
1/20

Dima van de Wouw October 15, 2024

Introducing Early Cascade Injection: from Windows
process creation to stealthy injection

outflank.nl/blog/2024/10/15/introducing-early-cascade-injection-from-windows-process-creation-to-stealthy-injection

By Guido Miggelenbrink at Outflank

Introduction

In this blog post we introduce a novel process injection technique named Early Cascade
Injection, explore Windows process creation and identify how several Endpoint Detection
and Response systems (EDRs) initialize their in-process detection capabilities. This new
Early Cascade Injection technique targets the user-mode part of process creation and
combines elements of the well-known Early Bird APC Injection technique with the recently
published EDR-Preloading technique by Marcus Hutchins [1]. Unlike Early Bird APC
Injection, this new technique avoids queuing cross-process Asynchronous Procedure Calls
(APCs), while having minimal remote process interaction. This makes Early Cascade
Injection a stealthy process injection technique that is effective against top tier EDRs while
avoiding detection.

To provide insights into Early Cascade Injection’s internals, this blog also presents a timeline
of the user-mode process creation flow. This overview illustrates how Early Cascade
Injection operates and pinpoints the exact moment at which it intervenes in process creation.
Furthermore, we compare that to the initialization timing of EDR user-mode detection
measures.

Now, let’s dive into the details of Windows process creation, Early Bird APC Injection, and
EDR-Preloading. Once we have a solid understanding of these topics, we can proceed to
explore Early Cascade Injection.

Understanding Windows process creation

Process creation APIs

In Windows there are various APIs to create a process, such as CreateProcess,
CreateProcessAsUser, and CreateProcessWithLogon, as shown in figure 1. Ultimately, all
these functions invoke the NAPI NtCreateUserProcess in ntdll.dll. This function is
responsible for initiating process creation by switching control to the kernel, where the
equally named function NtCreateUserProcess is executed.

https://www.outflank.nl/blog/2024/10/15/introducing-early-cascade-injection-from-windows-process-creation-to-stealthy-injection/
https://www.linkedin.com/in/guido-miggelenbrink-63aa0a166/
https://www.malwaretech.com/2024/02/bypassing-edrs-with-edr-preload.html


2/20

Each of these functions include the dwCreationFlags parameter, which controls how the
process is created. In this post, we’ll encounter the CREATE_SUSPENDED flag, which instructs
the kernel to create the new process’s initial thread in a suspended state [2]. The thread
remains suspended until the ResumeThread function is called.

Obviously, these functies also have a parameter specifying the path to the application’s
image file for which a process is to be created. Refer to the MSDN for the other parameters
and flags of these APIs [2].

Figure 1: Process creation functions (Source: Windows Internals, Part 1)

Kernel-mode and user-mode process creation

Process creation has two parts: kernel-mode and user-mode. It begins with the kernel-mode
part, initiated by NtCreateUserProcess. Once the process’s context and environment are
created in kernel-mode, the initial thread of the process completes process creation in user-
mode.

The kernel-mode part is responsible for opening the image file of the specified application
and mapping it into memory. It then creates process-specific and thread-specific objects,
maps the native library ntdll.dll into the process, followed by the creation of the process’s
initial thread. If the CREATE_SUSPENDED flag is specified, this thread is created in suspended
state, waiting to be resumed before control returns to user-mode for the remainder of the
process creation.

The module ntdll.dll is the first DLL loaded into a process and it is the only DLL loaded in
kernel-mode, all other modules are loaded in user-mode. Further, ntdll.dll includes the
exported function LdrInitializeThunk, which handles the user-mode part of process
creation before the application’s main entry point runs. This function is also known as the
image loader and the functions related to it in ntdll.dll are prefixed with Ldr.

https://learn.microsoft.com/en-us/windows/win32/procthread/process-creation-flags
https://learn.microsoft.com/en-us/windows/win32/procthread/process-creation-flags
https://www.outflank.nl/wp-content/uploads/2024/10/CreateProcessAPIs.png


3/20

Returning to the newly created thread: upon resumption of this suspended thread, it starts
executing LdrInitializeThunk, the user-mode part of process creation. After, the new
process is fully initialized and ready to run the application. The initial thread then begins
executing the application’s main entry point.

Note that using the CREATE_SUSPENDED flag pauses process creation just before the
initial thread switches to user-mode to run LdrInitializeThunk. This is particularly
interesting because user-mode malware can interfere with process creation at this
point. Therefore, let’s take a closer look at what happens inside LdrInitializeThunk.

User-mode process creation: LdrInitializeThunk

LdrInitializeThunk is the first function executed in user-mode, marking the initial point
where malware and EDRs can intervene in a process. We will later explore how techniques
such as Early Bird APC Injection, EDR-Preloading and Early Cascade Injection interact with
LdrInitializeThunk. For now, let’s delve into the details of this function.

LdrInitializeThunk is a complex function responsible for the user-mode part of process
creation. It handles numerous process initialisation tasks, which are listed and briefly
described in the Windows Internals, Part 1 book. However, the book does not cover which
subordinate functions within LdrInitializeThunk are responsible for these tasks. Hence, to
gain a deeper understanding of LdrInitializeThunk and its subordinate functions, we
analysed it using x64dbg and IDA Pro.

Based on this analysis, we created a call graph that outlines the sequence of events in the
user-mode part of process creation. This timeline includes the functions relevant to this post
and thus omits some tasks and associated functions of LdrInitializeThunk. Additionally,
please note that this call graph reflects our interpretation and may not be entirely accurate.

The call graph of LdrInitializeThunk is depicted below, followed by a description of the
tasks that can be recognized in it. Key functions are highlighted in color.

Call graph LdrInitializeThunk:



4/20

https://www.outflank.nl/wp-content/uploads/2024/10/FullCallGraphV3.png


5/20

This call graph illustrates the following tasks performed by LdrInitializeThunk:

1. Initialises Loader Lock in the Process Environment Block (PEB).
The PEB is a data structure that stores information about the process’s context
and environment. Loader Lock will be discussed later.

2. Sets up the Mutable Read-Only Heap Section (.mrdata).
3. Creates and inserts the first loader data table entry (LDR_DATA_TABLE_ENTRY) for

ntdll.dll into the module database (PEB_LDR_DATA).
The module database, stored in the PEB, contains three lists that keep track of the
process’s loaded modules: InLoadOrderModuleList, InMemoryOrderModuleList,
and InInitializationOrderModuleList. Each entry in these lists includes
details such as the module’s base address, entry point, and path.

4. Initialises the parallel loader.
The parallel loader is responsible for loading the application’s imported DLLs
concurrently, using a pool of threads. It sets up a LdrpWorkQueue that contains
the application’s first order dependencies to be loaded. Then, the parallel threads
load these dependencies, recursive ones are added to the work queue. For more
information on the Windows parallel loader, refer to this insightful blog by [3].

5. Creates and inserts the second loader data table entry (LDR_DATA_TABLE_ENTRY) for the
application’s executable into the module database (PEB_LDR_DATA).

6. Loads the initial modules kernel32.dll and kernelbase.dll.
These modules are always loaded into every process. Like all other modules,
these are also added to the module database (PEB_LDR_DATA).

7. If enabled, initializes the Shim Engine and parses the Shim Database. The Shim
Engine is by default off.

The Shim Engine applies compatibility fixes (shims) to applications without
modifying their code. It intercepts and modifies API calls to address compatibility
issues. For more details, refer to [11].

8. If enabled, it uses the parallel loader to load the application’s remaining dependencies
into the process; otherwise, DLLs are loaded sequentially.

After mapping and initializing all dependencies, LdrInitializeThunk invokes the following
functions:

9. NtTestAlert: Empties the APC queue of the calling thread by switching to kernel-
mode, which then calls KiUserApcDispatcher to execute the queued APCs.

10. NtContinue: Sets the initial thread’s execution context to RtlUserThreadStart, which
subsequently invokes the main entry point of the application.

https://www.outflank.nl/wp-content/uploads/2024/10/FullCallGraphV3.png
https://blogs.blackberry.com/en/2017/10/windows-10-parallel-loading-breakdown
https://techcommunity.microsoft.com/t5/ask-the-performance-team/demystifying-shims-or-using-the-app-compat-toolkit-to-make-your/ba-p/374947


6/20

At the very bottom of the call graph, we see RtlRaiseStatus. This function is normally never
executed, as NtContinue redirects the execution flow to the application’s main entry point.
However, if the application crashes, RtlRaiseStatus is triggered.

Although the call graph is simplified, it remains complex. Hopefully, it provides some insight
into the internals of process creation. To clarify the key points relevant to this blog, we
created an abstraction that captures the essential information you need to remember. The
red comments describe the operation that the preceding block of functions accomplish.

Abstracted call graph LdrInitializeThunk:

In this abstraction of the call graph, we observe that LdrInitializeThunk loads
kernel32.dll and kernelbase.dll, then it loads all other dependencies, clears its
APC queue (NtTestAlert), and finally begins executing the application’s main entry
point (NtContinue). Additionally, we observe that loading a DLL via LdrLoadDll
consists of two steps: mapping and initialization.

How LdrLoadDll works

Loading dependencies is a major component of LdrInitializeThunk, which is probably why
it is called the image loader. Moreover, the techniques EDR-Preloading and Early Cascade
Injection specifically intervene in this LdrLoadDll function during process creation.
Therefore, we also briefly cover how LdrLoadDll loads dependencies. After that, we will start
exploring the interesting stuff: process injection.

https://www.outflank.nl/wp-content/uploads/2024/10/AbstractedCallGraphV4.png


7/20

The most important aspect to remember after this section is thatLdrLoadDll loads a
DLL in two steps: first it maps the DLL’s image file into memory through
LdrpFindOrPrepareLoadingModule and second it initializes the DLL via
LdrpPrepareModuleForExecution. If a DLL has recursive dependencies, these are
first mapped into memory and only then each module is initialized. Initialization is
performed in reverse order to follow the correct dependency sequence.

Now, let’s delve into a bit more details and walk through the process of loading
kernel32.dll, the first module being loaded during process creation. Try to follow along in
the call graph. We start at LdrInitializeThunk which calls LdrpLoadDll to load
kernel32.dll. LdrpLoadDll invokes ntdll!LdrpFindOrPrepareLoadingModule for the first
step: mapping kernel32.dll into memory. The actual mapping is eventually performed by
the nested function NtMapViewOfSection. After, LdrpMapAndSnapDependency checks for
dependencies, and since kernel32.dll imports functions from kernelbase.dll,
LdrpLoadDependentModule maps kernelbase.dll into memory.

Once the two modules have been mapped into memory, the second part of LdrLoadDll
initializes the DLLs, carried out by LdrpPrepareModuleForExecution. This function invokes
LdrpCondenseGraph to create a dependency graph, which stores the order in which
dependencies must be initialized. Following, LdrpInitializeGraphRecurse processes this
graph and for each module in the graph LdrpInitializeNode is called. The first node in the
graph is kernelbase.dll which LdrpInitializeNode initialises through
LdrpCallInitRoutine. This function calls the entry point of kernelbase.dll. After that, the
same is performed to initialize kernel32.dll; hereafter, LdrLoadDll has finished loading
kernel32.dll.

Early Bird APC Injection

Now that we have a general understanding of process creation, let’s take a closer look at the
Early Bird APC Injection technique which was discovered by Cyberbit in 2018 [4]. This is a
well-known and effective process injection method that involves injecting code before the
execution of a process’s main entry point. Injecting this early in the process may evade EDR
detection measures, including hooks, if these measures are not loaded before APC
execution.

The Early Bird APC Injection technique works as follows:

1. Create a target process in suspended state (e.g. CreateProcess);
2. Allocate writeable memory in the target process (e.g. VirtualAllocEx);
3. Write malicious code to the allocated memory (e.g. WriteProcessMemory);
4. Queue an APC to the remote target process, the APC points to the malicious code

(e.g. QueueUserAPC);

https://www.cyberbit.com/endpoint-security/new-early-bird-code-injection-technique-discovered/


8/20

5. Resume the target process, upon resumption the APC is executed, running the
malicious code (e.g. ResumeThread).

As we previously learned, when a process is created in a suspended state (1), execution
halts just before the user-mode part of process creation, handled by LdrInitializeThunk.
At this point, the payload with malicious code is written into the target process (2, 3). Then,
an APC routine pointing to the payload is queued for execution in the suspended thread (4).
Last, the suspended thread is resumed (5).

On resumption of the thread, it starts execution at LdrInitializeThunk and one of final
tasks of LdrInitializeThunk is emptying the APC queue. Specifically, NtTestAlert is
responsible for emptying a threads APC queue by executing the APCs in it. This is when the
injected payload runs.

In the past, execution of the payload at this point was early enough to preempt EDR user-
mode detection measures, like hooks. However, modern EDR solutions often load their
detection measures earlier in the process creation timeline. Nonetheless, we found that a
popular EDR still loads its detection measures after NtTestAlert. For this particular EDR,
Early Bird APC Injection bypasses the EDR’s user-mode detection measures. Despite Early
Bird APC Injection does may no longer evade hooks of modern EDRs, it still remains very
useful for injection purposes.

Early Bird APC remains a valuable injection technique, even though it is less effective
as an evasion method against modern EDRs.

Nevertheless, as mentioned earlier, Early Bird APC Injection is likely to be detected due
to the suspicious cross-process queuing of an APC. Queuing an APC from one process
to another is known as cross-process APC queueing. This behaviour is suspicious and
closely monitored by EDRs. It’s difficult to hide cross-process APC queueing, making it a
strong indicator for detecting Early Bird APC Injection. In a moment, we will see how Early
Cascade Injection performs its injection without cross-process queuing and therefore goes
undetected against the EDRs we tested.

EDR-Preloading

Early Cascade Injection incorporates elements of EDR-Preloading. Therefore, let’s briefly
delve into EDR-Preloading, which was recently introduced in a blog by Marcus Hutchins,
who is known for stopping the WannaCry [1]. His blog inspired my research in this area,
thank you for that!

EDR-Preloading is designed to prevent EDRs from loading their user-mode detection
measures during process creation. For example, it prevents EDRs from initialising their
Hooking DLL, which significantly reduces an EDRs the visibility within the process as the
EDR is unable to intercept API calls. Techniques like this are becoming increasingly

https://www.malwaretech.com/2024/02/bypassing-edrs-with-edr-preload.html


9/20

important as Microsoft gradually restricts third-party access to the kernel, forcing EDR
detection measures from kernel-mode to user-mode. It is speculated that kernel restrictions
will be pushed further since the Crowdstrike incident took down 8.5 million Windows
systems, due to a faulty update in their kernel-level software [5].

How EDR-Preloading works: it begins by creating a process in suspended state and
hijacking the ntdll!AvrfpAPILookupCallbackRoutine callback pointer in ntdll.dll.
Hijacking involves assigning the start address of malicious code to the callback pointer and
enabling the callback pointer by setting ntdll!AvrfpAPILookupCallbacksEnabled to 1. As a
result, the callback pointer is executed during the user-mode part of process creation after
resuming the suspended process. Once invoked, the malicious code runs, thereby
taking control of the execution flow during process creation.

This malicious code runs very early in the process creation sequence when only ntdll.dll
is loaded. Specifically, the callback AvrfpAPILookupCallbackRoutine is triggered in the
initialisation part of LdrLoadDll, as illustrated in the call graph. Both the callback pointer
(ntdll!AvrfpAPILookupCallbackRoutine) and the boolean variable
(ntdll!AvrfpAPILookupCallbacksEnabled) are highlighted in the graph in light green and
green. This LdrLoadDll function is executed for the first time during the initialization of
kernelbase.dll, the first DLL to be loaded in user-mode. If EDRs load their detection
measures after this point, it is possible to prevent them from loading their detection
measures. A detailed explanation of this and how to implement it can be found in the EDR-
Preloading blog.

What we found interesting about the EDR-Preloading technique is that it possible to
get code execution just by overwriting a callback pointer in the target’s ntdll.dll
during process creation. However, this code execution is highly constrained.

Code execution limitations

The code execution obtained through ntdll!AvrfpAPILookupCallbackRoutine during
process initialisation is significantly constrained. These limitations are caused by the limited
number of available dependencies and the constraints imposed by the Loader Lock
synchronisation object.

Limited dependencies

At the point when the AvrfpAPILookupCallbackRoutine callback is invoked, only ntdll.dll
is fully loaded into the process. Consequently, code execution is restricted to the
undocumented NTAPI functions within ntdll.dll, significantly limiting the actions that can
be performed. The lack of access to other libraries, such as winhttp.dll, complicates the
execution of more complex operations, such as communicating with a command and control
(C2) server.

https://www.theverge.com/2024/9/12/24242947/microsoft-windows-security-kernel-access-features-crowdstrike


10/20

Furthermore, due to the presence of Loader Lock, no additional DLLs can be loaded, and no
new threads can be created.

Loader Lock

The ntdll!AvrfpAPILookupCallbackRoutine callback runs during the initialisation part of
LdrLoadDll, under the function LdrpPrepareModuleForExecution. More precisely, the
callback is triggered within LdrpInitializeNode, which handles the actual initialisation of a
DLL, as previously discussed. During the execution of LdrpInitializeNode, Loader Lock is
held to synchronize the loading and unloading of DLLs. The call graph shows that this
synchronization is managed by LdrpAcquireLoaderLock and released by
LdrpReleaseLoaderLock.

Loader Lock is a critical section object that prevents the loading of additional DLLs
and creation of new threads [8]. Critical sections are a synchronisation mechanism similar
to mutexes and semaphores, but they are designed to be more efficient and for single-
process synchronisation. For information on critical section objects, refer to the MSDN
documentation [8].

Loader Lock is acquired each time when a function needs access to the module database
(PEB_LDR_DATA), which is involved in tasks such as DLL loading, unloading, and thread
creation [9]. We discussed the module database earlier in step 3 of LdrInitializeThunk‘s
tasks. A well-known function that accesses the module database is GetModuleHandle, which
retrieves the base address of a DLL and is often used by malware to resolve undocumented
NTAPI functions. However, if this function is called while Loader Lock is active, such as
during the execution of AvrfpAPILookupCallbackRoutine, a deadlock occurs, causing the
process to hang. Similarly, attempting to load additional DLLs via functions like LdrLoadDll
results in a deadlock.

In summary, code execution through the callback pointer
AvrfpAPILookupCallbackRoutine during process initialisation is limited to the modules
already loaded into the process at that point (ntdll.dll). Additionally, Loader Lock
prevents the loading of additional DLLs and the creation of new threads, making it
difficult to execute tasks that require access to more modules. Despite these
limitations, the EDR-Preloading technique has demonstrated that there are just enough
capabilities to prevent EDRs from loading their detection measures.

Early Cascade Injection: A new process injection technique

What we found interesting about the EDR-Preloading technique is that you can get code
execution just by overwriting a callback pointer in the target’s ntdll.dll during process
creation. However, as we have seen, the code execution obtained through this callback is
highly restricted as Loader lock is enabled, making it impractical to run fully functional code,

https://learn.microsoft.com/en-us/windows/win32/sync/critical-section-objects
https://learn.microsoft.com/en-us/windows/win32/sync/critical-section-objects
https://elliotonsecurity.com/what-is-loader-lock/


11/20

such as an implant with networking capabilities. Therefore, we explored novel and alternative
techniques during process creation for process injection. As a results we developed Early
Cascade Injection, a novel code injection technique emerged from the restrictions imposed
by the Loader Lock.

An alternative callback pointer: g_pfnSE_DllLoaded

During our search for alternative injection techniques, we discovered an alternative
callback pointer that also allows code execution during the user-mode part of process
creation. This pointer, named g_pfnSE_DllLoaded, is located in the .mrdata section of
ntdll.dll. Unlike the AvrfpAPILookupCallbackRoutine, g_pfnSE_DllLoaded does not
appear to run under Loader Lock. This can be inferred from the call graph, where it is
highlighted in light blue and blue.

While not directly relevant to this blog, it might be interesting to understand what this pointer
belongs to. The g_pfnSE_DllLoaded pointer belongs to the Shim Engine, as indicated by its
name, the prefix g_pfnSE stands for “global function pointer Shim Engine”. The Shim Engine
is a Windows technology responsible for applying compatibility fixes, known as ‘shims,’
without modifying application code. It allows older applications to run on newer versions of
Windows, by intercepting and modifying API calls. Although rarely used and disabled by
default, the Shim Engine’s implementation is still present in ntdll.dll, along with its
pointers, including g_pfnSE_DllLoaded.

Let’s return to the key aspects of g_pfnSE_DllLoaded. The pointer can be manually
enabled by setting the g_ShimsEnabled boolean variable to 1, located in the .data
section of ntdll.dll. However, enabling this variable enables all Shim Engine related
pointers, not just g_pfnSE_DllLoaded. Each of these pointers require a valid address, and if
any remain uninitialized, the process will crash. This makes it impractical to exploit
g_pfnSE_DllLoaded alone without addressing the other pointers.

To overcome this, we focused specifically on g_pfnSE_DllLoaded as it is the first Shim
Engine pointer invoked during process creation. By targeting this pointer we can execute
code before any of the other unassigned pointers and prevent them from executing. This
method involves assigning the address of our shellcode to g_pfnSE_DllLoaded and enabling
g_ShimsEnabled to activate it. Upon execution, the shellcode immediately disables
g_ShimsEnabled, preventing the remaining Shim Engine pointers from being invoked.
This approach allows use to execute code without causing the process to crash due to
uninitialized pointers.

Returning to the call graph, we observe that g_pfnSE_DllLoaded runs in the scope of
LdrpSendPostSnapNotifications, which is a subordinate function of
LdrpPrepareModuleForExecution. Unlike LdrpPrepareModuleForExecution, we observe
that g_pfnSE_DllLoaded does not run under Loader Lock. Instead, a different critical section



12/20

object is acquired: LdrpDllNotificationLock. This critical section appears to be self-
reentrant, suggesting it should not lead to deadlock when loading additional DLLs, although
we have not verified.

Despite not operating under Loader Lock, we were unable to run a fully functional shellcode.
This is likely due to interrupting the loading process of kernelbase.dll and kernel32.dll. We
will work around this in the next section.

Let’s briefly revisit the memory section where g_pfnSE_DllLoaded resides, as this is crucial
for leveraging it. g_pfnSE_DllLoaded is located in the .mrdata section, which is writable
when a process is created in a suspended state. Later, during the user-mode part of
process initialization, this section is made read-only, as noted in step 2 of
LdrInitializeThunk. After this step, modifying its content requires memory protection
changes.

Furthermore, the g_ShimsEnabled boolean is located in the .data section, which
remains writable throughout the entire process. This allows us to enable or disable the
g_pfnSE_DllLoaded pointer without modifying memory protections. In contrast, the
AvrfpAPILookupCallbacksEnabled boolean, used in EDR-Preloading, resides in the
.mrdata section and requires memory protection changes after step 2 of
LdrInitializeThunk.

This makes g_pfnSE_DllLoaded preferable over AvrfpAPILookupCallbackRoutine, as it can
be disabled without altering memory protections. As a result, the shellcode required to hijack
the pointer is smaller, invoked only once, involves fewer API calls, and therefore reduces the
risk of detection.

Additionally, the g_pfnSE_DllLoaded pointer is triggered slightly earlier than
AvrfpAPILookupCallbackRoutine, offering earlier control over the process. Similar to
how AvrfpAPILookupCallbackRoutine is leveraged in EDR-Preloading to preempt EDRs,
g_pfnSE_DllLoaded can also be used for this purpose, with potentially greater effectiveness
due to its earlier execution. As shown in the call graph, g_pfnSE_DllLoaded is executed just
before LdrpCallInitRoutine, which initializes a DLL. This timing allows us to disrupt the
initialisation of EDR user-mode detection measures implemented as DLL, making them
ineffective. For example, it could prevent EDRs from deploying hooks that intercept API calls,
significantly reducing an EDRs visibility within a process. While not the focus of this blog, this
presents another use case for the pointer.



13/20

In summary, we identified an alternative pointer named g_pfnSE_DllLoaded, located in
the .mrdata section of ntdll.dll. This pointer can be enabled via the
g_ShimsEnabled boolean, located in the .data section of ntdll.dll. The .mrdata
section is writable during suspend state of process creation and the .data section is
writable through the entire process, allowing use to hijack this pointer without changing
memory protections. Moreover, g_pfnSE_DllLoaded does not operate under Loader
Lock, but it is not trivial to execute fully functional shellcode for a unknown reason.
Though, we suspect this may be related to a critical section object or because of the
interruption during the kernel32.dll and kernelbase.dll loading process.

Intra-process APC queueing

The limitations of code execution through g_pfnSE_DllLoaded made us thinking. We then
realized that during the code execution, we could invoke an execution primitive to run
code at a different stage, free from the limitations. We considered several execution
primitives, including NtQueueApcThread, NtCreateThread and various callbacks such as
CreateTimerQueueTimer. Eventually, we found that NtQueueApcThread was suitable for our
needs and did the job [6]. A comprehensive list of potential callbacks as alternative to
NtQueueApcThread can be found in this repository [7].

The use of an execution primitive to move code execution to another point, e.g. via
NtQueueApcThread, was inspired by Early Bird APC Injection. Although, Early Bird APC
Injection leverages the APC queue for cross-process code execution.

By leveraging the code execution obtained through g_pfnSE_DllLoaded, we can have
the initial thread queue an APC on itself. This allows us to transition to unrestricted
execution later in the process creation. We refer to this as intra-process APC queuing. The
queued APC routine points to malicious code in the target’s memory, such as an implant.

NtQueueApcThread was particular suitable because it is available in ntdll.dll and is
not subject to the loader lock since it does not involve DLL operations or thread
creation. This means we don’t have to worry about causing a deadlock when calling this
function within the execution scope of g_pfnSE_DllLoaded.

Moreover, NtQueueApcThread allows us to queue an APC early in the process initialization
phase, before the APC queue is emptied. As detailed in step 9 of LdrInitializeThunk, one
of the final steps involves invoking NtTestAlert to clear the APC queue. This guarantees
the execution of our queued APC. Furthermore, since NtTestAlert is one of the final
functions, we can be certain that all DLLs, including kernel32.dll and kernelbase.dll,
have been fully loaded, ensuring that no issues arise from incomplete DLL loading.

To test our idea, we wrote a piece of shellcode that utilizes NtQueueApcThread in ntdll.dll
to queue an intra-process APC. We refer to this shellcode as the payload stub, which we
into the target’s memory. The APC routine passed to NtQueueApcThread points to the

http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FAPC%2FNtQueueApcThread.html
https://github.com/aahmad097/AlternativeShellcodeExec


14/20

address of malicious code that we have written into the target’s memory. This malicious code
we refer to as the payload. Thus, the payload stub is executed by g_pfnSE_DllLoaded, while
the payload is executed through the APC.

The Early Cascade Injection technique

By now, the direction of the Early Cascade Injection technique should be clear, as we’ve
covered all the key elements and background information. It’s time to bring everything
together and formally introduce Early Cascade Injection!

Early Cascade Injection works as following: it begins by creating a child process in
suspended state. Then it writes a two-part payload into it. Next, the parent locates the pointer
g_pfnSE_DllLoaded in the .mrdata section and it locates the g_ShimsEnabled boolean
variable in the .data section of ntdll.dll. Following, it assigns the address of the first
payload part, the payload stub, to this g_pfnSE_DllLoaded pointer of the new process and
enables it by setting g_ShimsEnabled to 1. Last, it resumes the suspended process. As a
result, the initial thread of the new process executes the payload stub. This payload
immediately disables the g_ShimsEnabled by setting it to 0, preventing the remaining Shim
Engine related pointers from executing. Then, the payload stub queues the second part of
the payload as an APC on itself, i.e. the initial thread, using NtQueueApcThread. This APC is
triggered near the end of the Windows Image Loader by the NtTestAlert function. As a
result, the main payload executes. The main payload could be an implant containing the
main functionality that the attackers want to run on the target’s system.

In figure 2, the flow of Early Cascade Injection is depicted as described above.



15/20

Figure 2: Flow Early Cascade Injection

Early Cascade Injection is a novel injection technique and may serve as alternative to Early
Bird APC Injection. The major advantage compared to Early Bird APC Injection is that Early
Cascade does not involve a remote execution primitive (cross-process APC queueing). In
addition, Early Cascade Injection, unlike Early Bird APC Injection, is currently undocumented
and breaks traditional code injection patterns by not queuing an APC across processes. We
tested it against multiple EDRs, including top tier ones, and went undetected.

Key features

No remote execution primitive: Early Cascade Injection avoids remote execution
primitives such as QueueUserAPC. Just like threadless injection methods, it leverages a
pointer for execution of the payload, avoiding the need for a remote execution primitive.
Minimal remote process interaction: Early Cascade Injection only involves remote
memory allocation, protection and writing.

https://www.outflank.nl/wp-content/uploads/2024/10/EarlyCascadeFlowV3.png


16/20

Writable .mrdata and .data: The .mrdata section is writable during the suspended
state, allowing modifications without changing memory protections. Also .data is
writable during the entire process, allowing enabling/disabling of g_pfnSE_DllLoaded
without changing memory protections.
Novel technique: Due to Early Cascade Injection’s novel approach, its call pattern is
less likely to be recognized by security products, reducing the risk of detection.
Undocumented callback: Early Cascade Injection relies on the undocumented pointer
g_pfnSE_DllLoaded, which may change with Windows updates, potentially impacting
its reliability.

EDR detection measure loading mechanism and timing

In this final section, we explore how and when EDRs load their user-mode detection
measures, such as hooks, during process creation. Understanding the timing of these
measures is crucial for developing strategies to preempt and evade them. Preempting
means gaining control of the process before these detection measures are in place. For
confidentiality, we won’t mention specific EDR names.

To provide a clearer understanding of user-mode detection mechanisms, we will briefly
discuss hooks, using them as an example. Besides, user-mode hooks are one of the key
detection measures used by EDRs to detect malicious activity. Especially, since Microsoft
gradually restricts kernel access, which forces EDRs to shift detection measures to user-
mode [5]. Microsoft does offer alternatives like Event Tracing for Windows (ETW), however
these are not yet widely adopted. This is likely to change in the nearby future.

Hooks allow EDRs to monitor processes in real time by intercepting API calls from within the
process. By preventing these hooks from loading, attackers can significantly reduce an
EDR’s visibility, thereby increasing the chances of malware evading detection. One effective
approach to avoid hooks is by acting before the hooks are fully loaded and take effect.
Typically, EDRs place hooks through a hooking DLL during the user-mode part of process
creation. In the following section, we will explain how this works in detail.

Before diving into the technical details, it’s essential to understand the role of the kernel
driver in EDRs. This driver enables EDRs to register notification callback routines to receive
alerts on system events such as process creation or termination, image loading, registry
changes, and system shutdown requests. These callbacks gather system information on
which EDRs might take future actions. For instace, upon receiving a process creation
notification, the EDR can inject its hooking DLL into a new process for monitoring purposes.

The process notification callback is stored in the kernel’s
nt!PspCreateProcessNotifyRoutine array, which holds all registered callbacks. When a
new process is created, the kernel function nt!PspCallProcessNotifyRoutines iterates

https://www.theverge.com/2024/9/12/24242947/microsoft-windows-security-kernel-access-features-crowdstrike


17/20

through this array, invoking each callback. For more information on the components of EDRs
and their interaction with Windows, we recommend the book Evading EDR by Matt Hand.

As a side note, there are evasion tools that can deregister kernel callbacks to prevent EDRs
from loading additional security measures [10]. However, this approach requires access to
the kernel, which is typically achieved through the exploitation of a vulnerable kernel driver.
By modifying the kernel’s notification callbacks, these tools can block the EDR from loading
its user-mode detection measures. However, the required kernel-access for this technique,
makes it a complex method for evasion.

Returning to the main point, EDRs use the process creation notification as a trigger to load
user-mode detection measures into newly created processes. We analyzed several EDRs to
understand how these detection measures are loaded. Based on our findings, we explain the
general approach EDRs take to inject their user-mode detection modules.

We observed that when a newly created process resumes from a suspended state, EDRs
modify ntdll.dll just before transitioning from kernel to user-mode (LdrInitializeThunk).
Specifically, EDRs inject shellcode into the process memory, which contains the logic to load
the EDR’s hooking DLL. Additionally, they place a hook in LdrInitializeThunk, redirecting
code execution to the injected shellcode. In our analyses of various EDRs, we found that the
hooks are specifically placed on LdrLoadDll, LdrpLoadDll, or NtContinue within
LdrInitializeThunk. Figure 3 revisits the call graph and highlights these functions. Note,
EDRs also load their detection measures using this mechanism for processes that are not
created in a suspended state.

https://br-sn.github.io/Removing-Kernel-Callbacks-Using-Signed-Drivers/


18/20

Figure 3: The red arrows point to the functions that EDRs hook to load their user-mode
detection measures

As an example, figure 4 shows the hook on LdrLoadDll. The initial bytes of LdrLoadDll are
replaced with a jump instruction that points to the injected shellcode. This hooked version of
LdrLoadDll is called as a subordinate function of LdrInitializeThunk. When LdrLoadDll
executes, the flow of execution is redirected to the injected shellcode.

This shellcode is responsible for loading the EDR’s detection measures. Figure 5 depicts the
call stack of the shellcode that loads the EDR’s hooking DLL. In the callstack, we can see
that the root function is unbacked, meaning it’s not part of a legitimate module, which
indicates it has been injected into the process.

Figure 4: LdrLoadDll‘s initial bytes have been replaced with a jump instruction to the EDR’s
shellcode

https://www.outflank.nl/wp-content/uploads/2024/10/EDR-timing-figure.png
https://www.outflank.nl/wp-content/uploads/2024/10/Figure4.png
https://www.outflank.nl/wp-content/uploads/2024/10/Figure5.png


19/20

Figure 5: Callstack of the EDR’s shellcode loading it’s hooking DLL

The injected shellcode writes the path and name of the hooking DLL into rcx and r9
(following the x64 fastcall convention) and then invokes LdrLoadDll. Once the hooking DLL
is loaded, its entry point (e.g. DllMain) is executed, which is responsible for initiating the
hooks on critical functions. After LdrLoad completes, the shellcode removes the inline hook
and resumes the process’s normal execution flow. From this point, the EDR can intercept
API calls in real-time and monitor the process.

In the call graph, we can observe the first time LdrLoadDll, LdrpLoadDll, and NtContinue
execute. At one of these points, depending on the specific EDR, the EDR’s detection
measures (e.g., hooking DLL) are loaded.

For EDRs hooking NtContinue, techniques like Early Bird APC and Early Cascade Injection
preempt the EDR’s detection measures. This means that the malicious code (e.g. implant)
runs before the detection measures are loaded. In the call graph, we can see that
NtTestAlert is executed before NtContinue. Since NtTestAlert empties the APC queue, it
ensures that the malicious code runs before the EDR’s detection measures are active.

For EDRs hooking LdrLoadDll and LdrpLoadDll the EDR takes control early in the process,
at the loading of kernel32.dll, which is before g_pfnSE_DllLoaded. This allows the EDR to
gain control over the process before we do. However, as we can see in the call graph
g_pfnSE_DllLoaded provides us with control before the initialization of the EDR, at that point
we take control. This means that, despite the EDR taking control first, we can still disrupt the
initialization of its detection measures as we can take control before the DLL initializes,
preventing the EDR from loading them.

We also observed that most EDRs, through the shellcode, initially load kernel32.dll and
kernelbase.dll, following the normal execution flow. Afterward, they load their hooking DLL
via LdrLoadDll. Remember that g_pfnSE_DllLoaded is executed during the initialization part
of LdrLoadDLL, in this case for kernelbase.dll. That is well-before the EDR’s detection
measures are loaded by the shellcode. In theory, at this stage, we can remove the hook on
LdrLoadDll, revert to the original code path for loading kernel32.dll, and proceed with
execution, bypassing the EDR’s loading process.

There are likely numerous ways to prevent user-mode EDR detection measures using the
callback pointers discussed in this blog. We’ve presented one potential approach, which
could be integrated into Early Cascade Injection by leveraging the g_pfnSE_DllLoaded
callback pointer. This would allow an implant injected via Early Cascade Injection to run more
stealthily, further evading EDR detection.

Conclusion



20/20

In this blog, we explored how a process is created in Windows, focusing on the user-mode
part of process creation. We presented a call graph that outlines the key events during
process creation. We then examined how Early Bird APC Injection works and interacts with
the user-mode part, specifically when the queued APC is executed. After that, we discussed
EDR-Preloading, which showed us how we can achieve code execution during process
creation simply by overwriting a pointer. This led us to further investigate and discover a new
pointer. However, it wasn’t possible to execute fully functional code through it. By combining
the APC queuing element of Early Bird APC with the new pointer, inspired by EDR-
Preloading, we developed and explained Early Cascade Injection. Finally, we highlighted the
key features of this technique. I hope you found the call graph as informative as we did –
providing an overview of the process creation, revealing the timing of EDR security
measures, and showing how Early Cascade Injection interacts with process creation.

Implementation in Outflank Security Tooling

Due to the strong OPSEC properties of this research, we need to prevent misuse and thus
will not make the source code of this project public. However, Early Cascade Injection and all
other parts of this research are already available for our vetted Outflank Security Tooling
(OST) community. Interested in a demo? Subscribe here.

Thank you for reading this blog post, and we hope you learned something new!

References

[1] Bypassing EDRs With EDR-Preloading – Marcus Hutchins
 [2] Process Creation Flags – MSDN

 [3] Windows 10 Parallel Loading Breakdown – BlackBerry
 [4] New ‘Early Bird’ Code Injection Technique Discovered – Cyberbit

 [5] Microsoft is building new Windows security features to prevent another CrowdStrike
incident – The Verge

 [6] NtQueueApcThread – NTAPI Undocumented Functions – NTInternals
 [7] AlternativeShellcodeExec – aahmad097

 [8] Critical Section Objects – MSDN
 [9] What is Loader Lock? – Elliot Killick

 [10] Removing Kernel Callbacks Using Signed Drivers – br-sn
 [11] Demystifying Shims – or – Using the App Compat Toolkit to make your old stuff work

with your new stuff – MSDN

 
 

https://outflank.nl/ost
https://www.outflank.nl/demo-request/
https://www.malwaretech.com/2024/02/bypassing-edrs-with-edr-preload.html
https://learn.microsoft.com/en-us/windows/win32/procthread/process-creation-flags
https://blogs.blackberry.com/en/2017/10/windows-10-parallel-loading-breakdown
https://www.cyberbit.com/endpoint-security/new-early-bird-code-injection-technique-discovered/
https://www.theverge.com/2024/9/12/24242947/microsoft-windows-security-kernel-access-features-crowdstrike
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FAPC%2FNtQueueApcThread.html
https://github.com/aahmad097/AlternativeShellcodeExec
https://learn.microsoft.com/en-us/windows/win32/sync/critical-section-objects
https://elliotonsecurity.com/what-is-loader-lock/
https://br-sn.github.io/Removing-Kernel-Callbacks-Using-Signed-Drivers/
https://techcommunity.microsoft.com/t5/ask-the-performance-team/demystifying-shims-or-using-the-app-compat-toolkit-to-make-your/ba-p/374947

