
1/6

archie-osu.github.io
/etw/hooking/2025/04/09/hooking-context-swaps-with-etw.html

Hooking Context Swaps with ETW
Archie ⋮ ⋮ 4/9/2025

Apr 9, 2025

Event Tracing for Windows (ETW) is a kernel mechanism designed to log certain activity happening in the
system. Despite its seemingly innocuous description, ETW can be a valuable source of information and a
very interesting hook point for both anti-cheats and other drivers.

Part 1: Finding the hook point

All ETW logging functions eventually end up inside nt!EtwpLogKernelEvent which, in summary,
reserves a buffer for the log using nt!EtwpReserveTraceBuffer and then writes the log to that buffer.

Deep inside nt!EtwpReserveTraceBuffer is where the real fun begins. The function accesses a
_WMI_LOGGER_CONTEXT structure - the kernel’s representation of a logger - and looks at the GetCpuClock
member before deciding on how to get the current time.

Anyone who’s ever looked at how InfinityHook works will immediately recognize this member variable, as it
was the hook point used by its creators. In the past, the variable was a function pointer that could be directly
swapped to easily gain execution at each captured event. In an effort to patch InfinityHook, Microsoft turned
the variable into an index, with each index representing a different way of getting time.

Looking at the relevant code inside EtwpReserveTraceBuffer, we can deduce what indices are valid,
together with their meaning:

const auto get_cpu_clock = LoggerContext->GetCpuClock;

LARGE_INTEGER current_time = { .QuadPart = 0 };

// Crash the computer if the index is invalid.

if (get_cpu_clock > 3)

 KeBugCheck(KERNEL_SECURITY_CHECK_FAILURE);

switch (get_cpu_clock)

{

case 3:

 current_time.QuadPart = __rdtsc();

 break;

https://archie-osu.github.io/etw/hooking/2025/04/09/hooking-context-swaps-with-etw.html
https://github.com/everdox/InfinityHook

2/6

case 2:

HalPrivateDispatchTable.HalTimerQueryHostPerformanceCounter(¤t_time);

 break;

case 1:

 current_time = KeQueryPerformanceCounter(nullptr);

 break;

case 0:

 current_time = RtlGetSystemTimePrecise();

 break;

default:

 KeBugCheck(KERNEL_SECURITY_CHECK_FAILURE);

}

For the purposes of this article, we’ll focus on what happens when the value is set to 1. At the beginning of
the nt!KeQueryPerformanceCounter function, we can see the following snippet.

Edit: Thanks to @sixtyvividtails on X, it has come to my attention that HalpPerformanceCounter is
actually a hal!_REGISTERED_TIMER structure.

LARGE_INTEGER result = { .QuadPart = 0 };

// This seems to always be true - the TimerProcessor constant (= 5) comes

from hal!_KNOWN_TIMER_TYPE.

if (HalpPerformanceCounter.KnownType == TimerProcessor)

{

 PVOID internal_data = HalpTimerGetInternalData(HalpPerformanceCounter);

 if (HalpTimerReferencePage)

 {

 result =

HalpPerformanceCounter.FunctionTable.QueryCounter(internal_data);

 }

 else

 {

 // ...

 result =

HalpPerformanceCounter.FunctionTable.QueryCounter(internal_data);

 // ...

 }

}

https://x.com/sixtyvividtails

3/6

Simply swapping the pointer to QueryCounter is enough to get us a hook. There is just one problem -
nt!KeQueryPerformanceCounter is a function that is called very often. It’s also impossible to set a
breakpoint inside, as any connected kernel debugger will hang upon the breakpoint being hit.

To prevent false positives (and get our debugger to work again), we need to figure out if calls made to our
hook come from ETW. In the tested version of Windows 11 24H2, there is a pointer to the logger context in
the r15 register if the call comes from ETW. In other versions of Windows (mainly Windows 10), one may
have to resort to scanning the stack for pointers to the logger context.

Part 2: Configuring the logger

Making ETW call our hook is not that simple - we will first need to access the GetCpuClock variable of the
_WMI_LOGGER_CONTEXT structure to make the kernel call our hook. While it is possible to create a new
logger and get a pointer to the structure that way, I chose to instead hijack the Circular Kernel Context
Logger (CKCL), as it is usually not used for anything important. A pointer to its context can be retrieved
quite easily, as there is a pointer chain that leads us right to it.

This pointer chain is stable for all tested versions of Windows, and is unlikely to change in the future. It
begins at the undocumented nt!EtwpDebuggerData global, whose RVA can be found via parsing the PDB
of ntoskrnl.exe.

PWMI_LOGGER_CONTEXT GetCKCLContext(

 IN UINT_PTR EtwpDebuggerData

)

{

 PVOID* debugger_data_silo = *reinterpret_cast<PVOID**>(EtwpDebuggerData +

0x10);

 return static_cast<PWMI_LOGGER_CONTEXT>(debugger_data_silo[2]);

}

We will also need to configure the logger’s target events (internally called EnableFlags). This is done via
the nt!ZwTraceControl function, which is thankfully exported for all drivers to use.

The function takes a _WMI_LOGGER_INFORMATION structure as the input buffer. While undocumented by
Microsoft, its definition can be found inside PHNT headers. Inside this structure, we will need to specify what
logger to target. This is done by setting the GUID and LoggerName.

Already having the _WMI_LOGGER_CONTEXT structure, extracting the information is simple:

kd> dt _WMI_LOGGER_CONTEXT poi(poi(EtwpDebuggerData+0x10)+0x10)

nt!_WMI_LOGGER_CONTEXT

 ...

https://ntdoc.m417z.com/wmi_logger_information

4/6

 +0x088 LoggerName : _UNICODE_STRING "Circular Kernel Context

Logger"

 ...

 +0x114 InstanceGuid : _GUID {54dea73a-ed1f-42a4-af71-3e63d056f174}

Upon configuring the logger and starting it, we’re ready to roll.

Part 3: Hooking context switches

We now have a function that gets called on each context switch - awesome! Finding the new thread is simple
- we’re executing in its context, meaning KeGetCurrentThread will get us a pointer to it’s object.

Looking at the functions called prior to our hook, we notice that the last function that has access to the
OldThread and NewThread parameters is EtwpLogContextSwapEvent, where they are passed in rdx
and r8. Breakpointing there shows that rbx and rdi contain copies of the two arguments.

1: kd> r rbx, rdx, rdi, r8

rbx=ffffd8878177d080 rdx=ffffd8878177d080

rdi=ffffd8878627c080 r8=ffffd8878627c080

nt!EtwpLogContextSwapEvent:

fffff8028bbd79d0 48895c2410 mov qword ptr [rsp+10h],rbx

ss:0018:fffff500a54bbef8=fffff8028bbd7885

These registers are both pushed onto the stack in the function prologue, with the current thread (stored in
rdi and r8) coming first:

kd> uu EtwpLogContextSwapEvent

nt!EtwpLogContextSwapEvent:

fffff805`81bd79d0 48895c2410 mov qword ptr [rsp+10h],rbx

fffff805`81bd79d5 55 push rbp

fffff805`81bd79d6 56 push rsi

fffff805`81bd79d7 57 push rdi

Looking at the code, we can figure out that rbx will be at a constant offset of 0x28 from rdi on the stack.
Given we know the value of rdi (it’s a pointer to the current thread), we can scan the stack up from our
hook, and look at each possible thread:

// We loop until stack_limit - 0x28 to prevent OOB access when checking the

previous thread.

for (ULONG_PTR iterator = rsp; iterator < (stack_limit - 0x28); iterator +=

sizeof(PKTHREAD))

{

5/6

 PKTHREAD thread_at_iterator = *reinterpret_cast<PKTHREAD*>(iterator);

 // If we found our own thread's pointer on the stack

 if (thread_at_iterator == current_thread)

 {

 // Look at the thread at the target offset

 PKTHREAD possible_prev_thread = *reinterpret_cast<PKTHREAD*>(iterator

+ 0x28);

 PDISPATCHER_HEADER possible_dispatcher_header =

reinterpret_cast<PDISPATCHER_HEADER>(possible_prev_thread) - 1;

 const ULONG_PTR possible_prev_thread_raw =

reinterpret_cast<ULONG_PTR>(iterator + 0x28);

 // Threads are not stack-allocated.

 if (possible_prev_thread_raw >= stack_base &&

possible_prev_thread_raw <= stack_limit)

 continue;

 // Threads are not in userspace.

 if (possible_prev_thread < MmSystemRangeStart)

 continue;

 // Threads have accessible memory.

 if (!MmIsAddressValid(possible_prev_thread) ||

!MmIsAddressValid(possible_dispatcher_header))

 continue;

 // Reference the thread to check the object type.

 NTSTATUS status = ObReferenceObjectByPointer(

 possible_prev_thread,

 0,

 *PsThreadType,

 KernelMode

);

 // If the function fails, we can be sure that the address is not one

of a thread.

 if (!NT_SUCCESS(status))

 continue;

 // Dereference the thread, and store it.

6/6

 ObfDereferenceObject(possible_prev_thread);

 previous_thread = possible_prev_thread;

 break;

 }

}

Part 4: Usage & Detection

Many anti-cheat solutions have started hooking context swaps in an effort to create hidden memory regions
that are only visible to certain threads in the system. One notable example is Riot Vanguard which uses a
different method that I’ll definitely write about in the near future.

The hook can also be used to detect threads executing in unsigned memory, as there’s little preventing you
from walking the stack of the old thread, and seeing whether code is running in any region it shouldn’t be.

As for detection, there’s the obvious artifact of HalpPerformanceCounter + 0x70 pointing outside of
ntoskrnl.exe, and GetCpuClock being set to 1 in the CKCL. Although the latter may happen under
normal system operation (and could therefore trigger false positives), it’s never been set by default over the
course of my testing.

Part 5: Epilogue

This is my very first written article, inspired by reading countless posts from people far smarter than I am.
One person I should definitely mention is Denis Skvortcov who wrote about this method more than two years
ago when reverse-engineering Avast Antivirus.

I should also thank you, the reader, for sticking with me this far - I hope we meet again next time!

https://support-valorant.riotgames.com/hc/en-us/articles/360046160933-What-is-Vanguard
https://the-deniss.github.io/
https://the-deniss.github.io/posts/2022/12/08/hooking-system-calls-in-windows-11-22h2-like-avast-antivirus.html

