
1/6

bohops May 4, 2019

Abusing Catalog Hygiene to Bypass
Application Whitelisting

bohops.com/2019/05/04/abusing-catalog-file-hygiene-to-bypass-application-whitelisting

Introduction

Last week, I presented COM Under The Radar: Circumventing Application Control Solutions
at BsidesCharm 2019.  In the presentation, I briefly discussed COM and highlighted a few
techniques for bypassing Windows application control solutions.  One of those techniques
takes advantage of an issue with catalog hygiene where old code often remains signed in
updated versions of Windows.

In this short post, we’ll discuss Catalog Hygiene, Application Whitelisting (AWL) bypass as a
vector for abuse, and defensive considerations.

Catalog Hygiene

Code signing is a widely adopted technique for validating file integrity and authenticity.  In
Windows, Authenticode is the code signing technology that is “designed to help give users
an assurance as to who actually created the code that they are running…and to verify that
the code has not been altered or tampered with after being issued” (Digicert).  Microsoft
implements Authenticode in two ways:

Embedded – An Authenticode signature blob is actually stored in the file.
Catalog File – A file containing a list of file thumbprints is Authenticode signed
(Microsoft Docs).

Many “signed” files in Windows are actually catalog signed.  These “signed” files do not
actually contain an Authenticode signature blob.  Instead, the files are actually “signed by
proxy” where a thumbprint (hash) of the file is actually stored within the catalog file itself.  An
easy way to determine whether a file is signed and by which method is with PowerShell’s
Get-AuthenticodeSignature cmdlet:

https://bohops.com/2019/05/04/abusing-catalog-file-hygiene-to-bypass-application-whitelisting/
https://bohops.com/talks-projects/
https://www.digicert.com/code-signing/microsoft-authenticode.htm
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/catalog-files


2/6

Interestingly, I recently discovered that Microsoft ‘managed’ catalog files are not
(consistently) maintained over the course of an operating system build life after major patch
events.  This means that code (e.g. binaries, scripts, etc.) signed in earlier versions of an
operating system build (e.g. Windows 10 Version 1803 Build 17134.1) may still be valid when
updated (e.g. to Windows 10 Version 1803 Build 17134.472).  In short, this discovery allows
for the re-introduction of old, vulnerable code.  Let’s discuss one vector of abuse: AWL
Bypass.

Application Whitelisting Bypass

In January, I blogged about CVE-2018-8492, a Windows Defender Application Control
(Device Guard) Bypass that allowed for the execution of unsigned scriptlet code using XML
stylesheet transformation.  Under the Windows Lockdown Policy (WLDP), the
Microsoft.XMLDOM.1.0 (Microsoft.XMLDOM) COM object could be instantiated, and the
‘vulnerable’ transformNode method could be accessed and invoked prior to patching –

https://bohops.com/wp-content/uploads/2019/05/signed.png
https://bohops.com/2019/01/10/com-xsl-transformation-bypassing-microsoft-application-control-solutions-cve-2018-8492/


3/6

The binary server behind Microsoft.XML, MSXML3.DLL, was patched (replaced) in
November 2018.  After becoming a formal security boundary, the transformNode method
could no longer invoke the scriptlet code –

When building a new WDAC virtual machine, a test case (question) came to mind – could I
re-introduce old code to ‘replay’ attacks for circumventing the same security controls?

https://bohops.com/wp-content/uploads/2019/01/dg_clm_bypass_xmldom.png
https://bohops.com/wp-content/uploads/2019/05/picture1.png


4/6

After copying over a few of these binaries (in this case, MSXML3.dll and its dependencies), I
discovered that previous versions of the target binaries within the same build series were
actually still catalog signed, and therefore still trusted by the OS –

*Note: In some cases, vulnerable binaries may actually still reside in the WinSxS directories

In a previous post, I blogged about COM Hijacking, which seemed like an approachable
method for taking advantage of this catalog file signing discovery.   As you may recall, most
COM class (meta)data is stored within the
HKEY_LOCAL_MACHINE\SOFTWARE\CLASSES\CLSID (HKLM) registry key structure for
registered COM components.  This metadata is actually merged into
HKEY_CLASSES_ROOT\CLSID (HKCR).  Interestingly, an attacker can override these
values by re-creating a similar structure within
HKEY_CURRENT_USER\SOFTWARE\CLASSES\CLSID (HKCU).  These values will take
precedence and override the HKLM values when merged into HKCR.  For our test case, we
can take advantage of this by exporting the HKLM Class ID (CLSID) sub key structure for the
Microsoft.XMLDOM.1.0 COM class, changing the necessary values to import into HKCU,
and pointing the server (InProcServer32) key value to our ‘legacy’ MXSML3.dll binary –

https://bohops.com/wp-content/uploads/2019/05/picture5.png
https://bohops.com/2018/08/18/abusing-the-com-registry-structure-part-2-loading-techniques-for-evasion-and-persistence/
https://bohops.com/wp-content/uploads/2019/05/picture2.png


5/6

After importing the keys back into the Registry, the changed key values are merged into
HKCR –

With all the necessary changes in place, we simply replay the steps from our initial attack
and observe the results –

Success!  We proved that we could take advantage of the catalog hygiene issue and replay
an attack using old, signed code to bypass WDAC.

Defensive Considerations

https://bohops.com/wp-content/uploads/2019/05/picture3.png
https://bohops.com/wp-content/uploads/2019/05/picture4.png


6/6

Microsoft opted to address this reported issue by adding new rules for several
offending DLLs to the WDAC Recommended Block Rules Policy instead of resolving
the core issue through patching.  Although this action will prevent a few known
circumvention techniques, catalog hygiene still remains a problem.  Other vectors for
abuse likely still exist, such as WDAC bypass techniques.  Regardless, it is still
recommended to incorporate the block rules into your WDAC policies if this AWL
solution is used within your organization.
Detecting COM Hijacking may be very difficult depending on the visibility within your
environment and the tracing configuration/capability of your implemented EDR
solution.  Monitoring for changed registry keys, especially for COM class objects and
InprocServer32/LocalServer32 keys may be useful (especially if the replaced binaries
are outside of the typical System32/SysWow64 directory paths).  A few interesting
“Active Scripting” binaries to look out for are scrobj.dll, msxml3.dll, msxml6.dll,
mshtml.dll, wscript.exe, and cscript.exe.
Many of the same recommendations from this blog post still apply for addressing
WDAC gaps.  Increasing the visibility to spot Active Scripting, PowerShell, and COM
object instantiation abuse are absolutely critical.

Resources

For more information about COM, related WDAC bypasses, and subverting trust in Windows,
I highly recommend checking out the following talks/whitepapers from these incredible
researchers:

Reporting Timeline

December 2018: MSRC was notified about this issue. A case # was assigned.
March 2019: MSRC case worker stated that a patch and CVE would be issued.
April 2019: MSRC decided not to patch. Block Rules for offending DLLs were added to
the WDAC Recommended Block Rules Policy.

Conclusion

Thanks for taking the time out of your busy day to read this post – hopefully it is useful!

~ Bohops

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-block-rules
https://bohops.com/2019/01/10/com-xsl-transformation-bypassing-microsoft-application-control-solutions-cve-2018-8492/
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-block-rules

