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Let’s Go into the rabbit hole (part 1) — the challenges of
dynamically hooking Golang programs

blog.quarkslab.com/lets-go-into-the-rabbit-hole-part-1-the-challenges-of-dynamically-hooking-golang-program.html

Golang is the most used programming language for developing cloud technologies. Tools
such as Kubernetes, Docker, Containerd and gVisor are written in Go. Despite the fact that
the code of these programs is open source, there is no way to analyze and extend their
behavior dynamically without recompiling their code. Is this due to the complex internals of
the language? In this blog post, we’ll look into the challenges of developing and inserting
runtime hooks in Golang programs.

A Golang gopher

Introduction

Hooking, also known as a “detour”, is a mechanism for unconditionally redirecting the
execution flow of a program. There is a lot of literature on the Internet on how this can be
done for different programming languages such as C, C++. However, hooking Go code at
runtime is not a straightforward process. It gets even more interesting when one tries to
hook Go code with Go code which leads to a deep rabbit hole. In the end, it should be more
natural to manipulate Golang data structures with Golang, right? In this series of blog posts,
we’ll present a rather interesting strategy that we’ve developed at Quarkslab to achieve
that. Before going into the rabbit hole, let’s first discuss why we got interested in
implementing detours for Go programs and why it is more complicated than for other
programs written in C or C++.

https://blog.quarkslab.com/lets-go-into-the-rabbit-hole-part-1-the-challenges-of-dynamically-hooking-golang-program.html
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Why Hook Golang Programs During Runtime and What are the
Difficulties?

Nowadays, most modern cloud technologies are written in Golang (e.g. Kubernetes,
Docker, Containerd, runc, gVisor, etc.). Most of these technologies have a big and complex
architecture which is cumbersome to analyze statically. It could be great to have the means
to analyze these tools dynamically alongside the static analysis. Sadly, at the time of writing,
there isn’t any solution for dynamic analysis without recompiling the source code of the
programs. This could be a problem, because sometimes we can’t modify the source code of
these tools, and should interact directly with the process which is already executing the
code. But why aren’t there any tools in the wild which allow the insertion of some arbitrary
logic inside a running Go program? We suppose that one of the problems could be that
Gopl (Golang programming language) has a different ABI (Application binary interface) than
the one used in C and C++ (hence, Frida does not work out of the box :( ). In addition,
Golang incorporates a language-specific runtime which is responsible for complex
procedures such as garbage collection and scheduling of goroutines. The way this runtime
is placed inside the program alongside its functioning completely changes the way we
construct and insert hooks. Last but not least, initially the Gopl was intended to be self-
contained — it was not designed to be extendible during runtime (e.g. loading shared
libraries). Happily, this changed, but Go programs are still statically linked if they don't use
the net or the user packages or they don't make use of cgo. However, with some
assumptions and tweaking we were able to circumvent these problems.

But before we demonstrate how we managed to do it, let’s first see how we can hook
Golang programs during runtime using C and pure assembly on x86-64 CPU architecture.
Let’s start with a more formal explanation of what a hook is and why it is useful.

What Is Program Hooking and What Is It Useful for?

Hooking a program is the procedure of changing its default flow of execution, most of the
time with the intent of either collecting information about the program’s environment (e.g.
inspect a function’s arguments) or with the intent of changing its behavior (e.g. altering the
arguments of a function).

Detours are used for debugging, hot patching, metric collection but also for malware
development, game cracks, etc. In general, there are two types of hooks:

Regular hooks — hijack the original execution flow and replace it with an auxiliary
logic.
Trampoline hooks — hijack the original execution flow, execute an auxiliary logic and
then execute the original flow.

Let’s introduce the following notions which will be used in the entire series of blog posts:

https://en.wikipedia.org/wiki/Application_binary_interface
https://golangbot.com/goroutines/
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Host — the program whose execution flow is going to be hooked.
Guest — an external piece of code to where the execution flow will be redirected.

Here is a simplified graphical representation of how a trampoline hook would work for a
regular compiled program:
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A scheme of a general program hooking process
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The above schema illustrates a redirection of the execution flow of a function in the Host to
another function in the Guest. The hooking happens during execution of the Host, hence all
the above happens in the RAM, where its instructions are loaded (runtime hooking, right?).
In the above schema, it is assumed that the Guest is loaded externally, by an auxiliary
program that we call "loader", during the execution of the Host. You can see the Guest as
an external object (shared libraries). This approach can be applied to hook any part of a
function assuming that the function is not in-lined, or it can at least host a JUMP stub inside
it. Let’s clarify each phase having a numeric identifier in the above presented schema (the
other phases are considered out of the scope of the article or straightforward to
understand):

1. Create backup — this phase involves saving some instructions from the original
function. The insertion of a redirection stub (in phase 2) would overwrite five or
fourteen bytes of instructions depending on the size of the stub. To be able to execute
the original instructions after the hook, one needs to save these bytes and execute
them later. NB: The choice of which instructions to save is important. As these
instructions are going to be stored in another segment, if they contain relative offsets,
this could involve instruction patching. Another solution would be to overwrite
instructions whose execution is independent of their position.

2. Initialize trampoline — in this phase the Guest initializes the trampoline segment
(allocation, initialization of the addresses of the call stubs depending on where the
Guest is loaded, insertion of the backup instructions, etc.).

3. Insert a redirection stub — in this phase the redirection stub (a
conditional/unconditional assembly JUMP instruction) is inserted in the function body,
overwriting the original instructions. When the execution flow gets to it, it will be
redirected to an external segment containing the “trampoline” logic. This segment is
not part of the Host so it’s created and initialized by the Guest when it is loaded.

4. Save context — this phase is part of the trampoline segment where the execution
flow ends after being redirected. Its objective is to preserve the execution context
before calling into the hook function in the Guest. The hook could modify the CPU
state when executing which could corrupt the program’s execution in a future state
(remember that the compiler hasn’t predicted us interfering). In most programming
languages, there are caller-saved (volatile registers, or call-clobbered) and callee-
saved (non-volatile registers, or call-preserved) CPU registers. To not corrupt the
program when the execution flow returns to its normal path we need to save the
caller-saved registers so that our Guest can modify them freely. Additionally, in this
phase we are also preparing for a function call which could require an ABI
arrangement (adding, rearranging or removing function arguments) by the trampoline
itself.
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5. Call hook — a call instruction redirects the flow to the hook defined in the Guest’s
.text segment.

6. Restore context — when the hook returns, in the trampoline section we restore and
modify, if necessary (if the hook returns a result), the stored context (CPU registers).

7. Execute backup — the saved instructions are executed.

8. Continue execution — the flow is redirected to the first instruction after the
redirection stub.

In the description above, technical and implementation details are intentionally excluded.
Some steps can be simplified and further optimized, but take this as a general approach to
create a trampoline hook. Despite this, hooking a Go program makes this procedure
significantly more complex.

Hooking Go Using C and Pure Assembly

In this section we’ll present a method for how one could create a runtime hook redirecting
the execution flow from a Go function to a C function and discuss the limitations of this
approach. Let’s consider the following Golang program:
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package main 

import ( 
   "fmt" 
   "os" 
   "strings" 
) 
import "C" 
// the "import C" statement is needed for the compiler to produce a binary  
// which is going to load libc.so when launched. This is needed  
// for the side-loading of the hook logic. 
var SECRET string = "VALIDATEME" 

func theGuessingGame(s string) bool { 
   if s == SECRET { 
       fmt.Println("Authorized") 
       return true 
   } else { 
       fmt.Println("Unauthorised") 
       return false 
   } 

} 

func main() { 
   var s string 

   for { 
       if _, err := fmt.Scanf("%s", &s); err != nil { 
           panic(err) 
       } 
       s = strings.ToLower(s) 
       if theGuessingGame(s) { 
           os.Exit(0) 
       } 
   } 
} 

The above code receives a user-input string and compares it to a hard-coded value. The
problem is that the user could never supply the right string as its input is lowercased and
the hard-coded string is in uppercase. To get an “authorized” output we could do the
following:

Skip the call to strings.ToLower in main and jump directly to the call to
theGuessingGame.
When starting to execute theGuessingGame, jump directly to the fmt.Printlncode.
Change the value of the string after it has been lowercased by calling into a hook
which does the inverse operation (uppercasing). This can be done either directly after
the call to strings.ToLower or at the beginning of the theGuessingGame function
before the actual check is performed.
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Even if the first two options are simpler, we’ll take the third one as it’s the subject of this
article. We’ll use a trampoline hook so that we can preserve the original execution flow and
only change the argument of the function. There is one more interesting thing in the above
snippet — the import C statement. This will instruct the compiler to add directives for the
loader to load libc when the binary is loaded in memory. As we said earlier, by default Go
binaries are statically linked and include an implementation of the standard library. This is
needed for the side-loading the hook logic.

Representing a Golang String in C

If our Host program was using C-like strings then our routine in the Guest would have the
following prototype void toUpper(char *s); (a Null terminated sequence of ASCII
characters). However, strings in Go are represented differently. In Golang strings are seen
as a UTF-8 sequence which could contain a Null byte in each and every position. Because
of that, in Go, the actual sequence of characters is embedded into a structure alongside its
length. The compiler definition of this structure (for Go version 1.20.3) is :

// src/internal/unsafeheader/unsafeheader.go:28 

// String is the runtime representation of a string. 
// It cannot be used safely or portably and its representation may 
// change in a later release. 
//
// Unlike reflect.StringHeader, its Data field is sufficient to guarantee the 
// data it references will not be garbage collected. 
type String struct { 
   Data unsafe.Pointer 
   Len  int 
} 

To define an equivalent structure in C we have to find a meaningful representation of each
field:

The unsafe.Pointer type in Go, in this case, can be seen as a const char * in C (in
general it can be considered as a void *).
The int type in Go is equivalent to ptrdiff_t (from <stddef.h>) in C (in general it
can be considered as a uint64_t).

Combining the above, we can now represent a Go string in C using the following definition:

// hook.h 
typedef struct GoString {   
   char *p;  
   ptrdiff_t n;  
} GoString; 
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Now, we can define our toUpper routine in C. For the sake of simplicity, we’ll assume that
the actual byte data is the uppercase ASCII subset of the UTF-8 character set.

/*
Convert ASCII string (a-z) to uppercase  (A-Z). 
We assume that the byte sequence of the string in str->p contains 
only valid uppercase ASCII letters. 
*/
void  
toUpper(GoString str) { 

   char * data = str.p; 
   for (int i=0; i<str.n; i++){ 
       data[i] -= 32; 
   } 
} 

Locating the Right Place to Insert the Hook

Now it’s time to choose where to hijack the execution flow in the Host and redirect it to the
Guest. We chose the theGuessingGame function so let’s first compile the code with:

$ go build -o secret secret.go 

We should ensure that the produced binary is dynamically linked and that libc is going to
be loaded into it. Again — this is necessary for the side-loading of the Guest:

$ file secret && echo && ldd secret    
secret: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, 
interpreter /lib64/ld-linux-x86-64.so.2, 
BuildID[sha1]=c7ba267d636a05fe5c7438b3cfba76116a26f878, for GNU/Linux 3.2.0, with 
debug_info, not stripped 

   linux-vdso.so.1 (0x00007fff8eabe000) 
   libc.so.6 => /lib64/libc.so.6 (0x00007f11dab6c000) 
   /lib64/ld-linux-x86-64.so.2 (0x00007f11dad54000) 

Let’s analyze the assembly code of main using GDB and see how theGuessingGame
function is called (yeah we know that this can be done with Ghidra, Ida and Co. but we like
the output of GDB with the peda extension):

https://github.com/longld/peda
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... 
0x0000000000493c15 <+341>:   call   0x48d3a0 <fmt.Fscanf> ; here we read from STDIN 
and store the user string 
0x0000000000493c1a <+346>:   test   rbx,rbx ; test for errors 
0x0000000000493c1d <+349>:   jne    0x493c6a <main.main+426> 
0x0000000000493c1f <+351>:   mov    rcx,QWORD PTR [rsp+0x38] ; load the string 
structure in RCX 
0x0000000000493c24 <+356>:   mov    rax,QWORD PTR [rcx] ; load the pointer to the 
byte data in RAX (1st member of the structure) 
0x0000000000493c27 <+359>:   mov    rbx,QWORD PTR [rcx+0x8] ; load the size of the 
string in RBX (2nd member of the structure) 
0x0000000000493c2b <+363>:   call   0x4934a0 <strings.ToLower> ; strings in Go are 
immutable so lowercasing  
one will create a new structure. RAX contains the pointer to the bytes of the new 
string and RBX its size  
0x0000000000493c30 <+368>:   mov    rdi,QWORD PTR [rsp+0x38] ; load the pointer to 
the original string structure 
0x0000000000493c35 <+373>:   mov    QWORD PTR [rdi+0x8],rbx  ; store the new size 
# The instructions ensure that if the concurrent garbage collector is running, it's 
up to him to update the pointer and update its view of the used heap dat 
0x0000000000493c39 <+377>:   cmp    DWORD PTR [rip+0xea280],0x0        ; 0x57dec0 
<runtime.writeBarrier> 
0x0000000000493c40 <+384>:   jne    0x493c47 <main.main+391> 
0x0000000000493c42 <+386>:   mov    QWORD PTR [rdi],rax 
0x0000000000493c45 <+389>:   jmp    0x493c4c <main.main+396> 
0x0000000000493c47 <+391>:   call   0x45f9c0 <runtime.gcWriteBarrier> 
0x0000000000493c4c <+396>:   call   0x4939c0 <main.theGuessingGame> ; call into the 
theGuessingGame where RAX holds a pointer to the sequence of UTF-8 data and RBX the 
size of this data 
... 

Here we can see the Golang ABI. First argument goes in RAX, the second one in RBX, the
third one in RCX and so on (more information can be found here).

Let’s analyze the beginning of the theGuessingGame function before the comparison of the
argument string and the hard-coded one takes place:

https://go.googlesource.com/go/+/refs/heads/dev.regabi/src/cmd/compile/internal-abi.md
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Dump of assembler code for function main.theGuessingGame: 
   # The above 2 instructions ensures that the current goroutine stack has enough 
place to accomodate the function execution 
  0x00000000004939c0 <+0>:     cmp    rsp,QWORD PTR [r14+0x10]                      
  0x00000000004939c4 <+4>:     jbe    0x493a94 <main.theGuessingGame+212>   
  0x00000000004939ca <+10>:    sub    rsp,0x50                                      
  0x00000000004939ce <+14>:    mov    QWORD PTR [rsp+0x48],rbp                      
  0x00000000004939d3 <+19>:    lea    rbp,[rsp+0x48]                                
  0x00000000004939d8 <+24>:    mov    QWORD PTR [rsp+0x58], rax                     
  0x00000000004939dd <+29>:    mov    rdx,QWORD PTR [rip+0xa2f9c]        ; 0x536980 
<main.SECRET>  - load into RDX the pointer to the data of the hardcoded string 
indentified with main.SECRET+8 
  0x00000000004939e4 <+36>:    cmp    QWORD PTR [rip+0xa2f9d],rbx        ; 0x536988 
<main.SECRET+8> - compare the size of the parameter string with the size of the 
hardcoded string's 
  0x00000000004939eb <+43>:    jne    0x4939fc <main.theGuessingGame+60> ; if these 
are not equal; no need to compare the actual data bytes 
  0x00000000004939ed <+45>:    mov    rcx,rbx ; move the equal size of the two 
strings in RCX 
  0x00000000004939f0 <+48>:    mov    rbx,rdx ; move the pointer to the hardcoded 
string in RBX 
  0x00000000004939f3 <+51>:    call   0x4038e0 <runtime.memequal> ; the memory 
regions are compared (RAX-> argument pointer to the string's data, RVX -> idem but 
for the hardcoded one, rcx the number of bytes to be compared) 
  0x00000000004939f8 <+56>:    test   al,al ; if al=0 then the strings are equal 

We want to hijack the execution flow somewhere before runtime.memequal. We’ll insert a
JUMP stub of 14 bytes, so we should do a backup of at least fourteen instructions when
inserting it:

push <last-four-bytes-of-destination-address> 
move [rsp+4] <first-four-bytes-of-destination-address> 
ret 

We can replace the stack management routine (from 0x04939c0 up to 0x4939ce) but this
region contains a relative to the RIP instruction which would require an instructions
patching. Another suitable spot is from 0x4939ca up to 0x4939d8 which is a regular function
prologue plus one additional instruction. Backing that up would not require any patching and
the instructions can be executed as is even if they are placed at another location. Now it’s
time to load our hook.

Loading the Guest

To load the Guest containing the hook logic inside the Host we used a really common
technique of side-loading shared libraries into running processes on Linux using the ptrace
API. We’re not going to go into detail of how this works as there are plenty of resources on
the Internet. We used our own implementation written in Go. However, there are some
important aspects which should be pointed out for the side-loading to work:

https://man7.org/linux/man-pages/man2/ptrace.2.html
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1. The C hook was compiled as a PIC (Position-Independent Code) using gcc with the
option -shared which produces a shared object.

2. The library loading happens while the target program is running. It’s done by attaching
to the process using the ptrace API and then calling into dlopen which is part of the
standard library (libc) loaded into the process. The argument of the dlopen function
is the path to the compiled shared library which was previously written into the
memory of the running program again using ptrace.

3. The loader process (the one loading the library into the target program) should be
privileged or be owned by the same user as the target process and have the
CAP_SYS_PTRACE capability.

4. The jump stub insertion logic was compiled as part of the shared library. The insertion
is done when the shared library is loaded and its __constructor__ function is called
by the loader.

Inserting the JUMP Stub and Saving the Overwritten Instructions

The insertion of the redirection stub happens when the Guest is loaded. The beginning of
the theGuessingGame function after loading the Guest is the following:

Dump of assembler code for function main.theGuessingGame: 
  0x00000000004939c0 <+0>:     cmp    rsp,QWORD PTR [r14+0x10] 
  0x00000000004939c4 <+4>:     jbe    0x493a94 <main.theGuessingGame+212> 
  0x00000000004939ca <+10>:    push   0x4b9e4000 ; hohoho this is new
  0x00000000004939cf <+15>:    mov    DWORD PTR [rsp+0x4],0x7fc3 ; and this too 
  0x00000000004939d7 <+23>:    ret 
  0x00000000004939d8 <+24>:    mov    QWORD PTR [rsp+0x58],rax 

We see our inserted stub leading to the address 0x7fc34b9e4000. Let’s inspect what is
there:

0x7fc34b9e4000:      push   r9 ; r9 will be clobbered, so push it onto the stack  
0x7fc34b9e4002:      movabs r9,0x7fc34b9e782d ; cloberring r9 with a function 
address 
0x7fc34b9e400c:      call   r9 ; calling the function; 
0x7fc34b9e400f:      pop    r9 ; restore r9 from the stack 
0x7fc34b9e4011:      sub    rsp,0x50 ; backup 
0x7fc34b9e4015:      mov    QWORD PTR [rsp+0x48],rbp ; backup 
0x7fc34b9e401a:      lea    rbp,[rsp+0x48] ; backup 
0x7fc34b9e401f:      push   0x4939d8 ; the lower 4 bytes of the address of the next 
instruction 
0x7fc34b9e4024:      mov    DWORD PTR [rsp+0x4],0x0 ; the upper 4 bytes of the 
address of the next instruction 
0x7fc34b9e402c:      ret 

We can see the trampoline section from our scheme. The last part (the execution of the
overwritten instructions and the jump to the next instruction) is the same, but the first part is
not. The trampoline calls into something located at 0x7fc34b9e782d. But what's at this

https://embeddedartistry.com/fieldmanual-terms/position-independent-code/#:~:text=Description,be%20located%20anywhere%20in%20memory
https://man7.org/linux/man-pages/man7/capabilities.7.html
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address ? To answer that, let's first talk about the difference between the ABI of Go and C.

Hook Insertion — ABI Switch

Go and C have two different ABIs. Hence, if we want to call into a C function from Go we
need to switch the ABI. As of the time of writing, Go uses a register-based ABI. We need to
translate it to the C ABI (also known as System V). Here we have only two arguments—the
pointer to the bytes of the string (in RAX) and its size (in RBX).

But how is the ABI of the toUpper function arranged in the Guest?

https://wiki.osdev.org/System_V_ABI
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Dump of assembler code for function toUpper: 
  0x00007fada9d711d9 <+0>:     push   rbp 
  0x00007fada9d711da <+1>:     mov    rbp,rsp 
  0x00007fada9d711dd <+4>:     mov    rax,rdi ; rdi contains the pointer to the 
bytes of the Go string 
  0x00007fada9d711e0 <+7>:     mov    rcx,rsi ; rsi contains the length of the the 
Go string 
  0x00007fada9d711e3 <+10>:    mov    rdx,rcx 
  0x00007fada9d711e6 <+13>:    mov    QWORD PTR [rbp-0x20],rax ; save the pointer 
to the Go string data 
  0x00007fada9d711ea <+17>:    mov    QWORD PTR [rbp-0x18],rdx ; save the length of 
the Go string data 
  0x00007fada9d711ee <+21>:    mov    rax,QWORD PTR [rbp-0x20] 
  0x00007fada9d711f2 <+25>:    mov    QWORD PTR [rbp-0x10],rax 
  0x00007fada9d711f6 <+29>:    mov    DWORD PTR [rbp-0x4],0x0 ; the i varaible 
  0x00007fada9d711fd <+36>:    jmp    0x7fada9d71227 <toUpper+78> 
  0x00007fada9d711ff <+38>:    mov    eax,DWORD PTR [rbp-0x4] ; the beginning of 
the loop modifying the string 
  0x00007fada9d71202 <+41>:    movsxd rdx,eax 
  0x00007fada9d71205 <+44>:    mov    rax,QWORD PTR [rbp-0x10] 
  0x00007fada9d71209 <+48>:    add    rax,rdx 
  0x00007fada9d7120c <+51>:    movzx  eax,BYTE PTR [rax] 
  0x00007fada9d7120f <+54>:    lea    ecx,[rax-0x20] 
  0x00007fada9d71212 <+57>:    mov    eax,DWORD PTR [rbp-0x4] 
  0x00007fada9d71215 <+60>:    movsxd rdx,eax 
  0x00007fada9d71218 <+63>:    mov    rax,QWORD PTR [rbp-0x10] 
  0x00007fada9d7121c <+67>:    add    rax,rdx 
  0x00007fada9d7121f <+70>:    mov    edx,ecx 
  0x00007fada9d71221 <+72>:    mov    BYTE PTR [rax],dl 
  0x00007fada9d71223 <+74>:    add    DWORD PTR [rbp-0x4],0x1 
  0x00007fada9d71227 <+78>:    mov    eax,DWORD PTR [rbp-0x4]  
  0x00007fada9d7122a <+81>:    movsxd rdx,eax 
  0x00007fada9d7122d <+84>:    mov    rax,QWORD PTR [rbp-0x18] ; get the length of 
the Go string 
  0x00007fada9d71231 <+88>:    cmp    rdx,rax ; compare it with the i variable 
  0x00007fada9d71234 <+91>:    jl     0x7fada9d711ff <toUpper+38> ; jump into the 
loop 
  0x00007fada9d71236 <+93>:    nop 
  0x00007fada9d71237 <+94>:    nop 
  0x00007fada9d71238 <+95>:    pop    rbp 
  0x00007fada9d71239 <+96>:    ret 

We can see that the pointer to the Go string data is expected to be in RDI while its size is in
RSI. So the transition that we need to do is simple — RAX->RDI and RBX—>RSI. This should
be done before calling into the C function and after inserting the JUMP stub. This logic can
be either located on the heap or as part of the code segment of the shared library. Here is
the simple assembly stub performing the ABI switch:
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ABI_SWITCH: 
   mov rdi, rax 
   mov rsi, rbx 

CALL_C_FUNC: 
   mov r9, <address-of-toUpper> 
   call r9 

ABI_RESTORE: 
   ; nothing to be done 

We are almost there! However, in C there are the notions of callee and caller saved
registers. In other words, we should save all register that C code would eventually clobber
and restore them before the execution of the overwritten instructions in the trampoline
section. In the System V ABI these are RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, so
we extend the above logic with the following:

SAVE_CTX: 
   push rax 
   push rcx 
   push rdx 
   push rdi 
   push rsi 
   push r8 
   push r9 
   push r10 
   push r11 

ABI_SWITCH: 
   ... 

CALL_C_FUNC: 
   ... 

ABI_RESTORE: 

RESTORE_CTX: 
   pop r11 
   pop r10 
   pop r9 
   pop r8 
   pop rsi 
   pop rdi 
   pop rdx 
   pop rcx 
   pop rax 

Note: If the hook was returning a result the ABI restore logic should be adapted accordingly.
Now if we jump to the SAVE_CTX segment, it should be fine? Well, not quite - we could run
out of stack space!



15/18

Hook insertion — Stack Pivot

In the beginning of the theGuessingGame function, we had a prologue of four bytes:

0x00000000004939c0 <+0>:     cmp    rsp,QWORD PTR [r14+0x10] ; retrieves the 
goroutine structure of the current thread 
0x00000000004939c4 <+4>:     jbe    0x493a94 <main.theGuessingGame+212> 
... 

If we follow the jump, we end up here:

0x0000000000493a94 <+212>:   mov    QWORD PTR [rsp+0x8],rax ; save the first 
argument on the stack 
0x0000000000493a99 <+217>:   mov    QWORD PTR [rsp+0x10],rbx ; save the second 
argument on the stack 
0x0000000000493a9e <+222>:   xchg   ax,ax  
0x0000000000493aa0 <+224>:   call   0x45d8c0 <runtime.morestack_noctxt> ; increase 
the size of the stack and update its limit in the goroutine structure 
0x0000000000493aa5 <+229>:   mov    rax,QWORD PTR [rsp+0x8] ; restore the first 
argument 
0x0000000000493aaa <+234>:   mov    rbx,QWORD PTR [rsp+0x10] ; restore the second 
argument 
0x0000000000493aaf <+239>:   jmp    0x4939c0 <main.theGuessingGame> ; continue the 
execution from the beginning 

In Go, the goroutines stacks are resizable and points to the heap. The system stack is used
only by some components of the runtime. These instructions are actually verifying the size
of the current goroutine stack (R14 contains a pointer to the goroutine structure and at
offset 0x10 is located the stack limit called stackguard). If there is not enough stack space,
the runtime.morestack_noctxt is called to increase the stack. In this function the runtime
will allocate the correct amount of stack space based on the stack maps (description of the
stack space of the current function used to allocate and free memory) inserted by the
compiler. The goroutine stacks are small (2Kb). Theoretically, if we hijack the control flow
before a stack resizing we could end up with not enough stack to store the registers and
execute the hook code which will also use this stack (imagine if toUpper function allocated
3000 bytes on its stack). To solve that we could pivot the stack into a new RW region before
calling into the C function (and before saving the registers) and restore the old stack
afterwards. The allocation of the memory for the new stack is done when loading the Guest.
Here is the stack pivoting logic:
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STACK_PIVOT: 
   ; save the current G stack in memory 
   mov r9, <addr-to-store-g-stack> 
   mov [r9], rsp 
   ; load the new stack and pivot it (atomic swap) 
   mov r9, <addr-new-stack> 
   xchg r9, rsp 

SAVE_CTX: 
   ... 
ABI_SWITCH: 
   ... 
CALL_C_FUNC: 
   ... 
ABI_RESTORE: 

RESTORE_CTX: 
   ... 
STACK_PIVOT_REV: 
   mov r9, <addr-stack-backup> 
   xchg rsp, [r9] 
   ret 

For the ones paying close attention, there is a potential flow in this assembly logic. What if
the target function in the Host was using stack space inferior to eight bytes (even if that’s
not the case really)? Don’t forget that the compiler has not predicted our intervention into
the execution flow! Hence, what if pushing R9 overflows the current stack? Don’t worry—Go
has us covered ;) As we said earlier, the check of the limit is done against a member of the
goroutine struct called stackguard which can be seen is the bottom of the stack. However,
this stackguard is not the real stack limit of the goroutine. The Go runtime will allow a
certain number of bytes (a constant defined as StackSmall=128[bytes]) to protrude beyond
this limit (also called spill zone). This tiny space can be used by functions with small or zero
sized stack frames which don’t need to resize their stacks or perform additional checks (it’s
also used for optimization). Examples of this kind of function (mostly written in assembly)
can be found mostly in the runtime package (the ones annotated with NOSPLIT). So
theoretically there should be enough space to push the R9 register.

Now everything looks fine, right? It is, and the hook logic will work. Now we know what's at
the address 0x7fc34b9e782d in the trampoline section - the address of the STACK_PIVOT
stub. However, there is another small problem that could theoretically arise, and we should
be ready for it.

Hook Insertion — Mitigating Concurrency Issues

Our toy program is quite simple but, in general, Go programs tend to be highly concurrent.
Hence, the above sequence of stubs introduce reentrancy problems — if two goroutines
execute the same function and get both redirected, they could end up with inverse stacks!

https://go.dev/src/runtime/stack.go
https://github.com/golang/go/blob/master/src/runtime/msan_amd64.s
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This scenario would also break our assumptions on the safeties of the execution of C code
as the second goroutine could end up using the small stack of the first one. This problem
can be illustrated by adding the following code to the existing program:

   ... 
   s = strings.ToLower(s) 
   go theGuessingGame(s) 
   if theGuessingGame(s) { 
       os.Exit(0) 
   } 

It’s not the most interesting example, but it should do the job for you to understand the
problem.

To solve this we could use, for example, a simple semaphore introducing a busy wait. This
is left as an exercise for the reader.

A working PoC of the above can be found here.

Limitations of the Above Approach

The above approach works on simple programs and sadly is quite architecture and platform
dependent. Here are some of the limitations of this approach:

On Windows the ABI is different, so the above code will not function.
The used assembly snippets are for x86-64. For other architectures such as ARM or
MIPS, the above will not work.
All Go types and respective offsets have to be manually defined in the C header.
The above approach introduces heavy concurrency issues.

Why implement runtime hooks written in Golang?

In the beginning we implemented our hooks in C using pure assembly (oh yes, we suffered
a lot, but we made it). This was fine for small programs working with primitive data types.
After that we started looking to apply our methodology to big projects such as Docker and
Containerd, and then we realized that it was quite difficult and annoying. These programs
were using complex data structures, some of which were only available in Go and not in C
(e.g. channels, interfaces, slices, etc.). Hence, being able to manipulate these structures in
C or assembly was a complex task. So we decided to facilitate our lives as much as
possible and write the logic of our hooks in Go. In addition, we wanted to dive deep into the
internals of the programming language and explore its true capabilities.

Conclusion

https://github.com/quarkslab/hooking-golang-playground/tree/main/part-1


18/18

In this blogpost, we illustrated our first effort to define a hooking scheme for Go programs.
We explored and understood quite interesting internals of the language while implementing
a hook using C and assembly. However, we want to manipulate Go types with more ease.
We also want something more universal, something that can be adapted to different
platforms and CPU architectures. Happily (or not) the rabbit hole goes deeper ;)

Resources

If you would like to learn more about our security audits and explore how we can help you,
get in touch with us!

 
 

https://content.quarkslab.com/talk-to-our-experts-blog

