
1/22

Process Injection
safebreach.com/blog/process-injection-using-windows-thread-pools

This website stores cookies on your computer. These cookies are used to improve your
website experience and provide more personalized services to you, both on this website and
through other media. To find out more about the cookies we use, see our Privacy Policy.

We won't track your information when you visit our site. But in order to comply with your
preferences, we'll have to use just one tiny cookie so that you're not asked to make this
choice again.

Threat Coverage | Research

Dec 6, 2023

The Pool Party You Will Never Forget: New Process Injection
Techniques Using Windows Thread Pools

See how SafeBreach Labs Researchers developed a brand new set of highly flexible
process injection techniques that are able to completely bypass leading endpoint detection
and response (EDR) solutions.

Authors: Alon Leviev

During a cyber attack, malicious actors often breach an organization’s perimeter security
with tactics like vulnerability exploitation and phishing. Once inside, they attempt to navigate
the organization’s network to escalate their privileges and steal or encrypt data—but here
they often face sophisticated endpoint detection and response (EDR) systems designed to
identify and prevent this type of activity. To evade detection, threat actors have adopted
process injection techniques that allow them to inject malicious code into a computer
system’s legitimate processes. The code is then executed by the target process—rather
than the attacker—making it extremely difficult for organizations to identify and track from a
forensics perspective.    

While process injection techniques used to be more prevalent, most operating system (OS)
and EDR vendors have tightened security measures to either block known techniques
completely or severely limit their impact. As a result, fewer techniques have been seen in
recent years and those still seen in the wild only work on specific process states—until
now. 

https://www.safebreach.com/blog/process-injection-using-windows-thread-pools/


2/22

The SafeBreach Labs team set out to explore the viability of using Windows thread pools—
an under-analyzed area of the Microsoft Windows OS—as a novel attack vector for process
injection. In the process, we discovered eight new process injection techniques we dubbed
Pool Party variants that were able to trigger malicious execution as a result of a completely
legitimate action. The techniques were capable of working across all processes without any
limitations, making them more flexible than existing process injection techniques. And, more
importantly, the techniques were proven to be fully undetectable when tested against five
leading EDR solutions.

Below we will share the details behind our research, which was first presented at Black Hat
Europe 2023. We will begin first with a high-level overview about how process injection
works and how endpoint security controls detect current known techniques. We will then
explain the architecture and relevant components of  Windows thread pools and discuss the
research process that led us to successfully exploit them to develop eight unique process
injection techniques. Finally, we will highlight the EDR solutions we tested against and
identify how SafeBreach is sharing this information with the broader security community to
help organizations protect themselves.

Background 

As an evasion technique used to execute arbitrary code in a target process, process
injection usually consists of a chain of three primitives:  

1. Allocation primitive: Used to allocate memory on the target process
2. Writing primitive: Used to write malicious code to the allocated memory
3. Execution primitive: used to execute the malicious code written

https://www.blackhat.com/eu-23/briefings/schedule/index.html#the-pool-party-you-will-never-forget-new-process-injection-techniques-using-windows-thread-pools-35446


3/22

The most basic injection technique would use VirtualAllocEX() for allocation,
WriteProcessMemory() for writing, and CreateRemoteThread() for execution.This injection
technique, publicly known as CreateRemoteThread injection, is very simple and powerful,
but there is one downside: it is detectable by all modern EDRs. Our research sought to
discover if it was possible to create process injection techniques that were fully
undetectable.

Through this process, we sought to understand if  EDRs could effectively distinguish the
legitimate versus malicious use of a feature. We also wanted to find out if the current
detection approach used by EDRs was generic enough to detect new and never-before-
seen process injections.

EDR Detection Approach

To answer these questions, we needed to review the current detection approach employed
by EDRs against process injections. Experimenting with the different primitives led us to the
conclusion that EDRs base their detection mainly on the execution primitive. On top of that,
write and allocate primitives—in their most basic forms—are not detected.

Based on this finding, what would happen if we created an execution primitive based only
on allocation and writing primitives? Furthermore, what if the execution was triggered by a
legitimate action—writing to an innocent file, for example—and could trigger shellcode on a
victim process? Such capabilities would make the process injection even harder to detect.

Windows User-Mode Thread Pools

While searching for a suitable component that would help achieve the research goals, we
came across the Windows user-mode thread pool. This ended up being the perfect target,
because:



4/22

1. All Windows processes have a thread pool by default, which means that abusing the
thread pool would be applicable against all Windows processes.

2. Work items and thread pools are represented by structures, which increases the
chances of having an execution primitive based on the allocation and writing
primitives.

3. Multiple work item types are supported, which means more opportunities.
4. The thread pool is a considerably complex component, with both kernel and user-

mode code, which widens the attack surface.

Architecture 

The thread pool comprises three distinct work queues, each dedicated to a different type of
work item. The worker threads are operating on the different queues to dequeue work items
and execute them. In addition, the thread pool contains a worker factory object, which is
responsible for managing the worker threads. 

Based on this architecture, there are few potential areas in the thread pool that could be
abused for process injections:  

1. Worker factory
2. Task queue
3. I/O completion queue
4. Timer queue



5/22

We know that a valid work item insertion into one of these queues would be executed by
the worker threads. Other than the queues, the worker factory that serves as the worker
threads manager may be used to take over the worker threads.

Attacking Worker Factories

The worker factory is a Windows object responsible for managing thread pool worker
threads. It manages the worker threads by monitoring active or blocking worker threads
and, based on the monitoring results, it creates or terminates worker threads. The worker
factory does not perform any scheduling or execution of work items; it is there to make sure
that the number of worker threads is sufficient.

The kernel exposes seven system calls to interact with worker factory objects:  

NtCreateWorkerFactory
NtShutdownWorkerFactory
NtQueryInformationWorkerFactory
NtSetInformationWorkerFactory
NtWorkerFactoryWorkerReady
NtWaitForWorkViaWorkerFactory
NtReleaseWorkerFactoryWorker

With the goal of taking over worker threads, the relevant target would be the start
routine.The start routine is basically the entry point of the worker threads—usually this
routine serves as the thread pool scheduler, responsible for dequeuing and executing work
items.

The start routine can be controlled in the worker factory creation system call and, more
interestingly, the system call accepts a handle to the process for which the worker factory to



6/22

be created:  

Looking at the implementation of the system call in the kernel, we noticed that there is a
validation that makes sure no worker factories are created for processes other than the
current process:  

Generally speaking, it is a bit odd that the system call gets a parameter with only one
possible value. All processes have a thread pool by default, and consequently, a worker
factory by default.

Instead of going through the trouble of creating a worker factory, we can simply utilize the
DuplicateHandle() API to gain access to a worker factory belonging to the target process.



7/22

Having access to an existing worker factory did not let us control the start routine value, as
this value is constant and could not be naturally changed after the object was initialized.
With that said, if we could determine the start routine value, we could overwrite the routine
code with a malicious shellcode.

To get worker factory information, the NtQueryWorkerFactoryInformation system call could
be used:

The only supported information class that the query system call can retrieve is basic worker
factory information: 

In this case this is enough, as the basic worker factory information includes the start routine
value:



8/22

Given the start routine value, we could overwrite the start routine content with malicious
shellcode.

The start routine is guaranteed to run at some point, but it would be even better if we could
also trigger its execution instead of waiting for it. To accomplish this, we looked at the
NtSetInformationWorkerFactory system call: 

The set system call supports more information classes then the query system call, and the
one that suited our needs the best was the WorkerFactoryThreadMinimum information
class:  



9/22

Setting the minimum worker threads number to be the current running threads number + 1
resulted in a new worker thread being created, meaning the start routine was executed:  

And with that, we successfully developed our first Pool Party variant: 

Pool Party Variant 1: Worker Factory Start Routine Overwrite



10/22

Attacking Thread Pools

When attacking the thread pool, our goal was to insert a work item to a target process, so
we focused on how work items are inserted into the thread pool. We know that if we insert a
work item correctly, it will be executed by the worker threads. We will assume that we
already have access to the worker factory of the target thread pool, as we proved in the
previous section that such access can be granted by duplicating the worker factory handle.

Work Item Types

The supported work items can be divided into three types: 

The regular work items, which are queued right away by the queueing API call.
The asynchronous work items, which are queued on operation completion, for
example, when a write file operation is completed.
The timer work items, which are queued right away by the queueing API call, but are
executed when a timer expires.



Queue Types

As for the three types of work items, there are also three queues: 

The regular work items are queued to the task queue, residing in the main thread pool
structure, the TP_POOL.
The asynchronous work items are queued to the I/O completion queue, which is a
Windows object.
And timer work items are queued to the timer queue, also residing in the main thread
pool structure. 



11/22



The main thread pool structure resides in user-mode in the process memory address
space, so modifications to its queues can be done through memory writing primitives. The
I/O completion queue is a Windows object, so the queue resides in the kernel and can be
manipulated by its exposed system calls.

Helper Structures

Before we dive into the queueing mechanism of each work item type, it is important to note
that work item callbacks are not executed directly by the worker threads. Instead, each work
item has a helper callback that is used to execute the work item callback. The structure that
is queued is the helper structure.



12/22

Attacking Thread Pools: TP_WORK

By looking at the TP_WORK work item structure, we found that its helper structure is the
TP_TASK structure. Wee know that the task structure is what gets inserted into the task
queue within the thread pool structure. 

The API that is responsible for submitting the TP_WORK work item is named
SubmitThreadpoolWork. Going down the call chain of SubmitThreadpoolWork, we reached
the queueing API named TpPostTask.

The TpPostTask API is responsible for inserting a task to the task queue, which is
represented by a doubly linked list. It retrieves the corresponding task queue by priority and
inserts the task to the tail of the task queue.

Given the thread pool structure of the target process, we could tamper with its task queue to
inject a malicious task into it.To get the thread pool structure of the target process, the
NtQueryInformationWorkerFactory could be used. The basic worker factory information



13/22

included the start parameter of the start routine, and this start parameter was essentially a
pointer to the TP_POOL structure. We had our second Pool Party variant:

Pool Party Variant 2:  Remote TP_WORK Work Item Insertion

Attacking Thread Pools: TP_IO

Recalling the queue types, asynchronous work items are queued to the I/O completion
queue. The I/O completion queue is a Windows object that serves as a queue for
completed I/O operations. Notifications are inserted into the queue once an I/O operation
completes

The thread pool relies on the I/O completion queue to receive notifications when an
asynchronous work item’s operation is completed.

NOTE: Microsoft refers to I/O completion queues as I/O completion ports. This object is
essentially a kernel queue (KQUEUE), so to avoid confusion we refer to it as I/O completion
queue.

The kernel exposes eight system calls to interact with I/O competition queues:  

NtCreateIoCompletion
NtOpenIoCompletion
NtQueryIoCompletion
NtQueryIoCompletionEx
NtSetIoCompletion
NtSetIoCompletionEx
NtRemoveIoCompletion
NtRemoveIoCompletionEx

Keep in mind the NtSetIoCompletion system call is used to queue a notification to the
queue. We will get back to this system call later on.



14/22

Equipped with some I/O completion background, we can jump right into the queueing
mechanism of the asynchronous work items. We will use the TP_IO work item as an
example, but note that the same concepts apply to the other asynchronous work items.

The TP_IO work item is a work item intended to execute on completion of file operations
such as read and write. The helper structure of the TP_IO work item is the TP_DIRECT
structure, so we expect this structure to be queued to the completion queue.

As asynchronous work items were queued to the I/O completion queue, we looked for the
function that associated the work item to the thread pool’s I/O completion queue. Looking at
the call chain of CreateThreadpoolIo, we reached the function of interest: the
TpBindFileToDirect function. This function sets the file completion queue to be the thread
pool’s I/O completion queue, and the file completion key to be the direct structure: 



15/22

Calling TpBindFileToDirect on a file object results in the completion queue of the file object
pointing to the thread pool’s I/O completion queue, and the completion key pointing to the
direct structure.

At that point, the I/O completion queue was still empty, as no operation on the file occurred.
Any operation on the file following the function call—for example, WriteFile—would cause
the completion key to be queued to the I/O completion queue.



16/22

To conclude, asynchronous work items are queued to the I/O completion queue and the
direct structure is the field that is queued. Having a handle to the I/O completion queue of
the target process gave us the ability to queue notifications to it. This handle could be
duplicated using the DuplicateHandle API, similarly to how we duplicated the worker factory
handle. And with that, we had our third Pool Party variant:

Pool Party Variant 3:  Remote TP_IO Work Item Insertion

How did we also insert ALPC, JOB and WAIT work items? Any valid TP_DIRECT structure
queued to the I/O completion queue will get executed. It is all a matter of how we queue the
TP_DIRECT structure to the I/O completion queue.

Queuing can be done in one of the following ways: 

1. Utilizing Windows objects, similar to the TP_IO abuse. This will involve associating the
object with the I/O completion queue of the target process, and then any operation
completion on this object will queue a notification. 

2. Utilizing NtSetIoCompletion to queue a notification directly into the completion queue.

With that in mind, we can inject the rest of the asynchronous work items, the TP_WAIT,
TP_ALPC and TP_JOB, by associating the underlying Windows object with the target
thread pool’s I/O completion queue, and setting its completion key to point to the malicious
work item. On top of that, we can inject a malicious TP_DIRECT structure directly without
proxying it through a Windows object, which involves using the NtSetIoCompletion system
call. This allowed us to create four more Pool Party variants:

PoolParty Variant 4 – Remote TP_WAIT Work Item Insertion
PoolParty Variant 5 – Remote TP_ALPC Work Item Insertion
PoolParty Variant 6 – Remote TP_JOB Work Item Insertion
PoolParty Variant 7 – Remote TP_DIRECT Insertion



17/22

These variants are special as the execution is triggered by a completely legitimate action,
such as writing to a file, connecting to an ALPC port, assigning a process to a job object,
and setting an event.

Attacking Thread Pools:  TP_TIMER

First, when looking at the creation and submission API of a timer work item, we noticed that
no timer handle was supplied. The submission API, SetThreadpoolTimer, accepts some
timer configuration such as DueTime, but it wasn’t clear where the actual timer object
resided.

It turns out that timer work items operate on an existing timer object, which resides in the
timer queue. Once the SubmitThreadpoolTimer API is called, the work item is inserted into
the queue, and the timer object residing in the queue is configured with the user-supplied
configuration. 



18/22

Once the timer is expired, a dequeueing function is called, which dequeues the work item
from the queue and executes it.

Generally speaking, timer objects do not natively support callback execution at expiration.
All you need to know is that the thread pool implements it using the TP_WAIT work item,
which supports timers. So if we set the timer queue to expire, the dequeuing function is
called. Now the question is, how do we correctly queue a timer to the queue?

The connectors between a timer and a timer queue are the TP_TIMER’s WindowEndLinks
and WindowStartLinks fields.

For the sake of simplicity, we can think of these two fields as list entries of a doubly linked
list. 



19/22

Going down the call chain of SetThreadpoolTimer, we reached the queueing function
named TppEnqueueTimer.

TppEnqueueTimer inserts the TP_TIMER’s WindowStartLinks to the queue WindowStart
field, and the WindowEndLinks to the queue WindowEnd field.



20/22

The SetThreadpoolTimer API is responsible for two actions:  

1. Queue the timer work item to the timer queue.
2. Configure the timer object residing in the queue.

As a result of these two actions, once the timer object expires, the dequeuing function
executes, dequeuing and executing the queued timer work item. Given the thread pool
structure of the target process, we can tamper with its timer queue to inject a malicious
timer work item into it. Post queueing, we need to set the timer object that the queue uses
to expire. Setting the timer requires a handle to it, and such handle could be duplicated
using the DuplicateHandle API. And with that, we had our eighth Pool Party variant:

Pool Party Variant 8:  Remote TP_TIMER Work Item Insertion

What’s even more astonishing about this variation is that after setting the timer, the attacker
can exit the process and erase its identity from the system. As a result, the system appears
clean, and the malicious code activates only when the timer runs out.

Tested EDR Solutions

As part of the research process, each Pool Party variant was tested against five leading
EDR solutions, including: 

Palo Alto Cortex
SentinelOne EDR
CrowdStrike Falcon
Microsoft Defender For Endpoint
Cybereason EDR



21/22

We achieved a 100 percent success rate, as none of the EDRs were able to detect or
prevent Pool Party attacks. We reported these findings to each vendor and believe they are
making updates to better detect these types of techniques. 

It is important to note that while we have done our best to test the EDR products we had
access to, it is not feasible for us to test every product on the market. By making this
information available to the security community, we hope to minimize the ability of malicious
actors to exploit these techniques and provide EDR vendors and users with the knowledge
they need to take immediate action on their own.

Pool Party Demo

Key Takeaways

We believe there are a few important takeaways based on the findings of this research: 

1. Although EDRs have evolved, the current detection approach utilized by most
solutions is unable to generically detect new process injection techniques like those
we have developed here. While our research demonstrates how we were able to
abuse thread pools specifically, malicious actors will undoubtedly find other features to
leverage in a similar way. We believe it is critical for EDR vendors to develop and
implement a generic detection approach to proactively defend against these
possibilities.

2. We also believe it is important for individual organizations to enhance their focus on
detecting anomalies, rather than placing complete trust in processes based solely on
their identity. Our research demonstrates that executing code on the behalf of a
trusted process can go undetected by an EDR. This underscores the importance of
deeper inspection to ensure the legitimacy of operations performed by such
processes.  

Conclusion

Though modern EDRs have evolved to detect known process injection techniques, our
research has proven that it is still possible to develop novel techniques that are
undetectable and have the potential to make a devastating impact. Sophisticated threat
actors will continue to explore new and innovative methods for process injection, and
security tool vendors and practitioners must be proactive in their defense against them.

To help mitigate the potential impact of these techniques, we have:   

Responsibly disclosed our research findings to Microsoft, Palo Alto Networks,
CrowdStrike, SentinelOne, and Cybereason.



22/22

Shared our research openly with the broader security community here and at our
recent Black Hat presentation to raise awareness about these issues.
Added Original Attack content to the SafeBreach platform that enables our customers
to validate their security controls against these flows and significantly mitigate their
risk.

For more in-depth information about this research, please: 

Contact your customer success representative if you are a current SafeBreach
customer
Schedule a one-on-one discussion with a SafeBreach expert
Contact Kesselring PR for media inquiries 

About the Researcher

Alon Leviev is a self-taught security researcher with a diverse background. Alon started his
professional career as a blue team operator, where he focused on the defensive side of
cyber security. As his passion grew towards research, Alon joined SafeBreach as a security
researcher. His main interests include operating system internals, reverse engineering, and
vulnerability research. Before joining the cyber security field, Alon was a professional
Brazilian jiu-jitsu athlete, where he won several world and European titles.

Get the latest

research and news






https://www.safebreach.com/request-a-demo/

