
1/9

blog.rewolf.pl
/blog/

Mixing x86 with x64 code
ReWolf ⋮

Few months ago I was doing some small research about possibility of running native x64 code in 32-bits
processes under the WoW64 layer. I was also checking it the other way round: run native x86 code inside
64-bits processes. Both things are possible and as far as I googled some people used it already:

http://vx.netlux.org/lib/vrg02.html
http://www.corsix.org/content/dll-injection-and-wow64
http://int0h.wordpress.com/2009/12/24/the-power-of-wow64/
http://int0h.wordpress.com/2011/02/22/anti-anti-debugging-via-wow64/

Unfortunately I wasn’t aware of any of above results when I was doing my research, so I’ll just present my
independent insights ;)

UPDATE:

All mentioned tricks (with necessary bugfixes and Windows 10 support) are currently part of the

WoW64Ext library, that can be found on the github: https://github.com/rwfpl/rewolf-wow64ext

x86 <-> x64 Transition

The easiest method to check how x86 <-> x64 transition is made is to look at any syscall in the 32-bits
version of ntdll.dll from x64 version of windows:

32-bits ntdll from Win7 x86 32-bits ntdll from Win7 x64
mov eax, X

mov edx, 7FFE0300h

call dword ptr [edx]

 ;ntdll.KiFastSystemCall

retn Z

mov eax, X

mov ecx, Y

lea edx, [esp+4]

call dword ptr fs:[0C0h]

 ;wow64cpu!X86SwitchTo64BitMode

add esp, 4

ret Z

As you may see, on the 64-bits systems there is a call to fs:[0xC0] (wow64cpu!X86SwitchTo64BitMode)
instead of a standard call to ntdll.KiFastSystemCall. wow64cpu!X86SwitchTo64BitMode is implemented as a
simple far jump into the 64-bits segment:

	 wow64cpu!X86SwitchTo64BitMode:

	 748c2320 jmp 0033:748C271E ;wow64cpu!CpupReturnFromSimulatedCode

That’s all magic behind switching x64 and x86 modes on 64-bits versions of Windows. Moreover it also
works on non-WoW64 processes (standard native 64-bits applications), so 32-bits code can be run inside

http://blog.rewolf.pl/blog/?p=102
http://vx.netlux.org/lib/vrg02.html
http://www.corsix.org/content/dll-injection-and-wow64
http://int0h.wordpress.com/2009/12/24/the-power-of-wow64/
http://int0h.wordpress.com/2011/02/22/anti-anti-debugging-via-wow64/
https://github.com/rwfpl/rewolf-wow64ext

2/9

64-bits applications. Summing things up, for every process (x86 & x64) running on 64-bits Windows there
are allocated two code segments:

cs = 0x23 -> x86 mode
cs = 0x33 -> x64 mode

Running x64 code inside 32-bits process

At first I’ve prepared few macros that will be used to mark beginning and end of the 64-bits code:

#define EM(a) __asm __emit (a)

#define X64_Start_with_CS(_cs) \

{ \

	 EM(0x6A) EM(_cs) /* push _cs */

\

	 EM(0xE8) EM(0) EM(0) EM(0) EM(0) /* call $+5 */

\

	 EM(0x83) EM(4) EM(0x24) EM(5) /* add dword [esp], 5 */

\

	 EM(0xCB) /* retf */

\

}

#define X64_End_with_CS(_cs) \

{ \

	 EM(0xE8) EM(0) EM(0) EM(0) EM(0) /* call $+5 */

\

	 EM(0xC7) EM(0x44) EM(0x24) EM(4) /* */

\

	 EM(_cs) EM(0) EM(0) EM(0) /* mov dword [rsp + 4], _cs */

\

	 EM(0x83) EM(4) EM(0x24) EM(0xD) /* add dword [rsp], 0xD */

\

	 EM(0xCB) /* retf */

\

}

#define X64_Start() X64_Start_with_CS(0x33)

#define X64_End() X64_End_with_CS(0x23)

CPU is switched into x64 mode immediately after execution of the X64_Start() macro, and back to x86
mode right after the X64_End() macro. Above macros are position independent thanks to the far return

3/9

opcode.

It would be also useful to have ability to call x64 versions of APIs. I’ve tried to load x64 version of
kernel32.dll but it is not trivial task and I’ve failed, so I need to stick only with the Native API. The main
problem with 64-bits version of kernel32.dll is that there is already loaded x86 version of this library and x64
kernel32.dll have some additional checks that prevents proper loading. I believe that it is possible to
achieve this goal through some nasty hooks that will intercept kernel32!BaseDllInitialize, but it is very
complicated task. When I started this research, I was working on Windows Vista and I was able to load
(with some hacks) 64-bits versions of kernel32 and user32 libraries but they were not fully functional,
meanwhile I’ve switched to Windows 7 and method that was used on Vista isn’t working anymore.

Let’s back to the topic, to use Native APIs I need to locate x64 version of ntdll.dll in memory. To accomplish
this task I’m parsing InLoadOrderModuleList from _PEB_LDR_DATA structure. 64-bits _PEB can be
obtained from 64-bits _TEB, and obtaining 64-bits _TEB is similar to x86 platform (on x64 I need to use gs
segment instead of fs) :

	 mov eax, gs:[0x30]

It can be even simpler, because wow64cpu!CpuSimulate (function responsible for switching CPU to x86
mode) moves gs:[0x30] value into r12 register, so my version of getTEB64() looks like this:

//to fool M$ inline asm compiler I'm using 2 DWORDs instead of DWORD64

//use of DWORD64 will generate wrong 'pop word ptr[]' and it will break stack

union reg64

{

	 DWORD dw[2];

	 DWORD64 v;

};

//macro that simplifies pushing x64 registers

#define X64_Push(r) EM(0x48 | ((r) >> 3)) EM(0x50 | ((r) & 7))

WOW64::TEB64* getTEB64()

{

	 reg64 reg;

	 reg.v = 0;

	 X64_Start();

	 //R12 register should always contain pointer to TEB64 in WoW64 processes

	 X64_Push(_R12);

	 //below pop will pop QWORD from stack, as we're in x64 mode now

	 __asm pop reg.dw[0]

	 X64_End();

4/9

	 //upper 32 bits should be always 0 in WoW64 processes

	 if (reg.dw[1] != 0)

	 	 return 0;

	 return (WOW64::TEB64*)reg.dw[0];

}

WOW64 namespace is defined in “os_structs.h” file that will be appended at the end of this post with the rest
of sample sources.

Function responsible for locating 64-bits ntdll.dll will be defined as follows:

DWORD getNTDLL64()

{

	 static DWORD ntdll64 = 0;

	 if (ntdll64 != 0)

	 	 return ntdll64;

	 WOW64::TEB64* teb64 = getTEB64();

	 WOW64::PEB64* peb64 = teb64->ProcessEnvironmentBlock;

	 WOW64::PEB_LDR_DATA64* ldr = peb64->Ldr;

	 printf("TEB: %08X\n", (DWORD)teb64);

	 printf("PEB: %08X\n", (DWORD)peb64);

	 printf("LDR: %08X\n", (DWORD)ldr);

	 printf("Loaded modules:\n");

	 WOW64::LDR_DATA_TABLE_ENTRY64* head = \

	 	 (WOW64::LDR_DATA_TABLE_ENTRY64*)ldr-

>InLoadOrderModuleList.Flink;

	 do

	 {

	 	 printf(" %ws\n", head->BaseDllName.Buffer);

	 	 if (memcmp(head->BaseDllName.Buffer, L"ntdll.dll",

	 	 	 head->BaseDllName.Length) == 0)

	 	 {

	 	 	 ntdll64 = (DWORD)head->DllBase;

	 	 }

	 	 head = (WOW64::LDR_DATA_TABLE_ENTRY64*)head-

>InLoadOrderLinks.Flink;

	 }

5/9

	 while (head != (WOW64::LDR_DATA_TABLE_ENTRY64*)&ldr-

>InLoadOrderModuleList);

	 printf("NTDLL x64: %08X\n", ntdll64);

	 return ntdll64;

}

To fully support x64 Native API calling I’ll also need some equivalent of GetProcAddress, which can be
easily exchanged by ntdll!LdrGetProcedureAddress. Below code is responsible for obtaining address of
LdrGetProcedureAddress:

DWORD getLdrGetProcedureAddress()

{

	 BYTE* modBase = (BYTE*)getNTDLL64();

	 IMAGE_NT_HEADERS64* inh = \

	 	 (IMAGE_NT_HEADERS64*)(modBase + ((IMAGE_DOS_HEADER*)modBase)-

>e_lfanew);

	 IMAGE_DATA_DIRECTORY& idd = \

	 	 inh->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];

	 if (idd.VirtualAddress == 0)

	 	 return 0;

	 IMAGE_EXPORT_DIRECTORY* ied = \

	 	 (IMAGE_EXPORT_DIRECTORY*)(modBase + idd.VirtualAddress);

	 DWORD* rvaTable = (DWORD*)(modBase + ied->AddressOfFunctions);

	 WORD* ordTable = (WORD*)(modBase + ied->AddressOfNameOrdinals);

	 DWORD* nameTable = (DWORD*)(modBase + ied->AddressOfNames);

	 //lazy search, there is no need to use binsearch for just one function

	 for (DWORD i = 0; i < ied->NumberOfFunctions; i++)

	 {

	 	 if (strcmp((char*)modBase + nameTable[i],

"LdrGetProcedureAddress"))

	 	 	 continue;

	 	 else

	 	 	 return (DWORD)(modBase + rvaTable[ordTable[i]]);

	 }

	 return 0;

}

As a cherry on top I’ll present helper function that will enable me to call x64 Native APIs directly from the
x86 C/C++ code:

6/9

DWORD64 X64Call(DWORD func, int argC, ...)

{

	 va_list args;

	 va_start(args, argC);

	 DWORD64 _rcx = (argC > 0) ? argC--, va_arg(args, DWORD64) : 0;

	 DWORD64 _rdx = (argC > 0) ? argC--, va_arg(args, DWORD64) : 0;

	 DWORD64 _r8 = (argC > 0) ? argC--, va_arg(args, DWORD64) : 0;

	 DWORD64 _r9 = (argC > 0) ? argC--, va_arg(args, DWORD64) : 0;

	 reg64 _rax;

	 _rax.v = 0;

	 DWORD64 restArgs = (DWORD64)&va_arg(args, DWORD64);

	 //conversion to QWORD for easier use in inline assembly

	 DWORD64 _argC = argC;

	 DWORD64 _func = func;

	 DWORD back_esp = 0;

	 __asm

	 {

	 	 ;//keep original esp in back_esp variable

	 	 mov back_esp, esp

	 	 ;//align esp to 8, without aligned stack some syscalls

	 	 ;//may return errors !

	 	 and esp, 0xFFFFFFF8

	 	 X64_Start();

	 	 ;//fill first four arguments

	 	 push _rcx

	 	 X64_Pop(_RCX);

	 	 push _rdx

	 	 X64_Pop(_RDX);

	 	 push _r8

	 	 X64_Pop(_R8);

	 	 push _r9

	 	 X64_Pop(_R9);

	 	 push edi

7/9

	 	 push restArgs

	 	 X64_Pop(_RDI);

	 	 push _argC

	 	 X64_Pop(_RAX);

	 	 ;//put rest of arguments on the stack

	 	 test eax, eax

	 	 jz _ls_e

	 	 lea edi, dword ptr [edi + 8*eax - 8]

	 	 _ls:

	 	 test eax, eax

	 	 jz _ls_e

	 	 push dword ptr [edi]

	 	 sub edi, 8

	 	 sub eax, 1

	 	 jmp _ls

	 	 _ls_e:

	 	 ;//create stack space for spilling registers

	 	 sub esp, 0x20

	 	 call _func

	 	 ;//cleanup stack

	 	 push _argC

	 	 X64_Pop(_RCX);

	 	 lea esp, dword ptr [esp + 8*ecx + 0x20]

	 	 pop edi

	 	 ;//set return value

	 	 X64_Push(_RAX);

	 	 pop _rax.dw[0]

	 	 X64_End();

	 	 mov esp, back_esp

	 }

8/9

	 return _rax.v;

}

Function is a bit long, but there are comments and the whole idea is pretty simple. The first argument is
address of x64 function that I want to call, second argument is number of arguments that specific function
takes. Rest of the arguments depends on the function that is supposed to be called, all of them should be
casted to DWORD64. Small example of X64Call() usage:

DWORD64 GetProcAddress64(DWORD module, char* funcName)

{

	 static DWORD _LdrGetProcedureAddress = 0;

	 if (_LdrGetProcedureAddress == 0)

	 {

	 	 _LdrGetProcedureAddress = getLdrGetProcedureAddress();

	 	 printf("LdrGetProcedureAddress: %08X\n",

_LdrGetProcedureAddress);

	 	 if (_LdrGetProcedureAddress == 0)

	 	 	 return 0;

	 }

	 WOW64::ANSI_STRING64 fName = { 0 };

	 fName.Buffer = funcName;

	 fName.Length = strlen(funcName);

	 fName.MaximumLength = fName.Length + 1;

	 DWORD64 funcRet = 0;

	 X64Call(_LdrGetProcedureAddress, 4,

	 	 (DWORD64)module, (DWORD64)&fName,

	 	 (DWORD64)0, (DWORD64)&funcRet);

	 printf("%s: %08X\n", funcName, (DWORD)funcRet);

	 return funcRet;

}

Running x86 code inside 64-bits process

It is very similar to the previous case with just one small inconvenience. Because 64-bits version of MS
C/C++ compiler doesn’t support inline assembly, all tricks should be done in a separate .asm file. Below
there are definitions of X86_Start and X86_End macros for MASM64:

X86_Start MACRO

	 LOCAL xx, rt

	 call $+5

	 xx equ $

9/9

	 mov dword ptr [rsp + 4], 23h

	 add dword ptr [rsp], rt - xx

	 retf

	 rt:

ENDM

X86_End MACRO

	 db 6Ah, 33h	 	 	 ; push 33h

	 db 0E8h, 0, 0, 0, 0	 	 ; call $+5

	 db 83h, 4, 24h, 5	 	 ; add dword ptr [esp], 5

	 db 0CBh		 	 	 ; retf

ENDM

Ending notes

Link to source code used in the article: http://rewolf.pl/stuff/x86tox64.zip

UPDATE:

All mentioned tricks (with necessary bugfixes and Windows 10 support) are currently part of the

WoW64Ext library, that can be found on the github: https://github.com/rwfpl/rewolf-wow64ext

http://rewolf.pl/stuff/x86tox64.zip
https://github.com/rwfpl/rewolf-wow64ext

