
1/10

Jonathan Johnson April 12, 2024

Understanding ETW Patching
jsecurity101.medium.com/understanding-etw-patching-9f5af87f9d7b

Jonathan Johnson

Introduction

As of late, I have gotten a lot of questions around Event Tracing for Windows (ETW)
patching, specifically the following questions:

Which ETW providers can be patched (kernel-mode vs. user-mode)?
What does it mean to actually patch out an ETW Provider?
How can you detect ETW patching?

These are all valuable questions, so I decided to write up on these questions and answer
any misconceptions or misunderstandings people have about ETW patching.

Function Patching

At a high level, function patching refers to changing the code flow of a given function by
either making it fail, providing fake data, or having the function immediately return. This might
benefit someone who wants a function to execute differently than usual or not execute
anything at all. From a local process perspective, to patch this out, a function, the PE that
holds the function (EXE or DLL) that holds the desired function, needs to be loaded, and a
function pointer needs to be obtained. Once that has been received, someone can change
the protection of the memory region where the function is located and then disrupt normal
code flow.

Let’s take an example — say we have a DLL that has an exported function (Hello()) that
prints “Hello World from DLL.”

https://jsecurity101.medium.com/understanding-etw-patching-9f5af87f9d7b
https://jsecurity101.medium.com/?source=post_page-----9f5af87f9d7b--------------------------------
https://jsecurity101.medium.com/?source=post_page-----9f5af87f9d7b--------------------------------

2/10

You can see above that the DLL loads and executes Hello() fine. Let’s say we want to patch
this function so that any time this function is called it immediately returns instead of actually
executing completely.

As seen above, a function pointer is obtained to Hello() via GetProcAddress and then
patched by copying the bytes that represent the ret opcode for x64 applications. After doing
so, “Hello World from DLL” isn’t printed as expected.

ETW Patching

https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

3/10

ETW patching is a function patching technique used by offensive operators (threat actors,
red teams, etc.) to prevent telemetry from being produced for their action(s). ETW Providers
are responsible for emitting events for specific actions (LDAP, .NET, AMSI, etc). Patching is
simply changing the code flow of a given function by either making it fail, providing fake data,
or having the function immediately return. This includes patching out ETW-specific write
functions, like EtwEventWrite or NtTraceEvent, or it can be internal functions that will
eventually invoke an ETW-specific write function. There are multiple ways to patch out
logging-related functions, but before we dive into that, we have to understand a couple of
foundational things that allow patching to be successful.

Prerequisites

In order to patch out an ETW logging function, one must be running code in the process that
writes events to the targeted ETW provider. In practice, patching could involve forcing the
function to return immediately, provide false data so that the function fails, etc. This holds
true for user-mode and kernel-mode based providers (we will dive into this in the Types of
Patching section below).

Let’s take a practical example of LDAP activity. The Microsoft-Windows-LDAP-Client ETW
provider is stored within wldap32.dll. Whenever LDAP activity is executed, the wldap32.dll is
loaded within the process. Now, suppose you want to execute an LDAP search without
logging it. Before executing the LDAP activity, you need to locate the function’s memory
address you want to patch (EtwEventWrite, LDAPSearchLoggingClientTraceEventNoReg, or
NtTraceEvent) and provide an alternative instruction. If this was a kernel-mode ETW
provider, you would need to be running code in the kernel to perform this.

This means you can patch providers within your process, a remote process, or in the kernel.
However, each has its own challenges. It is much easier to patch out a function in your
current process than it is in a remote process because you would need to leverage a function
like WriteProcessMemory to properly patch out the function, which is most likely going to get
an operator caught due to the large corpus of Process Injection detections out there. You can
also patch out providers in the kernel, but you need to find a way to get code execution in the
kernel. Which typically consists of finding a vulnerable signed driver that Microsoft’s driver
block list doesn’t block. The kernel-patching will be the most challenging and, honestly, the
most unrealistic scenario.

Types of Patching

GetProcAddress

https://learn.microsoft.com/en-us/windows/win32/devnotes/etweventwrite
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/etw/traceapi/event/index.htm
https://www.binarydefense.com/resources/blog/uncovering-adversarial-ldap-tradecraft/
https://learn.microsoft.com/en-us/windows/win32/devnotes/etweventwrite
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/etw/traceapi/event/index.htm
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

4/10

GetProcAddress is a well-known Win32 API that allows someone to obtain a function pointer
to an exported function within a DLL. For this to work properly, the callee must obtain a
module handle to the DLL that holds the exported function. This usually results in someone
calling LoadLibrary on the desired DLL. After the function has been returned it is common to
change the protection of memory so that they can change the next instructions of the
function. This is typically done via VirtualProtect. Afterwards, depending on the function you
are trying to patch, after the pointer has been returned and the protection of that memory has
been changed one can disrupt normal code flow a number of ways — having the call after be
a return instruction for example. One limitation of GetProcAddress is that whatever function
your patching needs to be in a DLLs exports table, so this wouldn’t work if you want to patch
an internal function.

Manual Function Pointer

GetProcAddress is the most commonly used API for function patching I have seen, but
someone can actually do the exact same thing without it. If someone finds a function, they
want to patch all they have to do is find where the function’s virtual address offset within a
DLL. Once that is found and a DLL is loaded within a process they can get where in memory
that DLL is loaded and add that virtual address offset to it and then they have a pointer to
that function. This looks something like this:

 DWORD offset = ; LPVOID ldapClient = <LPVOID>(<DWORD_PTR>(hModule) +
offset);std::cout << << ldapClient << std::endl;

They would then follow the same process of changing the protection of that region of
memory and manipulating code flow. This works for both internal and external functions. A
limitation to keep in mind with this is that it is possible the virtual address offset can change
on versions of DLLs, however in my testing I was able to get my code to work fine on
Windows 10 & 11 machines.

Kernel

All the examples I have shown above have been user-mode examples, however let’s dive
into kernel-mode providers. I have seen comments about people patching out the Threat-
Intelligence ETW provider. Unless someone has a code execution in the kernel by way of a
driver or some other means, this isn’t possible. Just like with the user-mode providers
someone needs to be working with the memory where the functions are called. I want to
explore this a bit, the Threat-Intelligence provider collects information for
ReadProcessMemory (useful for dumping LSASS telemetry). The functions used to complete
ReadProcessMemory transition into the kernel and the function used to log this is
EtwTiLogReadWriteVm (please see my project TelemetrySource for more). There is nothing
of value for someone to patch within user-mode.

https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-readprocessmemory
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-readprocessmemory
https://github.com/jsecurity101/TelemetrySource?tab=readme-ov-file

5/10

This goes for other kernel-mode ETW providers too. Just because someone patches out
EtwEventWrite or NtTraceEvent doesn’t mean that providers will stop being written to. Let’s
take a look at a practical example.

Example 1: Beacon LogonPasswords

This example has a process running as “beacon.exe” that calls mimikatz’s logonprocess
function to dump LSASS. This does not patch ETW at all and we can see we get
ReadProcessMemory events from the ETW Threat Intelligence provider. The process shown
below is dllhost.exe, but that is a CobaltStrike-ism with how it executes commands via
sacrificial processes. This is derived from the beacon.exe process.

https://learn.microsoft.com/en-us/windows/win32/devnotes/etweventwrite
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/etw/traceapi/event/index.htm

6/10

Example 2: inlineExecute-Assembly + SharpDump

7/10

This example uses inlineExecute-Assembly to call SharpDump to dump LSASS and uses the
“ — etw” flag to patch EtwEventWrite. This should show events from the DotNet ETW
provider, but it doesn’t due to the “ — etw” flag (see Picture 1).

The 2nd picture below shows that regardless of ETW patching via EtwEventWrite the Threat-
Intelligence provider will still write a ReadProcessMemory event, because the Threat-
Intelligence provider is in the kernel vs. user-mode.

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-readprocessmemory

8/10

Which functions to patch?

I want to take a moment to talk about the offensive benefit of patching out certain functions
vs. others. Historically I have seen tools and malware patch functions like AmsiScanBuffer,
EtwEventWrite or NtTraceEvent because these are all functions that are exported out of a
DLL, so there is less complexity in patching these out. However, as of late it isn’t uncommon
for anti-virus (AV) products to pick up on these behaviors within a file through their scans. So,
what is the alternative?

1. Manual patching common functions (, , , etc).
2. Manual patching internal logging functions that eventually call EtwEventWrite, like how

I did above with LDAPSearchLoggingClientTraceEventNoReg.

I also want to take a moment and touch on remote patching. Again, this is possible but
someone would have to leverage WriteProcessMemory to the remote process which is more
likely to get caught versus local patching. You might wonder — why is this the case if the
activity originates from your process, why would you have to patch a function in a remote
process? This comes down to code flow. Let’s take a look at an example.

Say you want to create a scheduled task via Register-ScheduledTask in PowerShell. The
code flow stays in your process (really your thread) and goes through a WMI provider, a
COM server, which then invokes a RPC method. When this RPC method is invoked the code
flow transitions from your process to wherever the RPC server is located, which in this case

https://learn.microsoft.com/en-us/windows/win32/devnotes/etweventwrite
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/etw/traceapi/event/index.htm
https://learn.microsoft.com/en-us/powershell/module/scheduledtasks/register-scheduledtask?view=windowsserver2022-ps

9/10

is schedsvc.dll which is loaded into a svchost.exe process. It’s not until after that transition
that the logging functions Auditor::AuditJobOperation / AuthziLogAuditEvent are executed.
You can manipulate those functions so that they don’t log properly, but you’d have to get
code execution into the svchost.exe process that has the schedsvc.dll loaded. The key here
is — understanding when code transitions out of your current processes context to another
which is common with some WMI methods, a lot of COM methods, and almost every RPC
method. More often than not the logging functions are going to be invoked at the end of the
call stack which is why understanding these transitions is important.

Note: If you want to learn how to analyze this transition between PowerShell, WMI, COM and
RPC check out my post: WMI Internals: Reversing a WMI Provider.

Defenders

It is imperative for defenders to understand OS internals as well, if not more than offensive
engineers. In my opinion defenders should understand patching, even though they aren’t
running operations and performing patching all the time. That being said, there isn’t a great
way to detect patching. I dabbled with an idea a while back in this tweet:

I have seen good success with this, but it isn’t a silver bullet and requires some development
and fine tuning. I think it is important to keep trying to innovate new ideas like this to
pick up on common offensive tradecraft. If anyone would like to discuss more strategies
on this, please reach out to me.

Also, keep in mind when creating detections which providers are likely to get patched vs. not.
I always suggest that when people dive into telemetry that can be used for a detection to try
to find something where the ETW provider isn’t writing events from the source process so
that you don’t have to worry as much about patching. An example — although the DotNet
ETW provider is a good telemetry source for seeing malicious .NET assemblies being
loaded, I personally wouldn’t have high confidence in using it as a primary data source for a
detection. I would still use it, but I would try to look for another telemetry source to help me
pick up on the activity I am interested in. That way if it fires — great, that is an easy win. If it
doesn’t, I am still covered detection wise.

Conclusion

https://medium.com/@jsecurity101/wmi-internals-part-2-522f3e97709a
https://x.com/jsecurity101/status/1734986839151292439

10/10

I wanted to write a blog discussing how ETW patching is really just function patching and
explain the basics behind that. It is imperative for defenders and offensive engineers to
understand the foundations behind offensive capabilities. ETW patching is something that is
used quite a lot (I’ve seen it in more red team tools than in-the-wild malware). Due to the
large number of tools out there, I didn’t see a reason to release any proof-of-concepts. I will
link valuable resources below. Please let me know if people would be interested in a write-up
on how to find the virtual address offset of functions for manual patching. I hope this was
helpful for some!

Resources

