass.
1sass.
1sass.
1sass.
1sass.

exe
exe
exe
exe
exe
exe
exe

exe
exe

PDB scanning finished

TypeMap Address

EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration
EtwRegistration

Guid

0x8408ab958540
0x8408ab766970
Dx8408aba7i f880
0x8408aba7d8ng
0xB408abdc3e2d
0x8408abddd750
0x8408abd79a30
0x8408abdB0210
BxB8408ac3diebd
DxB408ac354070
0x8408ac34al50
DxB408ac35fIne
0x8408abdcBaT0
0x8408abf9daT70
0x8408abTa5070
0x8408abdd78d0
Bx8408abdf74a0
Bx8408abdd38b0
0x8408abdbe5al
0x84088abdbedcd
0x8408abf82810
0x8408abf82730

LoggerId

Level EnableMask

43eb3ida5-41d1-4 fbf-aded- 1bbedd8 fdd1d
fdaedTc7-a898-4627-b853-44aTcaallfed
106f6dea-d3c5-4d10-bc72-989783c8b84b
fdaedTc7-a898-4627-b853-44aTcaallfed
16aladc1-9b7f-4cd9-94b3-d8296ab1b138
b9dadfeb-aedf-4fie-blfa-8e623c11dcTs
dbe9b383-7¢cf3-4331-91cc-a3ch16a3b538
fdaed7c7-a898-4627-bB53-44a7caallfcd
30336edd-e327-447c-9deB-51b652c86108
eef54e71-0661-422d-9a98-821d4948b820
16aladc1-9b7 f-4cd9-94b3-d8296ab1b1380
eef54e71-0661-422d-9a98-821d4948b820
555908d1-a6d7-4695-8ele-26931d201214
fdaed7c7-a898-4627-bB53-44aTcaallfcd
16aladc1-9b7 f-4cd9-94b3-dB296ab1b130
199feB37-2b82-40a9-82ac-e1dd6c792b99
fdaed7c7-a898-4627-b053-44aTcaallfcd
1c95126e-Teea-49a9-a3 fe-a378bd3ddbdd
dbB@dfbb-2979-4a%c-9b3b-1F4f9e7dI770
e5baB3f6-07d0-46b1-8bcT-Teb69ald31dc
B5f02597-feB5-4eb7-8542-69567ab8fddf
B5f02597-feB5-4eb7-8542-69567ab8fd4f

Figure 9: Example of executing a plugin

LB -)

-c¢ config.json -p /mnt/hgfs/etw-scan/plugins/ etwscan.etwProvider

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

aanee0el
0e000001
aaeee111
08000001
06000001
00000001
28111110
oeope001
aaeee1
aaeeee1
pagoeee
aaeeee11
00000001
0g000001
08000001
06000011
06000001
66000011
aaepeeel
aappeeel
aaeeeeel
aaeoe001

You can download this plugin from the following GitHub repository. We hope you find it

useful.

GitHub: JPCERTCC/etw-scan
https://github.com/JPCERTCC/etw-scan

Using the recovered ETW event in incident investigations

Now, let’s look at some examples of how to use the recovered ETW events in incident

investigations. To recover ETW events, specify the option --dump (for GlobalList only) or --

alldump (for all members) as follows. The number of ETW events that can be recovered
depends on the environment, but as shown in Figure 10, it is possible to recover a large
number of ETW events as ETL files.

10/13

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig9.png
https://github.com/JPCERTCC/etw-scan

(vol) test@test:~/volatility3$ python3 vol.py
Volatility 3 Framework 2.7.1

-c¢ config.json -p /mnt/hgfs/etw-scan/plugins/ etwscan.etwConsumer --dump

Progress: 100.80 PDB scanning finished

PID ImageFileName TypeMap LoggerId LoggerName LogFileName Guid Mode

848 svchost.exe EtwConsumer 17 UBPM ch9355a3-96af-4e8f-8d32-a2658dc2dobe 0x10800190

1836 svchost.exe EtwConsumer 3 Eventlog-Security BebbelBb-b802-baba-9272-31199dBed295 Ax1080
B1co

10836 svchost.exe EtwConsumer 13 EventLog-System d2112bed-cd15-5a%c-e38F-080a207e08d5 Bx10800180
1836 svchost.exe EtwConsumer 10 EventLog-Application cdabalbc-c743-5810-8add-2655a8ca2idd Bx1180
8180

1044 svchost.exe EtwConsumer 9 DiaglLog B8b524eb-albf-47eb-aefl-dbd871741d7a Ax10800188

1044 svchost.exe EtwConsumer 21 WFP-IPsec Diagnostics C:\ProgramData\Microsoft\Windows\wfp\wfpdiag.etl b
48325fe-7106-42ac-849e-8aa81dficbll Bx10802102

1880 svchost.exe EtwConsumer 24 Diagtrack-Listener bdbat94f-11ae-11ee-8e91-000c2962ae37 Bx8800
110

4 System - 2 Circular Kernel Context Logger 54deal3a-ed1f-42ad-af71-3e63dB56T174 0x2800480

4 System - 4 AppModel a922a8be-2450-438e-9520- fbcdfb46b@bd Dx10808400

4 System - 5 Audio 15bc788a-6a38-4d79-8773-b53 fdfb84d79 0x10808400

4 System - 6 FileActivity_realtime 75f3abad-cedB-4e82-9718-3f4bib249fal Ax4001080

4 System - ¥ DefenderApilLogger 6b4812d0-22b6-464d-a553-20e9618403a2 Bx188001880

4 System - 8 DefenderAuditLogger 6b4812d0-22b6-464d-a553-20e9618403a1 Bx188001c0

(vol) test@test:~/volatility3$ 1s *.etl

AppModel. BxB408AATA3000. global. etl

AppModel. BxB408AATB3000 . global. etl

AppModel. 8x8408AATC3000.global. etl

AppModel. 0x8408AATD3080 . global. etl

AppModel. BxB408AATE3R00 . global. etl

AppModel. 0x8408AA200000.global. etl

AppModel. BxB408AA210000 . global. etl

AppModel. BxB408AA220000.global. etl
Audio.0x8408AA183000.global. etl
Audio.dxB488AATF3000.global.etl

Circular_Kernel_ Context_Logger.@x8408AABAT0080.global. etl
Circular_ Kernel Context_Logger.0xB8488ACDIABRE.global.etl
DefenderApiLogger.@x8408AA258000.global.etl
DefenderApilogger.@x8408AA268000.global.etl
DefenderAuditLogger.0x8408AA2TADBN . global. etl

FileActivity_realtime.@x8408AD235000.global.etl
FileActivity_save.0x8408ABE58000.global.etl
FileActivity_save.dx8408ABEA40B0.global.etl
FileActivity_save.@x8408ABEB7080.global.etl
FileActivity_save.0x8408ABED4080.global.etl
FileActivity_save.0x8408ACET6000.global.etl
FileActivity_save.0x8408ACEB4000.global.etl
FileActivity_save.0x8408AD3354000.global.etl
FileActivity_save.@x8408AD3510080.global.etl
FileActivity_save.®x84088AD357080.global.etl
FileActivity save.®xB84B8AD5S5EQB0.global.etl
FileActivity_saveandreal.@x8408AD220000.global.etl
FileActivity_saveandreal.0x8408AD2122000.global.etl
LwtNetLog.0x8488AA313800.global.etl
LwtNetLog.8x8408AA323800.global.etl

DefenderAuditLogger. dx8408AA28A000.global. etl

LwtNetLog.0x8408AA606000.global.etl

Figure 10: Example of recovering ETW events

You can parse the recovered ETL file and check for important information. For example,
there is an ETW session called LwtNetLog that is enabled by default. This ETW session has
multiple network-related ETW providers configured, and it collects various types of
information, including communication packets, DNS access, and DHCP. Check the
recovered ETW events, and you can see the destination where the malware communicates,
as shown in Figure 11. To parse the ETL file, we used tracefmt[4] This tool is not installed by
default, and so you will need to install it manually.

11/13

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig10.png

C:¥eti>tr acefqlt. exe LwtNetLog. 0x8408AAG0B000. global. etl -nosummary

Setting log file to: C:¥etl¥LwtNetLog. Ox8408AAG06000. global. etl

Examining C:¥et|¥default. tmf for messags formats, none found. file not found
Searching for TMF files on path: C:¥et

Logfile C:¥et|¥LwtNetlLog. O:NOEMGDGDUD global. etl:

05 version 10.0.0 (Currentl; runnlng on 10. 0. 19045)
Start Time 2{)23 06-23-19

End Time 2023-06-23-19:14:29. ?2I

Timezone is Btzres.dl |, -262 (Bias is -540mins)
BufferSize 65536 B

Maximum File Size 0 MB

Buffers Written Not set (No events matched filter).
Logger Mode Settings (0) Logfile Mode is not set
ProcessorCount 1

EventRecordCal |back: fputws returned errmo=EILSEQ. Event output truncated. The “-cp utf8” option might fix this.
Processing completed Buffers: 2, Events: 552, EventsLost: 0 :: Format Errors: 15, Unknowns: 0
Event traces dumped to FmtFile. txt

C:¥et|>type FmtFile. txt

940.1178: :06,/25/2023-03:32:
0940. DDB#: :06/25/2023-03:32:
0414.1260: :06/25/2023-03:32:
0940. 0DB4: :06,/25,/2023-03:32:
0940. 0DB4: :06,/25/2023-03:32
0414. 0DED: : 06,/25/2023-03:32:
0614.0104: :06,/25,/2023-03:32:
0614.0104: : 132:

referenced

COoOO0OOoOO0 -
=

062 Mlcrosoft anﬂ'ows PDC]PDG resili |enc~,I cllent 0):FFFFF80F205279
jclow : 0 20

04E4. 0BFC: [TCP_connection to THERR

ailed: Error=

0350. 0A14: :06/25/2023-03:32:12.003 [Microsoft-Windows-PDCIPDC resiliency client OxFFFFFB0F20527960 referenced
0350. 0A14: :06/25/2023-03:32:12.003 [Microsoft-Windows-PDCIPDC resiliency client OxFFFFFB0F205279A8 referenced
0350. 0A14: :06/25/2023-03:32:12. 003 [Microsoft-Windows—Broker Infrastructure]

0350, 0AT0: :06/25,/2023-03:32:12. 045 [Microsoft-Windows-SystemEventsBroker]SystemEventsBroker

0350. 11FC: :06/25/2023-03:32:12. 049 [Microsoft-Windows-PDCIPDC resiliency client OxFFFFFB0F205279A8 dereferenced
0350. 11FC: :06/25/2023-03:32:12. 049 [Microsoft-Windows—PDCIPDC resiliency client 0xFFFFFBOF20527960 dereferenced
0333. 11FC: :06,/25/2023-03:32:12. 049 [Microsoft-Windows-Broker Infrastructurel

|||i\‘

o

COoOoOoOOoOOoO
CP

Figure 11: Checking the recovered LwtNetLog session

Furthermore, if EDR or antivirus software is installed, you may be able to recover the ETW
events that these applications were trying to collect. Since each application tries to collect
data from different ETW providers, there may be some differences, but still there is a
possibility that useful ETW events such as Microsoft-Windows-Threat-Intelligence are

recovered.

In closing

1.529 [Microsoft-Windows-WinINet]TCP connection to www. bing. com for connection handle 0xCCOOOC failed: Error=997
1.541 [Microsoft-Windows-WinINet]TCP connection to www. bing.com for connection handle 0xCC0024 failed: Error=997
1.640 [Microsoft-Windows-Ndu] I fLuid:0x6008001000000 Profileld:0x0 BytesSent:578 BytesRecvd 540 [sCosted: false
1. 787 [Microsoft-Windows—WinINet] TCP connection to www. bing. com for connection handle 0xCCO0OC failed: Error=997
:11.799 [Microsoft-Windows—WinINet] TCP connection to www.bing com for connection handle 0xCC0024 failed: Error=997
}. 904 [Microsoft-Windows—Ndu] 1fLuid:0x6008001000000 Profileld:0x0 BytesSent:454 BytesRecvd:420 IsCosted: false

0DB: :06/25/2023-03:32:12.059. [Microsoft-Windows-WinINet]TCP_connection to_w. bing.com for comection handle_0xC00024 fal led: Error=09]

On Windows OS, it is possible to collect various information using ETW by default. Although
we did not introduce it this time, it is also possible to monitor the system by creating a simple
EDR that combines the information collection capabilities of ETW with detection logic. You

can try using ETW for system monitoring and incident response.

Shusei Tomonaga
(Translated by Takumi Nakano)

References

[1] Microsoft: Event trace

https://learn.microsoft.com/en-us/windows/win32/etw/about-event-tracing

[2] Microsoft: logman

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/logman

[3] Geoff Chappell, Software Analyst: Kernel-Mode Windows

https://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/index.htm

12/13

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig11.png
https://learn.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/logman
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/index.htm

[4] Microsoft: Tracefmt
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/tracefmt

13/13

https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/tracefmt

