
1/37

wbenny.github.io
/2018/11/04/wow64-internals.html

WoW64 internals

WoW64 - aka Windows (32-bit) on Windows (64-bit) - is a subsystem that enables
32-bit Windows applications to run
on 64-bit Windows. Most people today are
familiar with WoW64 on Windows x64, where they can run x86
applications.
WoW64 has been with us since Windows XP, and x64 wasn’t the only architecture
where WoW64 has
been available - it was available on IA-64 architecture as
well, where WoW64 has been responsible for emulating
x86. Newly, WoW64 is also
available on ARM64, enabling emulation of both x86 and ARM32
appllications.

MSDN offers brief article on WoW64 implementation details.
We can find that WoW64 consists of (ignoring IA-64):

Translation support DLLs:
wow64.dll: translation of Nt* system calls (ntoskrnl.exe / ntdll.dll)
wow64win.dll: translation of NtGdi*, NtUser* and other GUI-related
system calls (win32k.sys /
win32u.dll)

Emulation support DLLs:
wow64cpu.dll: support for running x86 programs on x64
wowarmhw.dll: support for running ARM32 programs on ARM64
xtajit.dll: support for running x86 programs on ARM64

Besides Nt* system call translation, the wow64.dll provides the core
emulation infrastructure.

If you have previous experience with reversing WoW64 on x64, you can notice
that it shares plenty of common code
with WoW64 subsystem on ARM64. Especially
if you peeked into WoW64 of recent x64 Windows, you may have
noticed that it
actually contains strings such as SysArm32 and that some functions check
against
IMAGE_FILE_MACHINE_ARMNT (0x1C4) machine type:

Wow64SelectSystem32PathInternal found in wow64.dll on Windows x64

Wow64ArchGetSP found in wow64.dll on Windows x64

WoW on x64 systems cannot emulate ARM32 though - it just apparently shares
common code. But SysX8664 and
SysArm64 sound particularly interesting!

Those similarities can help anyone who is fluent in x86/x64, but not that much
in ARM. Also, HexRays decompiler
produce much better output for x86/x64 than
for ARM32/ARM64.

https://wbenny.github.io/2018/11/04/wow64-internals.html
https://docs.microsoft.com/en-us/windows/desktop/winprog64/wow64-implementation-details

2/37

Initially, my purpose with this blogpost was to get you familiar with how WoW64
works for ARM32 programs on
ARM64. But because WoW64 itself changed a lot with
Windows 10, and because WoW64 shares some similarities
between x64 and ARM64,
I decided to briefly get you through how WoW64 works in general.

Everything presented in this article is based on Windows 10 - insider preview,
build 18247.

Table of contents

Terms

Througout this article I’ll be using some terms I’d like to explain beforehand:

ntdll or ntdll.dll - these will be always refering to the native ntdll.dll (x64 on Windows x64, ARM64
on Windows ARM64, …), until said otherwise or until the context wouldn’t indicate otherwise.
ntdll32 or ntdll32.dll - to make an easy distinction between native and
WoW64 ntdll.dll, any
WoW64 ntdll.dll will be refered with the *32 suffix.
emu or emu.dll - these will represent any of the emulation support DLLs (one of wow64cpu.dll,
wowarmhw.dll, xtajit.dll)
module!FunctionName - refers to a symbol FunctionName within the module.
If you’re familiar with
WinDbg, you’re already familiar with this notation.
CHPE - “compiled-hybrid-PE”, a new type of PE file, which looks as if it was x86
PE file, but has ARM64 code
within them. CHPE will be tackled in more detail
in the x86 on ARM64 section.
The terms emulation and binary-translation refer to the WoW64 workings
and they may be used
interchangeably.

Kernel

This section shows some points of interest in the ntoskrnl.exe regarding to
the WoW64 initialization. If you’re
interested only in the user-mode part of
the WoW64, you can skip this part to the
Initialization of the WoW64 process.

Kernel (initialization)

Initalization of WoW64 begins with the initialization of the kernel:

nt!KiSystemStartup

nt!KiInitializeKernel

nt!InitBootProcessor

nt!PspInitPhase0

nt!Phase1Initialization

nt!IoInitSystem

nt!IoInitSystemPreDrivers

nt!PsLocateSystemDlls

nt!PsLocateSystemDlls routine takes a pointer named nt!PspSystemDlls,
and then calls
nt!PspLocateSystemDll in a loop. Let’s figure out what’s
going on here:

PspSystemDlls (x64)

PspSystemDlls (ARM64)

nt!PspSystemDlls appears to be array of pointers to some structure, which
holds some NTDLL-related data. The
order of these NTDLLs corresponds with
this enum (included in the PDB):

3/37

typedef enum _SYSTEM_DLL_TYPE
{
PsNativeSystemDll = 0,
PsWowX86SystemDll = 1,
PsWowArm32SystemDll = 2,
PsWowAmd64SystemDll = 3,
PsWowChpeX86SystemDll = 4,
PsVsmEnclaveRuntimeDll = 5,
PsSystemDllTotalTypes = 6,
} SYSTEM_DLL_TYPE;

view raw
SYSTEM_DLL_TYPE.h
hosted with ❤ by GitHub

Now, let’s look how such structure looks like:

SystemDllData (x64)

SystemDllData (ARM64)

https://gist.github.com/wbenny/0fe3f22d272f59536ecded10e3fdbbbf/raw/57217d6f27dd644b3916ebe0784451c70693d96f/SYSTEM_DLL_TYPE.h
https://gist.github.com/wbenny/0fe3f22d272f59536ecded10e3fdbbbf#file-system_dll_type-h
https://github.com/

4/37

The nt!PspLocateSystemDll function intializes fields of this structure. The
layout of this structure isn’t
unfortunatelly in the PDB, but you can
find a reconstructed version in the appendix.

Now let’s get back to the nt!Phase1Initialization - there’s more:

...

nt!Phase1Initialization

nt!Phase1InitializationIoReady

nt!PspInitPhase2

nt!PspInitializeSystemDlls

nt!PspInitializeSystemDlls routine takes a pointer named nt!NtdllExportInformation.
Let’s look at it:

NtdllExportInformation (x64)

NtdllExportInformation (ARM64)

It looks like it’s some sort of array, again, ordered by the enum _SYSTEM_DLL_TYPE.
Let’s examine
NtdllExports:

NtdllExportInformation (x64)

Nothing unexpected - just tuples of function name and function pointer.
Did you notice the difference in the number
after the NtdllExports field? On x64
there is 19 meanwhile on ARM64 there is 14. This number represents
number
of items in NtdllExports - and indeed, there is slightly different set of them:

x64 ARM64
(0) LdrInitializeThunk (0) LdrInitializeThunk
(1) RtlUserThreadStart (1) RtlUserThreadStart

5/37

x64 ARM64
(2) KiUserExceptionDispatcher (2) KiUserExceptionDispatcher
(3) KiUserApcDispatcher (3) KiUserApcDispatcher
(4) KiUserCallbackDispatcher (4) KiUserCallbackDispatcher
- (5) KiUserCallbackDispatcherReturn
(5) KiRaiseUserExceptionDispatcher (6) KiRaiseUserExceptionDispatcher
(6) RtlpExecuteUmsThread -
(7) RtlpUmsThreadYield -
(8) RtlpUmsExecuteYieldThreadEnd -
(9) ExpInterlockedPopEntrySListEnd (7) ExpInterlockedPopEntrySListEnd
(10) ExpInterlockedPopEntrySListFault (8) ExpInterlockedPopEntrySListFault
(11) ExpInterlockedPopEntrySListResume (9) ExpInterlockedPopEntrySListResume
(12) LdrSystemDllInitBlock (10) LdrSystemDllInitBlock
(13) RtlpFreezeTimeBias (11) RtlpFreezeTimeBias
(14) KiUserInvertedFunctionTable (12) KiUserInvertedFunctionTable
(15) WerReportExceptionWorker (13) WerReportExceptionWorker
(16) RtlCallEnclaveReturn -
(17) RtlEnclaveCallDispatch -
(18) RtlEnclaveCallDispatchReturn -

We can see that ARM64 is missing Ums (User-Mode Scheduling) and
Enclave functions. Also, we can see that
ARM64 has one
extra function: KiUserCallbackDispatcherReturn.

On the other hand, all NtdllWow*Exports contain the same set of function names:

NtdllWowExports (ARM64)

Notice names of second fields of these “structures”: PsWowX86SharedInformation,
PsWowChpeX86SharedInformation, … If we look at the address of those fields,
we can see that they’re part of
another array:

PsWowX86SharedInformation (ARM64)

https://docs.microsoft.com/en-us/windows/desktop/procthread/user-mode-scheduling
https://docs.microsoft.com/en-us/windows/desktop/api/enclaveapi/nf-enclaveapi-createenclave

6/37

Those addresses are actually targets of the pointers in the NtdllWow*Exports
structure. Also, those functions
combined with PsWow*SharedInformation might
give you hint that they’re related to this enum (included in the
PDB):

typedef enum _WOW64_SHARED_INFORMATION
{
SharedNtdll32LdrInitializeThunk = 0,
SharedNtdll32KiUserExceptionDispatcher = 1,
SharedNtdll32KiUserApcDispatcher = 2,
SharedNtdll32KiUserCallbackDispatcher = 3,
SharedNtdll32RtlUserThreadStart = 4,
SharedNtdll32pQueryProcessDebugInformationRemote = 5,
SharedNtdll32BaseAddress = 6,
SharedNtdll32LdrSystemDllInitBlock = 7,
SharedNtdll32RtlpFreezeTimeBias = 8,
Wow64SharedPageEntriesCount = 9,
} WOW64_SHARED_INFORMATION;

view raw
WOW64_SHARED_INFORMATION.h
hosted with ❤ by GitHub

Notice how the order of the SharedNtdll32BaseAddress corellates with the empty field in
the previous
screenshot (highlighted). The set of WoW64 NTDLL functions is same
on both x64 and ARM64.

(The C representation of this data can be found in the appendix.)

Now we can tell what the nt!PspInitializeSystemDlls function does - it gets
image base of each NTDLL
(nt!PsQuerySystemDllInfo), resolves all
Ntdll*Exports for them (nt!RtlFindExportedRoutineByName).
Also, only for
all WoW64 NTDLLs (if ((SYSTEM_DLL_TYPE)SystemDllType > PsNativeSystemDll))
it
assigns the image base to the SharedNtdll32BaseAddress field of the
PsWow*SharedInformation array
(nt!PspWow64GetSharedInformation).

Kernel (create process)

Let’s talk briefly about process creation. As you probably already know, the
native ntdll.dll is mapped as a first
DLL into each created process. This
applies for all architectures - x86, x64 and also for ARM64.
The WoW64
processes aren’t exception to this rule - the WoW64 processes share
the same initialization code path as native
processes.

nt!NtCreateUserProcess

nt!PspAllocateProcess

nt!PspSetupUserProcessAddressSpace

nt!PspPrepareSystemDllInitBlock

nt!PspWow64SetupUserProcessAddressSpace

nt!PspAllocateThread

nt!PspWow64InitThread

nt!KeInitThread // Entry-point: nt!PspUserThreadStartup

nt!PspUserThreadStartup

nt!PspInitializeThunkContext

nt!KiDispatchException

If you ever wondered how is the first user-mode instruction of the newly created
process executed, now you know the
answer - a “synthetic” user-mode exception
is dispatched, with ExceptionRecord.ExceptionAddress =
&PspLoaderInitRoutine,
where PspLoaderInitRoutine points to the ntdll!LdrInitializeThunk.
This is
the first function that is executed in every process - including WoW64
processes.

Initialization of the WoW64 process

The fun part begins!

NOTE: Initialization of the wow64.dll is same on both x64 and ARM64.
Eventual differences will be
mentioned.

ntdll!LdrInitializeThunk

ntdll!LdrpInitialize

ntdll!_LdrpInitialize

https://gist.github.com/wbenny/fbf9799034e7a561fbcb23623f828586/raw/ebc3660d163d1c8220bd9c11c357920a925ea141/WOW64_SHARED_INFORMATION.h
https://gist.github.com/wbenny/fbf9799034e7a561fbcb23623f828586#file-wow64_shared_information-h
https://github.com/

7/37

ntdll!LdrpInitializeProcess

ntdll!LdrpLoadWow64

The ntdll!LdrpLoadWow64 function is called when the ntdll!UseWOW64 global variable is TRUE,
which is set
when NtCurrentTeb()->WowTebOffset != NULL.

It constructs the full path to the wow64.dll, loads it, and then resolves
following functions:

Wow64LdrpInitialize

Wow64PrepareForException

Wow64ApcRoutine

Wow64PrepareForDebuggerAttach

Wow64SuspendLocalThread

NOTE: The resolution of these pointers is wrapped between pair of
ntdll!LdrProtectMrdata calls,
responsible for protecting (1) and
unprotecting (0) the .mrdata section - in which these pointers reside.
MRDATA (Mutable Read Only Data) are part of the CFG (Control-Flow Guard)
functionality. You can look
at Alex’s slides for more
information.

When these functions are successfully located, the ntdll.dll finally
transfers control to the wow64.dll by calling
wow64!Wow64LdrpInitialize.
Let’s go through the sequence of calls that eventually bring us to the entry-point
of
the “emulated” application.

wow64!Wow64LdrpInitialize

wow64!Wow64InfoPtr = (NtCurrentPeb32() + 1)

NtCurrentTeb()->TlsSlots[/* 10 */ WOW64_TLS_WOW64INFO] = wow64!Wow64InfoPtr

ntdll!RtlWow64GetCpuAreaInfo

wow64!ProcessInit

wow64!CpuNotifyMapViewOfSection // Process image

wow64!Wow64DetectMachineTypeInternal

wow64!Wow64SelectSystem32PathInternal

wow64!CpuNotifyMapViewOfSection // 32-bit NTDLL image

wow64!ThreadInit

wow64!ThunkStartupContext64TO32

wow64!Wow64SetupInitialCall

wow64!RunCpuSimulation

emu!BTCpuSimulate

Wow64InfoPtr is the first initialized variable in the wow64.dll. It contains
data shared between 32-bit and 64-bit
execution mode and its structure is not
documented, although you can find this structure partialy restored in the
appendix.

RtlWow64GetCpuAreaInfo is an internal ntdll.dll function which is called a lot
during emulation. It is mainly
used for fetching the machine type and architecture-specific
CPU context (the CONTEXT structure) of the emulated
process. This information is fetched into an undocumented
structure, which we’ll be calling WOW64_CPU_AREA_INFO.
Pointer to this structure
is then given to the ProcessInit function.

Wow64DetectMachineTypeInternal determines the machine type of the executed
process and returns it.
Wow64SelectSystem32PathInternal selects the “emulated”
System32 directory based on that machine type,
e.g. SysWOW64 for x86 processes
or SysArm32 for ARM32 processes.

You can also notice calls to CpuNotifyMapViewOfSection function. As the name
suggests, it is also called on
each “emulated” call of NtMapViewOfSection.
This function:

Checks if the mapped image is executable
Checks if following conditions are true:

NtHeaders->OptionalHeader.MajorSubsystemVersion ==

USER_SHARED_DATA.NtMajorVersion

NtHeaders->OptionalHeader.MinorSubsystemVersion ==

USER_SHARED_DATA.NtMinorVersion

http://alex-ionescu.com/publications/euskalhack/euskalhack2017-cfg.pdf

8/37

If these checks pass, CpupResolveReverseImports function is called. This function
checks if the mapped image
exports the Wow64Transition symbol and if so, it
assigns there a 32-bit pointer value returned by
emu!BTCpuGetBopCode.

The Wow64Transition is mostly known to be exported by SysWOW64\ntdll.dll,
but there are actually multiple
of Windows’ WoW DLLs which exports this symbol.
You might be already familiar with the term “Heaven’s Gate” -
this
is where the Wow64Transition will point to on Windows x64 - a simple far
jump instruction which switches into
long-mode (64-bit) enabled code segment.
On ARM64, the Wow64Transition points to a “nop” function.

NOTE: Because there are no checks on the ImageName, the Wow64Transition
symbol is resolved for
all executable images that passes the checks mentioned
earlier. If you’re wondering whether
Wow64Transition would be resolved for
your custom executable or DLL - it indeed would!

The initialization then continues with thread-specific initialization by
calling ThreadInit. This is followed by pair of
calls
ThunkStartupContext64TO32(CpuArea.MachineType, CpuArea.Context, NativeContext)
and
Wow64SetupInitialCall(&CpuArea) - these functions perform the necessary
setup of the architecture-specific
WoW64 CONTEXT structure to prepare start
of the execution in the emulated environment. This is done in the exact
same
way as if ntoskrnl.exe would actually executed the emulated application - i.e.:

setting the instruction pointer to the address of ntdll32!LdrInitializeThunk
setting the stack pointer below the WoW64 CONTEXT structure
setting the 1st parameter to point to that CONTEXT structure
setting the 2nd parameter to point to the base address of the ntdll32

Finally, the RunCpuSimulation function is called. This function just
calls BTCpuSimulate from the binary-
translator DLL, which contains the
actual emulation loop that never returns.

wow64!ProcessInit

wow64!Wow64ProtectMrdata // 0

wow64!Wow64pLoadLogDll

ntdll!LdrLoadDll // "%SystemRoot%\system32\wow64log.dll"

wow64.dll has also it’s own .mrdata section and ProcessInit begins with
unprotecting it. It then tries to load
the wow64log.dll from the constructed
system directory. Note that this DLL is never present in any released
Windows
installation (it’s probably used internally by Microsoft for debugging of the
WoW64 subsystem). Therefore,
load of this DLL will normally fail. This isn’t
problem, though, because no critical functionality of the WoW64
subsystem
depends on it. If the load would actually succeed, the wow64.dll would try
to find following exported
functions there:

Wow64LogInitialize

Wow64LogSystemService

Wow64LogMessageArgList

Wow64LogTerminate

If any of these functions wouldn’t be exported, the DLL would be immediately
unloaded.

If we’d drop custom wow64log.dll (which would export functions mentioned above)
into the
%SystemRoot%\System32 directory, it would actually get loaded into
every WoW64 process. This way we could
drop a custom logging DLL, or even inject
every WoW64 process with native DLL!

For more details, you can check my injdrv project which implements
injection of native DLLs into WoW64 processes,
or check this post by Walied Assar.

Then, certain important values are fetched from the LdrSystemDllInitBlock array.
These contains base address
of the ntdll32.dll, pointer to functions like
ntdll32!KiUserExceptionDispatcher,
ntdll32!KiUserApcDispatcher, …,
control flow guard information and others.

Finally, the Wow64pInitializeFilePathRedirection is called, which - as the name
suggests - initializes
WoW64 path redirection. The path redirection is completely
implemented in the wow64.dll and the mechanism is
basically based on string
replacement. The path redirection can be disabled and enabled by calling
kernel32!Wow64DisableWow64FsRedirection & kernel32!Wow64RevertWow64FsRedirection
function
pairs. Both of these functions internally call ntdll32!RtlWow64EnableFsRedirectionEx,
which directly
operates on NtCurrentTeb()->TlsSlots[/* 8 */ WOW64_TLS_FILESYSREDIR] field.

https://github.com/wbenny/injdrv
http://waleedassar.blogspot.com/2013/01/wow64logdll.html

9/37

wow64!ServiceTables

Next, a ServiceTables array is initialized. You might be already familiar
with the KSERVICE_TABLE_DESCRIPTOR
from the ntoskrnl.exe, which contains - among
other things - a pointer to an array of system functions callable
from the user-mode.
ntoskrnl.exe contains 2 of these tables: one for ntoskrnl.exe itself and one
for the
win32k.sys, aka the Windows (GUI) subsystem. wow64.dll has 4 of them!

The WOW64_SERVICE_TABLE_DESCRIPTOR has the exact same structure as the KSERVICE_TABLE_DESCRIPTOR,
except that it is extended:

typedef struct _WOW64_ERROR_CASE {
ULONG Case;
NTSTATUS TransformedStatus;
} WOW64_ERROR_CASE, *PWOW64_ERROR_CASE;
typedef struct _WOW64_SERVICE_TABLE_DESCRIPTOR {
KSERVICE_TABLE_DESCRIPTOR Descriptor;
WOW64_ERROR_CASE ErrorCaseDefault;
PWOW64_ERROR_CASE ErrorCase;
} WOW64_SERVICE_TABLE_DESCRIPTOR, *PWOW64_SERVICE_TABLE_DESCRIPTOR;

view raw
2_WOW64_SERVICE_TABLE_DESCRIPTOR.h
hosted with ❤ by GitHub

(More detailed definition of this structure is in the appendix.)

ServiceTables array is populated as follows:

ServiceTables[/* 0 */ WOW64_NTDLL_SERVICE_INDEX] = sdwhnt32

ServiceTables[/* 1 */ WOW64_WIN32U_SERVICE_INDEX] = wow64win!sdwhwin32

ServiceTables[/* 2 */ WOW64_KERNEL32_SERVICE_INDEX = wow64win!sdwhcon

ServiceTables[/* 3 */ WOW64_USER32_SERVICE_INDEX] = sdwhbase

NOTE: wow64.dll directly depends (by import table) on two DLLs:
the native ntdll.dll and
wow64win.dll. This means that wow64win.dll is
loaded even into “non-Windows-subsystem”
processes, that wouldn’t normally
load user32.dll.

These two symbols mentioned above are the only symbols that wow64.dll requires
wow64win.dll to
export.

Let’s have a look at sdwhnt32 service table:

sdwhnt32 (x64)

https://gist.github.com/wbenny/b14d8a9a4a3281cb1aab283e56ae41e3/raw/877979b84caacffda2a750344b82ec9d534b5be5/2_WOW64_SERVICE_TABLE_DESCRIPTOR.h
https://gist.github.com/wbenny/b14d8a9a4a3281cb1aab283e56ae41e3#file-2_wow64_service_table_descriptor-h
https://github.com/

10/37

sdwhnt32JumpTable (x64)

sdwhnt32Number (x64)

There is nothing surprising for those who already dealt with service tables in ntoskrnl.exe.
sdwhnt32JumpTable
contains array of the system call functions, which are
traditionaly prefixed. WoW64 “system calls” are prefixed with
wh*, which
honestly I don’t have any idea what it stands for - although it might be the
case as with Zw* prefix - it
stands for nothing and is simply used as an
unique distinguisher.

The job of these wh* functions is to correctly convert any arguments and
return values from the 32-bit version to the
native, 64-bit version. Keep in
mind that that it not only includes conversion of integers and pointers, but
also content
of the structures. Interesting note might be that each of the
wh* functions has only one argument, which is pointer to
an array of 32-bit
values. This array contains the parameters passed to the 32-bit system call.

As you could notice, in those 4 service tables there are “system calls” that
are not present in the ntoskrnl.exe.
Also, I mentioned earlier that the
Wow64Transition is resolved in multiple DLLs. Currently, these DLLs export
this
symbol:

ntdll.dll

win32u.dll

kernel32.dll and kernelbase.dll
user32.dll

The ntdll.dll and win32u.dll are obvious and they represent the same thing
as their native counterparts. The
service tables used by kernel32.dll and
user32.dll contain functions for transformation of particular
csrss.exe calls
into their 64-bit version.

It’s also worth noting that at the end of the ntdll.dll system table, there
are several functions with NtWow64*
calls, such as NtWow64ReadVirtualMemory64,
NtWow64WriteVirtualMemory64 and others. These are
special functions which are
provided only to WoW64 processes.

11/37

One of these special functions is also NtWow64CallFunction64. It has it’s own
small dispatch table and callers
can select which function should be called
based on its index:

Wow64FunctionDispatch64 (x64)

NOTE: I’ll be talking about one of these functions - namely Wow64CallFunctionTurboThunkControl
-
later in the Disabling Turbo thunks section.

wow64!Wow64SystemServiceEx

This function is similar to the kernel’s nt!KiSystemCall64 - it does the
dispatching of the system call. This function
is exported by the wow64.dll
and imported by the emulation DLLs. Wow64SystemServiceEx accepts 2
arguments:

The system call number
Pointer to an array of 32-bit arguments passed to the system call (mentioned earlier)

The system call number isn’t just an index, but also contains index of a system
table which needs to be selected (this
is also true for ntoskrnl.exe):

typedef struct _WOW64_SYSTEM_SERVICE
{
USHORT SystemCallNumber : 12;
USHORT ServiceTableIndex : 4;
} WOW64_SYSTEM_SERVICE, *PWOW64_SYSTEM_SERVICE;

view raw
2_WOW64_SYSTEM_SERVICE_1.h
hosted with ❤ by GitHub

This function then selects ServiceTables[ServiceTableIndex] and calls the
appropriate wh* function based
on the SystemCallNumber.

Wow64SystemServiceEx (x64)

NOTE: In case the wow64log.dll has been successfully loaded, the Wow64SystemServiceEx
function calls Wow64LogSystemServiceWrapper (wrapper around

https://gist.github.com/wbenny/7b3db2cd56f13c65f6b6fc21681055fe/raw/783529a1fe018111f2aaeac89a0c8c1109dc409a/2_WOW64_SYSTEM_SERVICE_1.h
https://gist.github.com/wbenny/7b3db2cd56f13c65f6b6fc21681055fe#file-2_wow64_system_service_1-h
https://github.com/

12/37

wow64log!Wow64LogSystemService
function): once before the actual system call and one
immediately after. This
can be used for instrumentation of each WoW64 system call! The structure
passed to Wow64LogSystemService contains every important information about
the system call - it’s
table index, system call number, the argument list and
on the second call, even the resulting NTSTATUS!
You can find layout of
this structure in the appendix (WOW64_LOG_SERVICE).

Finally, as have been mentioned, the WOW64_SERVICE_TABLE_DESCRIPTOR structure
differs from
KSERVICE_TABLE_DESCRIPTOR in that it contains ErrorCase table.
The code mentioned above is actually
wrapped in a SEH __try/__except
block. If whService raise an exception, the __except block calls
Wow64HandleSystemServiceError function. The function looks if the corresponding
service table which raised
the exception has non-NULL ErrorCase and if it does,
it selects the appropriate WOW64_ERROR_CASE for the
system call. If the ErrorCase
is NULL, the values from ErrorCaseDefault are used. The NTSTATUS of the
exception is then transformed according to an algorithm which can be found in the appendix.

wow64!ProcessInit (cont.)

...

wow64!CpuLoadBinaryTranslator // MachineType

wow64!CpuGetBinaryTranslatorPath // MachineType

ntdll!NtOpenKey // "\Registry\Machine\Software\Microsoft\Wow64\"

ntdll!NtQueryValueKey // "arm" / "x86"

ntdll!RtlGetNtSystemRoot // "arm" / "x86"

ntdll!RtlUnicodeStringPrintf // "%ws\system32\%ws"

As you’ve probably guessed, this function constructs path to the binary-translator DLL,
which is - on x64 - known as
wow64cpu.dll. This DLL will be responsible for
the actual low-level emulation.

\Registry\Machine\Software\Microsoft\Wow64\x86 (x64)

\Registry\Machine\Software\Microsoft\Wow64\arm (ARM64)

\Registry\Machine\Software\Microsoft\Wow64\x86 (ARM64)

We can see that there is no wow64cpu.dll on ARM64. Instead, there is xtajit.dll
used for x86 emulation and
wowarmhw.dll used for ARM32 emulation.

NOTE: The CpuGetBinaryTranslatorPath function is same on both x64 and
ARM64 except for one
peculiar difference:
on Windows x64, if the \Registry\Machine\Software\Microsoft\Wow64\x86
key cannot
be opened (is missing/was deleted), the function contains a fallback to load
wow64cpu.dll. On Windows ARM64, though, it doesn’t have such fallback and if
the registry key is
missing, the function fails and the WoW64 process is terminated.

wow64.dll then loads one of the selected DLL and tries to find there following
exported functions:

BTCpuProcessInit (!) BTCpuProcessTerm

BTCpuThreadInit BTCpuThreadTerm

BTCpuSimulate (!) BTCpuResetFloatingPoint

BTCpuResetToConsistentState BTCpuNotifyDllLoad

13/37

BTCpuNotifyDllUnload BTCpuPrepareForDebuggerAttach

BTCpuNotifyBeforeFork BTCpuNotifyAfterFork

BTCpuNotifyAffinityChange BTCpuSuspendLocalThread

BTCpuIsProcessorFeaturePresent BTCpuGetBopCode (!)
BTCpuGetContext BTCpuSetContext

BTCpuTurboThunkControl BTCpuNotifyMemoryAlloc

BTCpuNotifyMemoryFree BTCpuNotifyMemoryProtect

BTCpuFlushInstructionCache2 BTCpuNotifyMapViewOfSection

BTCpuNotifyUnmapViewOfSection BTCpuUpdateProcessorInformation

BTCpuNotifyReadFile BTCpuCfgDispatchControl

BTCpuUseChpeFile BTCpuOptimizeChpeImportThunks

BTCpuNotifyProcessExecuteFlagsChange BTCpuProcessDebugEvent

BTCpuFlushInstructionCacheHeavy

Interestingly, not all functions need to be found - only those marked with the
“(!)”, the rest is optional. As a next step,
the resolved BTCpuProcessInit
function is called, which performs binary-translator-specific process initialization.

At the end of the ProcessInit function, wow64!Wow64ProtectMrdata(1) is called,
making .mrdata non-
writable again.

wow64!ThreadInit

wow64!ThreadInit

wow64!CpuThreadInit

NtCurrentTeb32()->WOW32Reserved = BTCpuGetBopCode()

emu!BTCpuThreadInit

ThreadInit does some little thread-specific initialization, such as:

Copying CurrentLocale and IdealProcessor values from 64-bit TEB into
32-bit TEB.
For non-WOW64_CPUFLAGS_SOFTWARE emulators, it calls CpuThreadInit, which:

Performs NtCurrentTeb32()->WOW32Reserved = BTCpuGetBopCode().
Calls emu!BTCpuThreadInit().

For WOW64_CPUFLAGS_SOFTWARE emulators, it creates an event, which added into
AlertByThreadIdEventHashTable and set to NtCurrentTeb()->TlsSlots[18].
This event is used for
special emulation of NtAlertThreadByThreadId and
NtWaitForAlertByThreadId.

NOTE: The WOW64_CPUFLAGS_MSFT64 (1) or the WOW64_CPUFLAGS_SOFTWARE (2)
flag is stored
in the NtCurrentTeb()->TlsSlots[/* 10 */ WOW64_TLS_WOW64INFO],
in the
WOW64INFO.CpuFlags field. One of these flags is always set in the
emulator’s BTCpuProcessInit
function (mentioned in the section above):

wow64cpu.dll sets WOW64_CPUFLAGS_MSFT64 (1)
wowarmhw.dll sets WOW64_CPUFLAGS_MSFT64 (1)
xtajit.dll sets WOW64_CPUFLAGS_SOFTWARE (2)

x86 on x64

Entering 32-bit mode

...

wow64!RunCpuSimulation

wow64cpu!BTCpuSimulate

wow64cpu!RunSimulatedCode

RunSimulatedCode runs in a loop and performs transitions into 32-bit mode
either via:

jmp fword ptr[reg] - a “far jump” that not only changes instruction pointer (RIP),
but also the code
segment register (CS). This segment usually being set to 0x23,
while 64-bit code segment is 0x33
synthetic “machine frame” and iret - called on every “state reset”

NOTE: Explanation of segmentation and “why does it work just by changing
a segment register” is
beyond scope of this article. If you’d like to know more about
“long mode” and segmentation, you can
start here.

https://wiki.osdev.org/Setting_Up_Long_Mode

14/37

Far jump is used most of the time for the transition, mainly because it’s faster.
iret on the other hand is more
powerful, as it can change CS, SS, EFLAGS, RSP and RIP
all at once. The “state reset” occurs when
WOW64_CPURESERVED.Flags has
WOW64_CPURESERVED_FLAG_RESET_STATE (1) bit set. This happens during
exception
(see wow64!Wow64PrepareForException and wow64cpu!BTCpuResetToConsistentState).
Also,
this flag is cleared on every emulation loop (using btr - bit-test-and-reset).

Start of the RunSimulatedCode (x64)

You can see the simplest form of switching into the 32-bit mode. Also, at the beginning
you can see that
TurboThunkDispatch address is moved into the r15 register.
This register stays untouched during the whole
RunSimulatedCode function.

Leaving 32-bit mode

The switch back to the 64-bit mode is very similar - it also uses far jumps.
The usual situation when code wants to
switch back to the 64-bit mode is upon
system call:

NtMapViewOfSection (x64)

The Wow64SystemServiceCall is just a simple jump to the Wow64Transition:

Wow64SystemServiceCall (x64)

If you remember, the Wow64Transition value is resolved by the wow64cpu!BTCpuGetBopCode
function:

BTCpuGetBopCode - wow64cpu.dll (x64)

It selects either KiFastSystemCall or KiFastSystemCall2 based on the CpupSystemCallFast
value.

The KiFastSystemCall looks like this (used when CpupSystemCallFast != 0):

[x86] jmp 33h:$+9 (jumps to the instruction below)

15/37

[x64] jmp qword ptr [r15+offset] (which points to CpupReturnFromSimulatedCode)

The KiFastSystemCall2 looks like this (used when CpupSystemCallFast == 0):

[x86] push 0x33

[x86] push eax

[x86] call $+5

[x86] pop eax

[x86] add eax, 12

[x86] xchg eax, dword ptr [esp]

[x86] jmp fword ptr [esp] (jumps to the instruction below)
[x64] add rsp, 8

[x64] jmp wow64cpu!CpupReturnFromSimulatedCode

Clearly, the KiFastSystemCall is faster, so why it’s not used used every time?

It turns out, CpupSystemCallFast is set to 1 in the wow64cpu!BTCpuProcessInit function if
the process is not
executed with the ProhibitDynamicCode mitigation policy
and if
NtProtectVirtualMemory(&KiFastSystemCall, PAGE_READ_EXECUTE) succeeds.

This is because KiFastSystemCall is in a non-executable read-only section (W64SVC) while
KiFastSystemCall2 is in read-executable section (WOW64SVC).

But the actual reason why is KiFastSystemCall in non-executable section by default and needs to be
set as
executable manually is, honestly, unknown to me. My guess would be that
it has something to do with relocations,
because the address in the jmp 33h:$+9
instruction must be somehow resolved by the loader. But maybe I’m
wrong. Let me know if you know the answer!

Turbo thunks

I hope you didn’t forget about the TurboThunkDispatch address hanging in the
r15 register. This value is used as
a jump-table:

TurboThunkDispatch (x64)

There are 32 items in the jump-table.

https://docs.microsoft.com/en-us/windows/desktop/api/winnt/ns-winnt-_process_mitigation_dynamic_code_policy

16/37

TurboDispatchJumpAddressStart (x64)

CpupReturnFromSimulatedCode is the first code that is always executed in the 64-bit
mode when 32-bit to 64-bit
transition occurs. Let’s recapitulate the code:

Stack is swapped,
Non-volatile registers are saved
eax - which contains the encoded service table index and system call number -
is moved into the ecx
it’s high-word is acquired via ecx >> 16.
the result is used as an index into the TurboThunkDispatch jump-table

You might be confused now, because few sections above we’ve defined the service
number like this:

typedef struct _WOW64_SYSTEM_SERVICE
{
USHORT SystemCallNumber : 12;
USHORT ServiceTableIndex : 4;
} WOW64_SYSTEM_SERVICE, *PWOW64_SYSTEM_SERVICE;

view raw
2_WOW64_SYSTEM_SERVICE_1.h
hosted with ❤ by GitHub

…therefore, after right-shifting this value by 16 bits we should get always 0,
right?

It turns out, on x64, the WOW64_SYSTEM_SERVICE might be defined like this:

typedef struct _WOW64_SYSTEM_SERVICE
{
ULONG SystemCallNumber : 12;
ULONG ServiceTableIndex : 4;
ULONG TurboThunkNumber : 5; // Can hold values 0 - 31
ULONG AlwaysZero : 11;
} WOW64_SYSTEM_SERVICE, *PWOW64_SYSTEM_SERVICE;

view raw
2_WOW64_SYSTEM_SERVICE_2.h
hosted with ❤ by GitHub

Let’s examine few WoW64 system calls:

NtMapViewOfSection (x64)

https://gist.github.com/wbenny/7b3db2cd56f13c65f6b6fc21681055fe/raw/783529a1fe018111f2aaeac89a0c8c1109dc409a/2_WOW64_SYSTEM_SERVICE_1.h
https://gist.github.com/wbenny/7b3db2cd56f13c65f6b6fc21681055fe#file-2_wow64_system_service_1-h
https://github.com/
https://gist.github.com/wbenny/0be281c8b00f01922de9c46b307f059a/raw/78e7b6b9bbca45091fce18372b6cddc717ec97cb/2_WOW64_SYSTEM_SERVICE_2.h
https://gist.github.com/wbenny/0be281c8b00f01922de9c46b307f059a#file-2_wow64_system_service_2-h
https://github.com/

17/37

NtWaitForSingleObject (x64)

NtDeviceIoControlFile (x64)

Based on our new definition of WOW64_SYSTEM_SERVICE, we can conclude that:

NtMapViewOfSection uses turbo thunk with index 0 (TurboDispatchJumpAddressEnd)
NtWaitForSingleObject uses turbo thunk with index 13 (Thunk3ArgSpNSpNSpReloadState)
NtDeviceIoControlFile uses turbo thunk with index 27 (DeviceIoctlFile)

Let’s finally explain “turbo thunks” in proper way.

Turbo thunks are an optimalization of WoW64 subsystem - specifically on Windows x64 -
that enables for particular
system calls to never leave the wow64cpu.dll - the
conversion of parameters and return value, and the syscall
instruction itself
is fully performed there. The set of functions that use these turbo thunks reveals,
that they are usually
very simple in terms of parameter conversion - they receive
numerical values or handles.

The notation of Thunk* labels is as follows:

The number specifies how many arguments the function receives
Sp converts parameter with sign-extension
NSp converts parameter without sign-extension
ReloadState will return to the 32-bit mode using iret instead of far jump,
if
WOW64_CPURESERVED_FLAG_RESET_STATE is set
QuerySystemTime, ReadWriteFile, DeviceIoctlFile, … are special cases

Let’s take the NtWaitForSingleObject and its turbo thunk Thunk3ArgSpNSpNSpReloadState
as an example:

it receives 3 parameters
1st parameter is sign-extended
2nd parameter isn’t sign-extended
3rd parameter isn’t sign-extended
it can switch to 32-bit mode using iret if WOW64_CPURESERVED_FLAG_RESET_STATE is set

When we cross-check this information with its function prototype, it makes sense:

NTSTATUS
NTAPI
NtWaitForSingleObject(
In HANDLE Handle,
In BOOLEAN Alertable,
In PLARGE_INTEGER Timeout
);

view raw
2_NtWaitForSingleObject.h
hosted with ❤ by GitHub

The sign-extension of HANDLE makes sense, because if we pass there an INVALID_HANDLE_VALUE,
which
happens to be 0xFFFFFFFF (-1) on 32-bits, we don’t want to convert this value
to 0x00000000FFFFFFFF, but
0xFFFFFFFFFFFFFFFF.

On the other hand, if the TurboThunkNumber is 0, the call will end up in the
TurboDispatchJumpAddressEnd
which in turn calls wow64!Wow64SystemServiceEx.
You can consider this case as the “slow path”.

https://gist.github.com/wbenny/056f1c57f917154416c2ebe39dd7234f/raw/3d11163f12025ce177ca4c861f5e91ff3fdd7ae9/2_NtWaitForSingleObject.h
https://gist.github.com/wbenny/056f1c57f917154416c2ebe39dd7234f#file-2_ntwaitforsingleobject-h
https://github.com/

18/37

Disabling Turbo thunks

On Windows x64, the Turbo thunk optimization can be actually disabled!

In one of
the previous sections I’ve been talking about ntdll32!NtWow64CallFunction64 and
wow64!Wow64CallFunctionTurboThunkControl functions. As with any other NtWow64*
function,
NtWow64CallFunction64 is only available in the WoW64 ntdll.dll.
This function can be called with an index to
WoW64 function in the
Wow64FunctionDispatch64 table (mentioned earlier).

The function prototype might look like this:

typedef enum _WOW64_FUNCTION {
Wow64Function64Nop,
Wow64FunctionQueryProcessDebugInfo,
Wow64FunctionTurboThunkControl,
Wow64FunctionCfgDispatchControl,
Wow64FunctionOptimizeChpeImportThunks,
} WOW64_FUNCTION;
NTSYSCALLAPI
NTSTATUS
NTAPI
NtWow64CallFunction64(
In WOW64_FUNCTION Wow64Function,
In ULONG Flags,
In ULONG InputBufferLength,
_In_reads_bytes_opt_(InputBufferLength) PVOID InputBuffer,
In ULONG OutputBufferLength,
_Out_writes_bytes_opt_(OutputBufferLength) PVOID OutputBuffer,
_Out_opt_ PULONG ReturnLength
);

view raw
2_NtWow64CallFunction64.h
hosted with ❤ by GitHub

NOTE: This function prototype has been reconstructed with the help of the
wow64!Wow64CallFunction64Nop function code, which just logs the parameters.

We can see that wow64!Wow64CallFunctionTurboThunkControl can be called with an
index of 2. This function
performs some sanity checks and then passes calls
wow64cpu!BTCpuTurboThunkControl(*
(ULONG*)InputBuffer).

wow64cpu!BTCpuTurboThunkControl then checks the input parameter.

If it’s 0, it patches every target of the jump table to point to
TurboDispatchJumpAddressEnd (remember, this
is the target that is called when
WOW64_SYSTEM_SERVICE.TurboThunkNumber is 0).
If it’s non-0, it returns STATUS_NOT_SUPPORTED.

This means 2 things:

Calling wow64cpu!BTCpuTurboThunkControl(0) disables the Turbo thunks, and
every system call ends
up taking the “slow path”.
It is not possible to enable them back.

With all this in mind, we can achieve disabling Turbo thunks by this call:

#define WOW64_TURBO_THUNK_DISABLE 0
#define WOW64_TURBO_THUNK_ENABLE 1 // STATUS_NOT_SUPPORTED :(
ThunkInput = WOW64_TURBO_THUNK_DISABLE;
Status = NtWow64CallFunction64(Wow64FunctionTurboThunkControl,
0,
sizeof(ThunkInput),
&ThunkInput,
0,
NULL,
NULL);

view raw
2_NtWow64CallFunction64_Wow64FunctionTurboThunkControl.h
hosted with ❤ by GitHub

What it might be good for? I can think of 3 possible use-cases:

https://gist.github.com/wbenny/9e6ddf8306d4f68b3227a040a5f07325/raw/2fb0f535631b7c958920b8b10aad06721eb8941b/2_NtWow64CallFunction64.h
https://gist.github.com/wbenny/9e6ddf8306d4f68b3227a040a5f07325#file-2_ntwow64callfunction64-h
https://github.com/
https://gist.github.com/wbenny/173891ac91cd888017faadce4460ae82/raw/0b0531c0b00ec1b15663c16a07a94af2cf56650c/2_NtWow64CallFunction64_Wow64FunctionTurboThunkControl.h
https://gist.github.com/wbenny/173891ac91cd888017faadce4460ae82#file-2_ntwow64callfunction64_wow64functionturbothunkcontrol-h
https://github.com/

19/37

If we deploy custom wow64log.dll, disabling Turbo thunks
guarantees that we will see every WoW64
system call in our
wow64log!Wow64LogSystemService callback. We wouldn’t see such calls if the Turbo
thunks
were enabled, because they would take the “fast path” inside of the wow64cpu.dll
where the
syscall would be executed.

If we decide to hook Nt* functions in the native ntdll.dll, disabling
Turbo thunks guarantees that for each
Nt* function called in the ntdll32.dll,
the correspondint Nt* function will be called in the native
ntdll.dll.
(This is basically the same point as the previous one.)

NOTE: Keep in mind that this only applies on system calls, i.e. on Nt*
or Zw* functions. Other
functions are not called from the 32-bit ntdll.dll
to the 64-bit ntdll.dll. For example, if we
hooked RtlDecompressBuffer
in the native ntdll.dll of the WoW64 process, it wouldn’t be
called
on ntdll32!RtlDecompressBuffer call. This is because the full implementaion of the
Rtl* functions is already in the ntdll32.dll.

We can “harmlessly” patch high-word moved to the eax in every WoW64 system call stub to 0.
For example we
could see in NtWaitForSingleObject there is mov eax, 0D0004h.
If we patched appropriate 2 bytes in
that instruction so that the instruction
would become mov eax, 4h, the system call would still work.

This approach can be used as an anti-hooking technique - if there’s a jump
at the start of the function, the patch
will break it. If there’s not a jump,
we just disable the Turbo thunk for this function.

x86 on ARM64

Emulation of x86 applications on ARM64 is handled by an actual binary translation.
Instead of wow64cpu.dll, the
xtajit.dll (probably shortcut for “x86 to ARM64 JIT”)
is used for its emulation. As with other emulation DLLs, this
DLL is native (ARM64).

The x86 emulation on Windows ARM64 consists also of other “XTA” components:

xtac.exe - XTA Compiler
XtaCache.exe - XTA Cache Service

Execution of x86 programs on ARM64 appears to go way behind just emulation. It
is also capable of caching already
binary-translated code, so that next execution
of the same application should be faster. This cache is located in the
Windows\XtaCache
directory which contains files in format FILENAME.EXT.HASH1.HASH2.mp.N.jc.
These files
are then mapped to the user-mode address space of the application.
If you’re asking whether you can find an actual
ARM64 code in these files - indeed,
you can.

Unfortunatelly, Microsoft doesn’t provide symbols to any of these xta* DLLs or executables. But if
you’re feeling
adventurous, you can find some interesting artifacts, like
this array of structures inside of the xtajit.dll, which
contains name of the function and its pointer.
There are thousands of items in this array:

20/37

BT functions (before) (ARM64)

With a simple Python script, we can mass-rename all functions referenced in
this array:

begin = 0x01800A8C20
end = 0x01800B7B4F
struct_size = 24
ea = begin
while ea < end:
ea += struct_size
name = idc.GetString(idc.Qword(ea))
idc.MakeName(idc.Qword(ea+8), name)

view raw
2_IDA_BT_rename.py
hosted with ❤ by GitHub

I’d like to thank Milan Boháček for providing me this script.

https://gist.github.com/wbenny/d58b0bd48991788f6ac633b661d4908c/raw/9ca0922247c8a98cff1162a45144920413aa1a18/2_IDA_BT_rename.py
https://gist.github.com/wbenny/d58b0bd48991788f6ac633b661d4908c#file-2_ida_bt_rename-py
https://github.com/

21/37

BT functions (after) (ARM64)

22/37

BT translated function list (ARM64)

Windows\SyCHPE32 & Windows\SysWOW64

One thing you can observe on ARM64 is that it contains two folders used for x86
emulation. The difference between
them is that SyCHPE32 contains small subset
of DLLs that are frequently used by applications, while contents of the
SysWOW64
folder is quite identical with the content of this folder on Windows x64.

The CHPE DLLs are not pure-x86 DLLs and not even pure-ARM64 DLLs. They are
“compiled-hybrid-PE”s. What does
it mean? Let’s see:

NtMapViewOfSection (CHPE) (ARM64)

After opening SyCHPE32\ntdll.dll, IDA will first tell us - unsurprisingly -
that it cannot download PDB for this DLL.
After looking at randomly chosen Nt*
function, we can see that it doesn’t differ from what we would see in the

23/37

SysWOW64\ntdll.dll. Let’s look at some non-Nt* function:

RtlDecompressBuffer (CHPE) (ARM64)

We can see it contains regular x86 function prologue, immediately followed by
x86 function epilogue and then jump
somewhere, where it looks like that there’s
just garbage. That “garbage” is actually ARM64 code of that function.

My guess is that the reason for this prologue is probably compatibility with
applications that check whether some
particular functions are hooked or not -
by checking if the first bytes of the function contain real x86 prologue.

NOTE: Again, if you’re feeling adventurous, you can patch FileHeader.Machine
field in the PE
header to IMAGE_FILE_MACHINE_ARM64 (0xAA64) and open this
file in IDA. You will see a whole lot
of correctly resolved ARM64 functions.
Again, I’d like to thank to Milan Boháček for this tip.

If your question is “how are these images generated?”, I would answer that I don’t know,
but my bet would be on
some internal version of Microsoft’s C++ compiler toolchain. This idea
appears to be supported by various
occurences of the CHPE keyword in the ChakraCore codebase.

ARM32 on ARM64

The loop inside of the wowarmhw!BTCpuSimulate is fairly simple compared to
wow64cpu.dll loop:

DECLSPEC_NORETURN
VOID
BTCpuSimulate(
VOID
)
{
NTSTATUS Status;
PCONTEXT Context;
//
// Gets WoW64 CONTEXT structure (ARM32) using
// the RtlWow64GetCurrentCpuArea() function.
//

https://github.com/Microsoft/ChakraCore/search?q=CHPE&unscoped_q=CHPE

24/37

Status = CpupGetArmContext(&Context, NULL);
if (!NT_SUCCESS(Status))
{
RtlRaiseStatus(Status);
//
// UNREACHABLE
//
return;
}
for (;;)
{
//
// Switch to ARM32 mode and run the emulation.
//
NtCurrentTeb()->TlsSlots[/* 2 */ WOW64_TLS_INCPUSIMULATION] = TRUE;
CpupSwitchTo32Bit(Context);
NtCurrentTeb()->TlsSlots[/* 2 */ WOW64_TLS_INCPUSIMULATION] = FALSE;
//
// When we get here, it means ARM32 code performed a system call.
// Advance instruction pointer to skip the "UND 0F8h" instruction.
//
Context->Pc += 2;
//
// Set LSB (least significat bit) if ARM32 is executing in
// Thumb mode.
//
if (Context->Cpsr & 0x20) {
Context->Pc |= 1;
}
//
// Let wow64.dll emulate the system call. R12 has the system call
// number, Sp points to the stack which contains the system call
// arguments.
//
Context->R0 = Wow64SystemServiceEx(Context->R12, Context->Sp);
}
}

view raw
2_BTCpuSimulate_ARM64.h
hosted with ❤ by GitHub

CpupSwitchTo32Bit does nothing else than saving the whole CONTEXT, performing SVC 0xFFFF
instruction and
then restoring the CONTEXT.

nt!KiEnter32BitMode / SVC 0xFFFF

I won’t be explaining here how system call dispatching works in the ntoskrnl.exe -
Bruce Dang already did an
excellent job doing it.
This section is a follow up on his article, though.

SVC instruction is sort-of equivalent of SYSCALL instruction on ARM64 - it
basically enters the kernel mode. But there
is a small difference between SYSCALL
and SVC: while on Windows x64 the system call number is moved into
the
eax register, on ARM64 the system call number can be encoded directly
into the SVC instruction.

https://gist.github.com/wbenny/bbad92111d174c0fbf9ffa7d23fed1a4/raw/fa7a29b8ca2cabcf386573215662846e98053247/2_BTCpuSimulate_ARM64.h
https://gist.github.com/wbenny/bbad92111d174c0fbf9ffa7d23fed1a4#file-2_btcpusimulate_arm64-h
https://github.com/
https://gracefulbits.com/2018/07/26/system-call-dispatching-for-windows-on-arm64/

25/37

SVC 0xFFFF (ARM64)

Let’s peek for a moment into the kernel to see how is this SVC instruction handled:

nt!KiUserExceptionHandler

nt!KiEnter32BitMode

KiUserExceptionHandler (ARM64)

26/37

KiEnter32BitMode (ARM64)

We can see that:

MRS X30, ELR_EL1 - current interrupt-return address (stored in ELR_EL1 system
register) will be moved to
the register X30 (link register - LR).
MSR ELR_EL1, X15 - the interrupt-return address will be replaced by value
in the register X15 (which is
aliased to the instruction pointer register -
PC - in the 32-bit mode).
ORR X16, X16, #0b10000 - bit [4] is being set in X16 which is later moved
to the SPSR_EL1 register.
Setting this bit switches the execution mode to
32-bits.

Simply said, in the X15 register, there is an address that will be
executed once we leave the kernel-mode and enter
the user-mode - which happens
with the ERET instruction at the end.

nt!KiExit32BitMode / UND #0xF8

Alright, we’re in the 32-bit ARM mode now, how exactly do we leave? Windows
solves this transition via UND
instruction - which is similar to the UD2
instruction on the Intel CPUs. If you’re not familiar with it, you just
need to
know that it is instruction that basically guarantees that it’ll
throw “invalid instruction” exception which can OS kernel
handle. It is defined-“undefined instruction”.
Again there is the same difference between the UND and UD2 instruction
in
that the ARM can have any 1-byte immediate value encoded directly in the
instruction.

Let’s look at the NtMapViewOfSection system call in the SysArm32\ntdll.dll:

NtMapViewOfSection (ARM64)

Let’s peek into the kernel again:

nt!KiUser32ExceptionHandler

nt!KiFetchOpcodeAndEmulate

nt!KiExit32BitMode

27/37

KiEnter32BitMode (ARM64)

KiEnter32BitMode (ARM64)

Keep in mind that meanwhile the 32-bit code is running, it cannot modify the value of the
previously stored X30
register - it is not visible in 32-bit mode. It stays there the
whole time. Upon UND #0xF8 execution, following
happens:

the KiFetchOpcodeAndEmulate function moves value of X30 into X24 register
(not shown on the
screenshot).
AND X19, X16, #0xFFFFFFFFFFFFFFC0 - bit [4] (among others) is being cleared
in the X19 register, which
is later moved to the SPSR_EL1 register.
Clearing this bit switches the execution mode back to 64-bits.
KiExit32BitMode then moves the value of X24 register into the ELR_EL1 register. That means when
this
function finishes its execution, the ERET brings us back to the 64bit code,
right after the SVC 0xFFFF
instruction.

NOTE: It can be noticed that Windows uses UND instruction for several
purposes. Common example
might also be UND #0xFE which is used as a breakpoint
instruction (equivalent of __debugbreak() /
int3)

As you could spot, 3 kernel transitions are required for emulation of the
system call (SVC 0xFFFF, system call itself,
UND 0xF8). This is because on
ARM there doesn’t exist a way how to switch between 32-bit and 64-bit mode only
in
user-mode.

If you’re looking for “ARM Heaven’s Gate” - this is it. Put whatever function
address you like into the X15 register and
execute SVC 0xFFFF.
Next instruction will be executed in the 32-bit ARM mode, starting with that
address. When
you feel you’d like to come back into 64-bit mode, simply
execute UND #0xF8 and your execution will continue with
the next instruction
after the SVC 0xFFFF.

Appendix

//
// General definitions.
//

//
// Context flags.
// winnt.h (Windows SDK)
//

28/37

#define CONTEXT_i386 0x00010000L
#define CONTEXT_AMD64 0x00100000L
#define CONTEXT_ARM 0x00200000L
#define CONTEXT_ARM64 0x00400000L
//
// Machine type.
// winnt.h (Windows SDK)
//
#define IMAGE_FILE_MACHINE_TARGET_HOST 0x0001 // Useful for indicating we want to interact with
the host and not a WoW guest.
#define IMAGE_FILE_MACHINE_I386 0x014c // Intel 386.
#define IMAGE_FILE_MACHINE_ARMNT 0x01c4 // ARM Thumb-2 Little-Endian
#define IMAGE_FILE_MACHINE_ARM64 0xAA64 // ARM64 Little-Endian
#define IMAGE_FILE_MACHINE_CHPE_X86 0x3A64 // Hybrid PE (defined in ntimage.h (WDK))
//
// ntoskrnl.exe
//
typedef struct _PS_NTDLL_EXPORT_ITEM {
PCSTR RoutineName;
PVOID RoutineAddress;
} PS_NTDLL_EXPORT_ITEM, *PPS_NTDLL_EXPORT_ITEM;
PS_NTDLL_EXPORT_ITEM NtdllExports[] = {
//
// 19 exports on x64
// 14 exports on ARM64
//
};
PVOID PsWowX86SharedInformation[Wow64SharedPageEntriesCount];
PS_NTDLL_EXPORT_ITEM NtdllWowX86Exports[] = {
{ "LdrInitializeThunk",
&PsWowX86SharedInformation[SharedNtdll32LdrInitializeThunk] },
{ "KiUserExceptionDispatcher",
&PsWowX86SharedInformation[SharedNtdll32KiUserExceptionDispatcher] },
{ "KiUserApcDispatcher",
&PsWowX86SharedInformation[SharedNtdll32KiUserApcDispatcher] },
{ "KiUserCallbackDispatcher",
&PsWowX86SharedInformation[SharedNtdll32KiUserCallbackDispatcher] },
{ "RtlUserThreadStart",
&PsWowX86SharedInformation[SharedNtdll32RtlUserThreadStart] },
{ "RtlpQueryProcessDebugInformationRemote",
&PsWowX86SharedInformation[SharedNtdll32pQueryProcessDebugInformationRemote] },
{ "LdrSystemDllInitBlock",
&PsWowX86SharedInformation[SharedNtdll32LdrSystemDllInitBlock] },
{ "RtlpFreezeTimeBias",
&PsWowX86SharedInformation[SharedNtdll32RtlpFreezeTimeBias] },
};
#ifdef _M_ARM64
PVOID PsWowArm32SharedInformation[Wow64SharedPageEntriesCount];
PS_NTDLL_EXPORT_ITEM NtdllWowArm32Exports[] = {
//
// ...
//
};
PVOID PsWowAmd64SharedInformation[Wow64SharedPageEntriesCount];
PS_NTDLL_EXPORT_ITEM NtdllWowAmd64Exports[] = {
//
// ...
//
};
PVOID PsWowChpeX86SharedInformation[Wow64SharedPageEntriesCount];
PS_NTDLL_EXPORT_ITEM NtdllWowChpeX86Exports[] = {
//

29/37

// ...
//
};
#endif // _M_ARM64
//
// ...
//
typedef struct _PS_NTDLL_EXPORT_INFORMATION {
PPS_NTDLL_EXPORT_ITEM NtdllExports;
SIZE_T Count;
} PS_NTDLL_EXPORT_INFORMATION, *PPS_NTDLL_EXPORT_INFORMATION;
//
// RTL_NUMBER_OF(NtdllExportInformation)
// == 6
// == (SYSTEM_DLL_TYPE)PsSystemDllTotalTypes
//
PS_NTDLL_EXPORT_INFORMATION NtdllExportInformation[PsSystemDllTotalTypes] = {
{ NtdllExports, RTL_NUMBER_OF(NtdllExports) },
{ NtdllWowX86Exports, RTL_NUMBER_OF(NtdllWowX86Exports) },
#ifdef _M_ARM64
{ NtdllWowArm32Exports, RTL_NUMBER_OF(NtdllWowArm32Exports) },
{ NtdllWowAmd64Exports, RTL_NUMBER_OF(NtdllWowAmd64Exports) },
{ NtdllWowChpeX86Exports, RTL_NUMBER_OF(NtdllWowChpeX86Exports) },
#endif // _M_ARM64
//
// { NULL, 0 } for the rest...
//
};
typedef struct _PS_SYSTEM_DLL_INFO {
//
// Flags.
// Initialized statically.
//
USHORT Flags;
//
// Machine type of this WoW64 NTDLL.
// Initialized statically.
// Examples:
// - IMAGE_FILE_MACHINE_I386
// - IMAGE_FILE_MACHINE_ARMNT
//
USHORT MachineType;
//
// Unused, always 0.
//
ULONG Reserved1;
//
// Path to the WoW64 NTDLL.
// Initialized statically.
// Examples:
// - "\\SystemRoot\\SysWOW64\\ntdll.dll"
// - "\\SystemRoot\\SysArm32\\ntdll.dll"
//
UNICODE_STRING Ntdll32Path;
//
// Image base of the DLL.
// Initialized at runtime by PspMapSystemDll.
// Equivalent of:
// RtlImageNtHeader(BaseAddress)->
// OptionalHeader.ImageBase;
//

30/37

PVOID ImageBase;
//
// Contains DLL name (such as "ntdll.dll" or
// "ntdll32.dll") before runtime initialization.
// Initialized at runtime by MmMapViewOfSectionEx,
// called from PspMapSystemDll.
//
union {
PVOID BaseAddress;
PWCHAR DllName;
};
//
// Unused, always 0.
//
PVOID Reserved2;
//
// Section relocation information.
//
PVOID SectionRelocationInformation;
//
// Unused, always 0.
//
PVOID Reserved3;
} PS_SYSTEM_DLL_INFO, *PPS_SYSTEM_DLL_INFO;
typedef struct _PS_SYSTEM_DLL {
//
// _SECTION* object of the DLL.
// Initialized at runtime by PspLocateSystemDll.
//
union {
EX_FAST_REF SectionObjectFastRef;
PVOID SectionObject;
};
//
// Push lock.
//
EX_PUSH_LOCK PushLock;
//
// System DLL information.
// This part is returned by PsQuerySystemDllInfo.
//
PS_SYSTEM_DLL_INFO SystemDllInfo;
} PS_SYSTEM_DLL, *PPS_SYSTEM_DLL;
//
// ntdll.dll
//
ULONG
RtlpArchContextFlagFromMachine(
In USHORT MachineType
)
/*++
Routine description:
This routine translates architecture-specific CONTEXT
flag to the machine type.
Arguments:
MachineType - One of IMAGE_FILE_MACHINE_* values.
Return Value:
Context flag.
Note:

31/37

RtlpArchContextFlagFromMachine can be found only in
ntoskrnl.exe symbols, but from ntdll.dll disassembly
it is obvious that this function is present there
as well (probably __forceinline'd, or used as a macro).
--*/
{
switch (MachineType)
{
case IMAGE_FILE_MACHINE_I386:
return CONTEXT_i386;
case IMAGE_FILE_MACHINE_AMD64:
return CONTEXT_AMD64;
case IMAGE_FILE_MACHINE_ARMNT:
return CONTEXT_ARM;
case IMAGE_FILE_MACHINE_ARM64:
return CONTEXT_ARM64;
default:
return 0;
}
}
ULONG
RtlpGetLegacyContextLength(
In ULONG ArchContextFlag,
_Out_opt_ PULONG SizeOfContext,
_Out_opt_ PULONG AlignOfContext
)
/*++
Routine description:
This routine determines size and alignment of the architecture-
-specific CONTEXT structure.
Arguments:
ArchContextFlag - Architecture-specific CONTEXT flag.
SizeOfContext - Receives sizeof(CONTEXT).
AlignOfContext - Receives __alignof(CONTEXT).
Return Value:
Alignment of the CONTEXT structure.
Note:
You can find corresponding DECLSPEC_ALIGN specifiers
for each CONTEXT structure in the winnt.h (Windows SDK).
By WOW64_CONTEXT_* here is meant an original CONTEXT
structure for the specific architecture (as CONTEXT
structures for other architectures are not available,
because it is selected during compile-time).

--*/
{
ULONG SizeOf = 0;
ULONG AlignOf = 0;
switch (ArchContextFlag)
{
case CONTEXT_i386:
SizeOf = sizeof(WOW64_CONTEXT_i386);
AlignOf = __alignof(WOW64_CONTEXT_i386); // 4
break;
case CONTEXT_AMD64:
SizeOf = sizeof(WOW64_CONTEXT_AMD64);
AlignOf = __alignof(WOW64_CONTEXT_AMD64); // 16
break;
case CONTEXT_ARM:
SizeOf = sizeof(WOW64_CONTEXT_ARM);
AlignOf = __alignof(WOW64_CONTEXT_ARM); // 8

32/37

break;
case CONTEXT_ARM64:
SizeOf = sizeof(WOW64_CONTEXT_ARM64);
AlignOf = __alignof(WOW64_CONTEXT_ARM64); // 16
break;
}
if (SizeOfContext) {
*SizeOfContext = SizeOf;
}
if (AlignOfContext) {
*AlignOfContext = AlignOf;
}
return AlignOf;
}
PULONG
RtlpGetContextFlagsLocation(
In PCONTEXT_UNION Context,
In ULONG ArchContextFlag
)
/*++
Routine description:
This routine returns pointer to the the "ContextFlags"
member of the CONTEXT structure.
Arguments:
Context - Architecture-specific CONTEXT structure.
ArchContextFlag - Architecture-specific CONTEXT flag.
Return Value:
Pointer to the the "ContextFlags" member.
--*/
{
//
// ContextFlags is always the first member of the
// CONTEXT struct - except for AMD64.
//
switch (ArchContextFlag)
{
case CONTEXT_i386:
return &Context->X86.ContextFlags; // Context + 0x00
case CONTEXT_AMD64:
return &Context->X64.ContextFlags; // Context + 0x30
case CONTEXT_ARM:
return &Context->ARM.ContextFlags; // Context + 0x00
case CONTEXT_ARM64:
return &Context->ARM64.ContextFlags; // Context + 0x00
default:
//
// Assume first member (Context + 0x00).
//
return (PULONG)Context;
}
}
//
// Architecture-specific WoW64 structure,
// holding the machine type and context
// structure.
//
#define WOW64_CPURESERVED_FLAG_RESET_STATE 1
typedef struct _WOW64_CPURESERVED {
USHORT Flags;
USHORT MachineType;

33/37

//
// CONTEXT has different alignment for
// each architecture and its location
// is determined at runtime (see
// RtlWow64GetCpuAreaInfo below).
//
// CONTEXT Context;
// CONTEXT_EX ContextEx;
//
} WOW64_CPURESERVED, *PWOW64_CPURESERVED;
typedef struct _WOW64_CPU_AREA_INFO {
PCONTEXT_UNION Context;
PCONTEXT_EX ContextEx;
PVOID ContextFlagsLocation;
PWOW64_CPURESERVED CpuReserved;
ULONG ContextFlag;
USHORT MachineType;
} WOW64_CPU_AREA_INFO, *PWOW64_CPU_AREA_INFO;
NTSTATUS
RtlWow64GetCpuAreaInfo(
In PWOW64_CPURESERVED CpuReserved,
In ULONG Reserved,
Out PWOW64_CPU_AREA_INFO CpuAreaInfo
)
/*++
Routine description:
This routine returns architecture- and WoW64-specific
information based on the CPU-reserved region. It is
used mainly for fetching MachineType and the pointer
to the architecture-specific CONTEXT structure (which
is part of the WOW64_CPURESERVED structure). Because
the CONTEXT structure has different size and alignment
for each architecture, the pointer must be obtained
dynamically.
Arguments:
CpuReserved - WoW64 CPU-reserved region, usually located
at NtCurrentTeb()->TlsSlots[/* 1 */ WOW64_TLS_CPURESERVED]
Reserved - Unused. All callers set this argument to 0.
CpuAreaInfo - Receives the CPU-area information.
Return Value:
STATUS_SUCCESS - on success
STATUS_INVALID_PARAMETER - if CpuReserved contains invalid MachineType
--*/
{
ULONG ContextFlag;
ULONG SizeOfContext;
ULONG AlignOfContext;
//
// In the ntdll.dll, this call is probably inlined, because
// RtlpArchContextFlagFromMachine symbol is not present there.
//
ContextFlag = RtlpArchContextFlagFromMachine(CpuReserved->MachineType);
if (!ContextFlag) {
return STATUS_INVALID_PARAMETER;
}
RtlpGetLegacyContextLength(ContextFlag, &SizeOfContext, &AlignOfContext);
//
// CpuAreaInfo->Context = &CpuReserved->Context;
// CpuAreaInfo->ContextEx = &CpuReserved->ContextEx;
//
CpuAreaInfo->Context = ALIGN_UP_POINTER_BY(

34/37

(PUCHAR)CpuArea + sizeof(WOW64_CPU_AREA),
AlignOfContext
);
CpuAreaInfo->ContextEx = ALIGN_UP_POINTER_BY(
(PUCHAR)Context + SizeOfContext + sizeof(CONTEXT_EX),
sizeof(PVOID)
);
CpuAreaInfo->ContextFlagsLocation = ContextFlagsLocation;
CpuAreaInfo->CpuArea = CpuArea;
CpuAreaInfo->ContextFlag = ContextFlag;
CpuAreaInfo->MachineType = CpuReserved->MachineType;
return STATUS_SUCCESS;
}
//
// wow64.dll
//
//
// WOW64INFO, based on:
// wow64t.h (WRK: https://github.com/mic101/windows/blob/master/WRK-
v1.2/public/internal/base/inc/wow64t.h#L269)
//
#define WOW64_CPUFLAGS_MSFT64 0x00000001
#define WOW64_CPUFLAGS_SOFTWARE 0x00000002
typedef struct _WOW64INFO {
ULONG NativeSystemPageSize;
ULONG CpuFlags;
ULONG Wow64ExecuteFlags;
ULONG Unknown1;
USHORT NativeMachineType;
USHORT EmulatedMachineType;
} WOW64INFO, *PWOW64INFO;
//
// Thread Local Storage (TLS) support. TLS slots are statically allocated.
// wow64tls.h (WRK: https://github.com/mic101/windows/blob/master/WRK-
v1.2/public/internal/base/inc/wow64tls.h#L23)
// Note: Not all fields probably matches their names on Windows 10.
//
#define WOW64_TLS_STACKPTR64 0 // contains 64-bit stack ptr when simulating 32-bit code
#define WOW64_TLS_CPURESERVED 1 // per-thread data for the CPU simulator
#define WOW64_TLS_INCPUSIMULATION 2 // Set when inside the CPU
#define WOW64_TLS_TEMPLIST 3 // List of memory allocated in thunk call.
#define WOW64_TLS_EXCEPTIONADDR 4 // 32-bit exception address (used during exception unwinds)
#define WOW64_TLS_USERCALLBACKDATA 5 // Used by win32k callbacks
#define WOW64_TLS_EXTENDED_FLOAT 6 // Used in ia64 to pass in floating point
#define WOW64_TLS_APCLIST 7 // List of outstanding usermode APCs
#define WOW64_TLS_FILESYSREDIR 8 // Used to enable/disable the filesystem redirector
#define WOW64_TLS_LASTWOWCALL 9 // Pointer to the last wow call struct (Used when wowhistory is
enabled)
#define WOW64_TLS_WOW64INFO 10 // Wow64Info address (structure shared between 32-bit and 64-bit
code inside Wow64).
#define WOW64_TLS_INITIAL_TEB32 11 // A pointer to the 32-bit initial TEB
#define WOW64_TLS_PERFDATA 12 // A pointer to temporary timestamps used in perf measurement
#define WOW64_TLS_DEBUGGER_COMM 13 // Communicate with 32bit debugger for event notification
#define WOW64_TLS_INVALID_STARTUP_CONTEXT 14 // Used by IA64 to indicate an invalid startup
context. After startup, it stores a pointer to the context.
#define WOW64_TLS_SLIST_FAULT 15 // Used to retry RtlpInterlockedPopEntrySList faults
#define WOW64_TLS_UNWIND_NATIVE_STACK 16 // Forces an unwind of the native 64-bit stack after an
APC
#define WOW64_TLS_APC_WRAPPER 17 // Holds the Wow64 APC jacket routine
#define WOW64_TLS_IN_SUSPEND_THREAD 18 // Indicates the current thread is in the middle of
NtSuspendThread. Used by software CPUs.
#define WOW64_TLS_MAX_NUMBER 19 // Maximum number of TLS slot entries to allocate
typedef struct _WOW64_ERROR_CASE {

35/37

ULONG Case;
NTSTATUS TransformedStatus;
} WOW64_ERROR_CASE, *PWOW64_ERROR_CASE;
typedef struct _WOW64_SERVICE_TABLE_DESCRIPTOR {
//
// struct _KSERVICE_TABLE_DESCRIPTOR {
//
// //
// // Pointer to a system call table (array of function pointers).
// //
//
// PULONG_PTR Base;
//
// //
// // Pointer to a system call count table.
// // This field has been set only on checked (debug) builds,
// // where the Count (with the corresponding system call index)
// // has been incremented with each system call.
// // On non-checked builds it is set to NULL.
// //
//
// PULONG Count;
//
// //
// // Maximum number of items in the system call table.
// // In ntoskrnl.exe it corresponds with the actual number
// // of system calls. In wow64.dll it is set to 4096.
// //
//
// ULONG Limit;
//
// //
// // Pointer to a system call argument table.
// // The elements in this table actually contain how many
// // bytes on the stack are assigned to the function parameters
// // for a particular system call.
// // On 32-bit systems, if you divide this number by 4, you'll
// // get the the number of arguments that the system call expects.
// //
//
// PUCHAR Number;
// };
//
KSERVICE_TABLE_DESCRIPTOR Descriptor;
//
// Extended fields of the WoW64 servie table:
// Wow64HandleSystemServiceError
//
WOW64_ERROR_CASE ErrorCaseDefault;
PWOW64_ERROR_CASE ErrorCase;
} WOW64_SERVICE_TABLE_DESCRIPTOR, *PWOW64_SERVICE_TABLE_DESCRIPTOR;
#define WOW64_NTDLL_SERVICE_INDEX 0
#define WOW64_WIN32U_SERVICE_INDEX 1
#define WOW64_KERNEL32_SERVICE_INDEX 2
#define WOW64_USER32_SERVICE_INDEX 3
#define WOW64_SERVICE_TABLE_MAX 4
WOW64_SERVICE_TABLE_DESCRIPTOR ServiceTables[WOW64_SERVICE_TABLE_MAX];
typedef struct _WOW64_LOG_SERVICE
{
PVOID Reserved;
PULONG Arguments;
ULONG ServiceTable;

36/37

ULONG ServiceNumber;
NTSTATUS Status;
BOOLEAN PostCall;
} WOW64_LOG_SERVICE, *PWOW64_LOG_SERVICE;
NTSTATUS
Wow64HandleSystemServiceError(
In NTSTATUS ExceptionStatus,
In PWOW64_LOG_SERVICE LogService
)
/*++
Routine description:
This routine transforms exception from native system
call to WoW64-compatible NTSTATUS.
Arguments:
ExceptionStatus - NTSTATUS raised from executing system call.
LogService - Information about the WoW64 system call.
Return Value:
Transformed NTSTATUS.
--*/
{
PWOW64_SERVICE_TABLE_DESCRIPTOR ServiceTable;
PWOW64_ERROR_CASE ErrorCaseTable;
ULONG ErrorCase;
NTSTATUS TransformedStatus;
ErrorCaseTable = ServiceTables[LogService->ServiceTable].ErrorCase;
if (!ErrorCaseTable)
{
ErrorCaseTable = &ServiceTables[LogService->ServiceTable].ErrorCaseDefault;
}
ErrorCase = ErrorCaseTable[LogService->ServiceNumber].ErrorCase;
TransformedStatus = ErrorCaseTable[LogService->ServiceNumber].TransformedStatus;
switch (ErrorCase)
{
case 0:
return ExceptionStatus;
case 1:
NtCurrentTeb()->LastErrorValue = RtlNtStatusToDosError(ExceptionStatus);
return ExceptionStatus;
case 2:
return TransformedStatus;
case 3:
NtCurrentTeb()->LastErrorValue = RtlNtStatusToDosError(ExceptionStatus);
return TransformedStatus;
default:
return STATUS_INVALID_PARAMETER;
}
}

view raw
2_appendix.h
hosted with ❤ by GitHub

References
How does one retrieve the 32-bit context of a Wow64 program from a 64-bit process on Windows Server 2003 x64?

http://www.nynaeve.net/?p=191

Mixing x86 with x64 code

http://blog.rewolf.pl/blog/?p=102

Windows 10 on ARM

https://channel9.msdn.com/Events/Build/2017/P4171

Knockin’ on Heaven’s Gate – Dynamic Processor Mode Switching

http://rce.co/knockin-on-heavens-gate-dynamic-processor-mode-switching/

https://gist.github.com/wbenny/41b2bf4256f28d61bcc336f10650b3d2/raw/7cabd2fcd486a7e96958823286a08750beb962b0/2_appendix.h
https://gist.github.com/wbenny/41b2bf4256f28d61bcc336f10650b3d2#file-2_appendix-h
https://github.com/
http://www.nynaeve.net/?p=191
http://blog.rewolf.pl/blog/?p=102
https://channel9.msdn.com/Events/Build/2017/P4171
http://rce.co/knockin-on-heavens-gate-dynamic-processor-mode-switching/

37/37

Closing “Heaven’s Gate”
http://www.alex-ionescu.com/?p=300

Previous Post
Next Post

http://www.alex-ionescu.com/?p=300
https://undefined/2018/10/16/kdnet-over-usb.html
https://undefined/2024/11/21/mmscrubmemory.html

