Reconstructing Executables Part 1: Between Files and
Memory

huntandhackett.com/blog/reconstructing-executables-part1

Denis Nagayuk & Francisco Dominguez

Denis Nagayuk & Francisco Dominguez @
Apr 17, 2024 9:40:16 AM

Malware developers have been known for a long time to incorporate various techniques that
make analyzing their creations more challenging. We've observed countless attempts of
different shapes and sizes to thwart defenders' missions by ensuring that even when
malware analysts get their hands on the samples, logic obfuscation combined with
polymorphic behavior complicates the path to understanding at every step.

But before we can start the analysis, merely obtaining samples from infected machines can
present its share of challenges, especially when malicious applications actively hide their
artifacts. Take self-deleting malware, for instance. These programs erase themselves from
the disk after launch despite remaining running. There are also more advanced tampering
techniques like Process Ghosting, Doppelganging, and Herpaderping. Interestingly, all the
examples we just listed have a common property: they require at least some interaction with
the filesystem to create processes and start their masquerading attempts. Yet, none of the
files they produce or modify remain in this transient infected state for long. They either get
deleted or overwritten with benign data. So, we cannot just copy files from the machine and
call it a day.

The classical approach for recovering code without a backing file is reconstructing it from the
process's address space. However, its inherently volatile nature opens vast possibilities for
evasion. In this article, we will discuss the shortcomings of existing techniques and offer an
alternative forensic solution for dumping PE (EXE or DLL) images that neither relies on
collecting files nor parsing attacker-controlled memory regions.

What's Wrong With Parsing Memory?

Memory is volatile. An attacker can instantaneously overwrite, deallocate, or otherwise
make it inaccessible. Parsing an address space of a hostile process means, to some extent,
playing by its rules. Of course, the fundamental limitations on what is allowed still come from
the operating system, but these are relatively lax. Under extreme conditions, a parser needs
to deal with race conditions, anti-inspection tricks, and other potential interferences. At the
same time, the attacker gets to know when we perform the inspection, either via side-

1/9


https://www.huntandhackett.com/blog/reconstructing-executables-part1
https://www.huntandhackett.com/blog/author/denis-nagayuk-francisco-dominguez
https://www.elastic.co/blog/process-ghosting-a-new-executable-image-tampering-attack
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://jxy-s.github.io/herpaderping
https://secret.club/2021/05/23/big-memory.html
https://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf

channel timing_checks or various system APIs. But more importantly, the code of interest still
needs to be there. If a program always keeps its artifacts at least partially encrypted, their
automated collection becomes virtually impossible.

Despite these problems, there are several successful open-source solutions for recognizing,
reconstructing, and saving assembly code and PE files from the address space of infected
processes. Probably the most well-known one is PE-sieve. This tool understands the layout
of PE files and knows how to dump them back into the on-disk form.

Other tools that can help identify memory-based tampering are Moneta and System
Informer with its Image Coherency feature. These programs rely on different but overlapping
principles of operation, including checks for modified executable pages, missing PEB
records, and comparing_the bytes to the disk. Realistically, these tools do a great job. But it's
always better to have more alternatives ready whenever existing solutions reach their limits.

Inside File-based Process Tampering

The list of techniques we mentioned earlier as our primary targets is far from arbitrary. They
all create a process from a file that temporarily has the content we are interested in. Let's
take a closer look at how it happens in each case:

o Self-deleting executables is a relatively vague category that we will use to describe
techniques that create a process from a file and then (somehow) make this file
disappear shortly after, all without terminating the process. It's possible to arrive at this
result in various ways: deleting the file directly via alternative stream rotation, launching
a program from a .iso file and then unmounting it, and so on. The exact
implementation, however, is not significant for the sake of our discussion.

* Process Ghosting is a logical continuation of the previous idea that deletes the file
even before launching it. As we discussed in a previous blog_post, Windows doesn't
delete files immediately upon request. Instead, it marks them for pending deletion and
completes it with the last closed handle. Because the system also prevents anyone
from reopening such files (returning STATUS_DELETE_PENDING error), we cannot pass
them to CreateProcess or NtCreateUserProcess. Yet, we can use another syscall —
NtCreateProcessEx. This function doesn't understand files; instead, it requires the
caller to pass an image section (a memory projection object) created from it. Long story
short, an attacker marks the file for pending deletion, prepares an image section,
closes the file (completing its deletion), and ends up with a process without a backing
file.

2/9


https://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf
https://ntdoc.m417z.com/processinfoclass#processworkingsetwatch-15
https://hshrzd.wordpress.com/pe-sieve/
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://github.com/forrest-orr/moneta
https://systeminformer.sourceforge.io/
https://www.forrest-orr.net/post/masking-malicious-memory-artifacts-part-ii-insights-from-moneta
https://github.com/winsiderss/systeminformer/blob/da3d348087ae9a33aff69aa40d59d8be3442fed0/phlib/imgcoherency.c
https://twitter.com/jonasLyk/status/1350401461985955840
https://learn.microsoft.com/en-us/windows/win32/api/virtdisk/nf-virtdisk-attachvirtualdisk
https://www.huntandhackett.com/blog/bypassing-sysmon
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
https://ntdoc.m417z.com/ntcreateuserprocess
https://ntdoc.m417z.com/ntcreateprocessex
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/section-objects-and-views

» Process Doppelganging is another NtCreateProcessEx-based tampering technique,

this time mixed with filesystem transactions. An attacker chooses and overwrites a
benign file inside a temporary transaction and creates a process from it. The idea here
is that the isolation mechanism of transactions allows one file to exist effectively in two
states at once. A transacted reader sees and uses its altered version while the rest of
the system observes the unchanged original content. Once the attacker rolls the
transaction back, recovering the modified data becomes problematic.

Process Herpaderping is a technique that abuses image section caching logic and
achieves similar results to Doppelganging without transactions. An attacker, again,
opens and temporarily overwrites a benign executable, creates an image section and a
process from it, and then restores the original file content using the previously opened
handle. The result of these operations is a process that has cached a transient view of
the executable file.

Self-deleting executables

} Process >

Process Doppelganging

Benign file Dual-content file Benign file

i Process >

Process Herpaderping

Benign file Malicious file Benign file

} Process >

Figure: Timelines for Process Tampering techniques.

3/9


https://docs.microsoft.com/en-us/windows/win32/fileio/transactional-ntfs-portal
https://en.wikipedia.org/wiki/ACID

You can read more about how these techniques work and how to detect them in our other
blog post.

Between Files and Memory

Our discussion keeps returning to an essential memory management primitive on Windows
— a section object. The two possible kinds of such objects are data sections that represent
plain memory views of files and image sections that store projections of executables. Data
sections are conceptually simple — they merely provide an interface to file I/O via memory
operations. On the other hand, image sections need to transform between in-memory and
on-disk layouts of PE files, automatically apply page protections based on the PE section
attributes, and enforce copy-on-write semantics. Because of that, data stored in image
sections gets decoupled from the underlying file. Modifying either of them doesn't change the
other.

We already saw that advanced tampering techniques extensively use image sections
because NtCreateProcessEx requires so. However, even the modern NtCreateUserProcess
(which only accepts flenames) maintains a deep connection with them. Internally, this
function opens the specified file, creates an image section from it, and then continues on a
similar code path.

Open Parse & cache Map
File Section Process
name [€----- - -V G- - - - - - - object [€---=----
Reference Reference
NtCreatelUserProcess NtCreateProcessEx
starts here starts here

Figure: Section objects as an intermediate between files and processes.

Regardless of how we got there, the new process references the section object used during
its creation inside the EPROCESS->SectionObject field. And, as opposed to files that an
attacker can delete or overwrite, this object stores the cached copy of the original data for
the entire lifetime of the process. So, the question becomes: How can we extract this data for
forensic purposes?

Recover and Reconstruct

1. Section Handle

While kernel drivers can easily reference the object by pointer, user-mode callers must go
through an API to receive a handle. Luckily, Windows exposes what we need via the
ProcesslimageSection info class of NtQuerylnformationProcess. Quite inconveniently, the

4/9


https://www.huntandhackett.com/blog/concealed-code-execution-techniques-and-detection
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/section-objects-and-views
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows/win32/Memory/memory-protection-constants
https://learn.microsoft.com/en-us/windows/win32/memory/memory-protection#copy-on-write-protection
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obreferenceobjectbypointer
https://ntdoc.m417z.com/processinfoclass#processimagesection-89
https://ntdoc.m417z.com/ntqueryinformationprocess

corresponding switch case has an explicit check that disallows calling it against processes
other than your own. Not everything is lost, though, as we can still rely on the classical trick
of offensive security tooling: if you cannot do something cross-process, inject some code to
do it in-process!

Reference- = = = = =

Forensic driver

Open by pointer SectionObject

Return Open handle

Target process

: . adl , %—
Forensic tool Inject code Query section handle

Duplicate section handle neturn handle value

I e e L

Option 2: without a driver

Figure: Flow comparison for section retrieval with and without driver support.

2. Layout

Once we get the handle, we can map it for parsing via NtMapViewOfSection. The mapped
view would have the in-memory layout of the PE file (as opposed to the on-disk layout)
prepared by the memory manager during object creation. The transformation it applies is
(mostly) reversible since it primarily consists of adjusting the alignment of each PE section (I
know, the terminology might be a bit confusing in this context) to the sectionAlignment
value (usually a multiple of a page size). Returning to the file layout requires moving each
region back to its more compressed form defined by the FileAlignment value from the PE
headers.

5/9


https://ntdoc.m417z.com/ntmapviewofsection

————————————————————————————

On-disk layout In-memory layout

E Z B
: PE Header ; PE Header

FileAlignment padding i . . .
' ' i SectionAlignment padding
\ v
: B
Text ; |
! : ext
FileAlignment padding |
i i SectionAlignment padding
rdata :

FileAlignment padding

SectionAlignment padding

FileAlignment padding

Appended data

> RX

> R

> RW

| SectionAlignment padding

Figure: Different layouts of PE files.

3. Relocations

PE format specifies a so-called preferred image base. Predictability, however, comes at the
cost of drastically simplifying binary exploitation, so the OS tends to move images away from
this default address when possible (to facilitate Address Space Layout Randomization).

There are three directions in which the system can proceed here:

o For executables with relocation information stripped from the binary, the image loader
can only place it at the preferred base or fail (under enabled mandatory ASLR).

6/9


https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/exploit-protection-reference?view=o365-worldwide#force-randomization-for-images-mandatory-aslr

o For older files that don't specify IMAGE DLLCHARACTERISTICS DYNAMIC BASE, relocation
happens entirely in user mode without much help from the kernel. First, the system
maps the image section as-is, returning the address either via PEB->ImageBaseAddress
(for EXEs) or as an output parameter of NtMapviewofSection (for DLLs). If the mapped
address differs from the preferred base, the LDR component from ntdll starts the
relocation procedure. It parses the image relocation table, manually adjusts the
protections of the corresponding memory pages to make them temporarily writable,
applies the patches, and then reverts protection changes.

A keen reader might spot two conceptual problems with this approach. First, this type
of patching triggers copy-on-write and prevents efficient image sharing and caching
across processes that load the same file. Secondly, it is incompatible with the Arbitrary
Code Guard (ACG) mitigation that explicitly blocks modifying executable regions (or
changing protection back to executable after modification, to be more precise).
Addressing these issues requires help from the kernel.

» Newer executables with the TMAGE_DLLCHARACTERISTICS DYNAMIC_BASE flag can use
the improved mechanism called dynamic relocation. Whenever somebody creates an
image section from a compatible executable, the memory manager automatically
selects a different base address, applies relocation patches, and only then enables
copy-on-write. This operation happens transparently to the caller as if the file already
happened to specify a pre-randomized preferred base.

7/9


https://ntdoc.m417z.com/ntprotectvirtualmemory
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/exploit-protection-reference?view=o365-worldwide#arbitrary-code-guard

Preferred image base

Relocation
delta

PE Headers

-rdata

S3SSIIPPY

data

Figure: The meaning of image relocation delta.

Since we want to reconstruct the original file as closely as possible, we also need to undo
changes made by relocations. Conveniently, old-style user-mode relocations are effectively
irrelevant since they apply on a per-view basis. Unlike in classical memory dumping, we are
not reading anything from the process's private view and instead rely on the data cached in
the section object. Dynamic relocations do, however, require additional handling. Given a
section handle, Native API allows us to query two types of details about a dynamically
relocated image via NtQuerySection. SectionOriginalBaselnformation gives us, you guessed
it, the on-disk base address; SectionRelocationIinformation provides us with a delta between
the original and the new bases. We only need one of these values since we can read the
new address from the PE headers during parsing. SectionRelocationInformationis a
better choice because it has been around since Windows 7, as opposed to
SectionOriginalBaseInformation, which appeared later in Windows 10 RS1.

Continuation

8/9


https://ntdoc.m417z.com/ntquerysection
https://ntdoc.m417z.com/section_information_class#sectionoriginalbaseinformation-3
https://ntdoc.m417z.com/section_information_class#sectionrelocationinformation-2

In this blog post, we established the concepts required to implement a solution capable of
reconstructing the original executable even after an attacker tries to hide the artifacts by
erasing the file and overwriting the process memory. In the next part of this series, we will
focus on the implementation, look more in-depth into the oddities of the PE file layout
transformations, learn how custom hand-crafted binaries can break parser assumptions, and
figure out how we can overcome these challenges to create a reliable forensic tool.

9/9


https://github.com/corkami/pocs/tree/master/PE/bin

