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Full disclosure- Microsoft hired me following part 1 of this series. This research was
conducted independently, and a vast majority of it was completed before I joined. Obviously,
no internal information was used, and everything was built on public resources.

In Abusing Exceptions for Code Execution, Part 1, I introduced the concept of Exception
Oriented Programming (EOP), which was a method of executing arbitrary operations by
chaining together code from legitimate modules. The primary benefit of this approach was
that the attacker would never need their shellcode to be in an executable region of memory,
as the technique relied on finding the instructions of their shellcode in existing code.

The last article primarily focused on abusing this technique when you already have some
form of code execution. Although powerful for obfuscation and evasion, the use cases
provided would only be relevant when an attacker had already compromised an
environment. For example, how does EOP compare to existing exploitation techniques such
as Return Oriented Programming (ROP)? In this article, we'll explore how the concepts
behind Exception Oriented Programming can be abused when exploiting stack overflow
vulnerabilities on Windows.

Background

Before we can get into how EOP can help exploit stack-based attacks, it's important to know
the history of the mitigations we are up against. I assume you already have familiarity with
the OS-agnostic basics, such as ASLR and DEP.

Security Cookies

Security cookies (aka "stack canaries") are a compiler mitigation introduced around two
decades ago. Here is a helpful summary from Microsoft's documentation:

On functions that the compiler recognizes as subject to buffer overrun problems, the
compiler allocates space on the stack before the return address. On function entry, the
allocated space is loaded with a  security cookie  that is computed once at module
load. On function exit, and during frame unwinding on 64-bit operating systems, a
helper function is called to make sure that the value of the cookie is still the same. A
different value indicates that an overwrite of the stack may have occurred. If a different
value is detected, the process is terminated.

https://billdemirkapi.me/abusing-exceptions-for-code-execution-part-2/
https://billdemirkapi.me/exception-oriented-programming-abusing-exceptions-for-code-execution-part-1
https://learn.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check
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Security cookies are relatively straightforward. By placing a "random" cookie next to the
return address on the stack, attackers exploiting stack overflow vulnerabilities face a
significant problem- how do you modify the return address without failing the cookie check?

Over the years, there has been lots of work put into bypassing these security cookies. I
found this helpful overview from the Corelan team written in 2009. Let's review some of the
techniques they discuss that are still relevant to this day:

1. This mitigation is irrelevant if you have an overflow vulnerability in a function that does
not have a security cookie check (i.e. because there are no string buffers).

2. If you have an information disclosure primitive, you could attempt to leak the security
cookie for the current function from the stack or the security cookie in the .data
section.

For example, if you had a string buffer and a method of getting the application to
"print" that string, you could overflow the buffer up to the security cookie such that
there is no NULL terminator. When the string is "printed", all the bytes of the
cookie until a NULL terminator would be returned as a part of the string.

3. If you already have an arbitrary "write-what-where" primitive and know the location of
the security cookie, you can overwrite it with your own, allowing you to predict the
"correct" value to place on the stack.

4. You can still overwrite local variables on the stack to hijack control flow.
For example, if a pointer was stored on the stack (before the overflow'd variable)
used in a desirable operation like memcpy after the overflow occurs, you could
overwrite this pointer without corrupting the security cookie.
Another example would be objects with "virtual tables" on the stack that we can
overwrite. If an object's virtual table is used after the overflow occurs, an attacker
could influence the target of those virtual calls. Of course, this would likely be
subject to control-flow integrity mitigations like Control Flow Guard (or xFG) on
Windows.

Outside of these approaches, there has been extensive research into abusing exception
handling. Before mitigations such as SafeSEH and SEHOP, which we will discuss soon,
attackers in the context of 32-bit applications could modify "exception registration records" on
the stack. The Corelan team covered this path of exploitation in a separate blog. More
recently, however, @_ForrestOrr wrote in detail about SEH hijacking in his article about
memory corruption bugs on Windows.

SEH Hijacking and the Mitigations Against It

In 32-bit applications, exception registration records contain a pointer to the "next" SEH
record on the stack and a pointer to the exception handler itself. Back in the day, attackers
could hijack control flow even with security cookies by:

https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://learn.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://www.corelan.be/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
https://twitter.com/_forrestorr
https://www.cyberark.com/resources/threat-research-blog/a-modern-exploration-of-windows-memory-corruption-exploits-part-i-stack-overflows
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1. Replacing the exception handler on the stack with their own.
2. Triggering an exception before the security cookie check.

This would allow the attacker to call an arbitrary handler with partial control over the passed
arguments.

SafeSEH

To protect against this technique, Microsoft introduced a mitigation called SafeSEH. At a high
level, "legitimate" exception handlers are built into the binary at compile-time. Although an
attacker can still replace the exception handler on the stack, if it is not in the module's list of
exception handlers, a STATUS_INVALID_EXCEPTION_HANDLER exception is raised.

SEHOP

SEH Overwrite Protection (SEHOP) is another mitigation that would protect 32-bit
applications from having their exception handlers overwritten- without requiring them to be
recompiled. This approach works by adding an exception registration record at the bottom of
the chain and making sure it is "reachable" when an exception occurs. Remember that
besides the exception handler, the registration record contains a pointer to the "next" SEH
record. If an attacker corrupts this "next" pointer, the chain is broken, and this final item is not
reachable, preventing the attack. Of course, if an attacker can predict the "next" pointer
successfully, this mitigation can be evaded.

64-bit Applications

64-bit applications are already protected against this attack by default, which we briefly
mentioned in the last article of this series:

Nowadays SEH exception handling information is compiled into the binary, specifically
the exception directory, detailing what regions of code are protected by an exception
handler. When an exception occurs, this table is enumerated during an "unwinding
process", which checks if the code that caused the exception or any of the callers on
the stack have an SEH exception handler.

Since the exception handlers are built into the binary itself, there is no exception registration
record on the stack that an attacker can corrupt. This prevents the existing approaches to
SEH hijacking entirely.

The Exception Directory

Let's talk more about how the exception directory works in 64-bit applications.

https://learn.microsoft.com/en-us/cpp/build/reference/safeseh-image-has-safe-exception-handlers
https://msrc-blog.microsoft.com/2009/02/02/preventing-the-exploitation-of-structured-exception-handler-seh-overwrites-with-sehop/
https://billdemirkapi.me/exception-oriented-programming-abusing-exceptions-for-code-execution-part-1#structured-exception-handlers
https://docs.microsoft.com/en-us/cpp/cpp/exceptions-and-stack-unwinding-in-cpp
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The location of the exception directory can be retrieved by parsing the optional header of the
binary, specifically the IMAGE_DIRECTORY_ENTRY_EXCEPTION data directory. This directory is
an array of IMAGE_RUNTIME_FUNCTION_ENTRY structures. You can calculate the number of
entries by dividing the directory size by the size of the IMAGE_RUNTIME_FUNCTION_ENTRY
structure.

Each entry contains a begin address, end address, and the offset of an UNWIND_INFO
structure. The begin/end addresses specify the region of code that the given entry provides
information for. The UNWIND_INFO structure is represented by the following:

typedef struct _UNWIND_INFO { 
unsigned char Version : 3; 
unsigned char Flags : 5; 
unsigned char SizeOfProlog; 
unsigned char CountOfCodes; 
unsigned char FrameRegister : 4; 
unsigned char FrameOffset : 4; 
UNWIND_CODE UnwindCode[1]; 

/*  UNWIND_CODE MoreUnwindCode[((CountOfCodes+1)&~1)-1]; 
*  union { 
*      OPTIONAL unsigned long ExceptionHandler; 
*      OPTIONAL unsigned long FunctionEntry; 
*  }; 
*  OPTIONAL unsigned long ExceptionData[]; 
*/ 
} UNWIND_INFO, * PUNWIND_INFO; 

The commented region is still present in the structure, but its location depends on the size of
the dynamic UnwindCode array. Note that most functions in an application will have a
dedicated entry. This is because even if the function does not need to handle exceptions,
each entry contains essential information for how the function should be unwound. For
example, if function A contains an exception handler, calls function B, which does not, and
an exception occurs, we still need to be able to unwind the stack to get to function A's
handler.

Of note, the Flags field of the structure can contain the following:

UNW_FLAG_NHANDLER - The function has no handler.
UNW_FLAG_EHANDLER - The function has an exception handler that should be called.
UNW_FLAG_UHANDLER - The function has a termination handler that should be called
when unwinding an exception.
UNW_FLAG_CHAININFO - The FunctionEntry member is the contents of a previous
function table entry.

We can tell if a given function contains an exception handler by checking if the Flags field
specifies UNW_FLAG_EHANDLER.
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The structure's dynamic UNWIND_CODE array represents the operations needed to
"unwind"/undo the changes a given function's prolog has made to the stack. We will talk
about these operations in a later section when they become relevant.

typedef struct _UNWIND_INFO { 
... 

/*  UNWIND_CODE MoreUnwindCode[((CountOfCodes+1)&~1)-1]; 
*  union { 
*      OPTIONAL unsigned long ExceptionHandler; 
*      OPTIONAL unsigned long FunctionEntry; 
*  }; 
*  OPTIONAL unsigned long ExceptionData[]; 
*/ 
} UNWIND_INFO, * PUNWIND_INFO; 

Going back to the definition of the UNWIND_INFO structure, note that there is a single field
dedicated to the offset of the "exception handler". When you create some code with an SEH
try/except block, the address of your exception handler is not what goes into this field.
Instead, every language (including C/C++) is responsible for defining a "language-specific"
handler. In our case, ExceptionHandler points to the __C_specific_handler. These
handlers have the following type definition:

typedef EXCEPTION_DISPOSITION (*PEXCEPTION_ROUTINE) ( 
   IN PEXCEPTION_RECORD ExceptionRecord, 
   IN ULONG64 EstablisherFrame, 
   IN OUT PCONTEXT ContextRecord, 
   IN OUT PDISPATCHER_CONTEXT DispatcherContext 
);

typedef struct _SCOPE_TABLE_AMD64 { 
   DWORD Count; 
   struct { 
       DWORD BeginAddress; 
       DWORD EndAddress; 
       DWORD HandlerAddress; 
       DWORD JumpTarget; 
   } ScopeRecord[1]; 
} SCOPE_TABLE_AMD64, *PSCOPE_TABLE_AMD64; 

The __C_specific_handler handler for C/C++ leverages the ExceptionData field to store a
SCOPE_TABLE structure. Like the IMAGE_RUNTIME_FUNCTION_ENTRY parent structure, each
ScopeRecord has a begin/end address, but this time we have a handler and jump target as
well. The begin/end address specifies the scope or "region of code" to "protect". The last two
fields store offsets to your SEH exception filter and exception handler.
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int main() { 
__try { 
 *(int*)0 = 0xDEADBEEF; 
} __except(MyExceptionFilter()) { 
 printf("My exception handler!\n"); 
} 
return 0; 

} 

Exception filters go inside the parenthesis for your __except block. In this example,
MyExceptionFilter is responsible for determining whether the __except handler block
should be called for a given exception. Exception filters often perform conditional checks,
such as whether the exception code matches something specific. Filters can return the
following results:

1. EXCEPTION_CONTINUE_EXECUTION - Indicates that execution should continue where the
exception occurred.

2. EXCEPTION_CONTINUE_SEARCH - Continue the search for an exception handler.
3. EXCEPTION_EXECUTE_HANDLER - Execute the handler block. In the example code, My

exception handler! would only be printed if MyExceptionFilter returned this value.

Exception filters and handlers are defined in the ScopeRecord structure as the
HandlerAddress and JumpTarget offsets. If the HandlerAddress is 1, then this means
execute the exception handler (JumpTarget) for all exceptions.

You can find the source code for __C_specific_handler included with the MSVCRT since it
needs to support static compilation into binaries. On my installation of Visual Studio, the
relevant source file is located at C:\Program Files (x86)\Microsoft Visual Studio
14.0\VC\crt\src\amd64\chandler.c.

The Exception Dispatching Process

Before we continue, I want to clarify a fundamental concept we need to understand about the
UNW_FLAG_EHANDLER vs UNW_FLAG_UHANDLER flags in the UNWIND_INFO structure.

When an exception occurs, RtlDispatchException is the first function to be called.
RtlDispatchException will create a temporary copy of the CONTEXT record (containing the
state of registers, etc.) and "virtually unwind" the stack searching for exception handlers to
call. Unwinding means undoing the modifications done to the stack (and registers) by the
prolog/epilog of functions in the call stack. If a function has a corresponding UNWIND_INFO
structure with the UNW_FLAG_EHANDLER flag, its exception handler is called.

If the handler returns EXCEPTION_CONTINUE_EXECUTION, execution continues right where the
exception occurred (which means the exception was "handled"). Note that the changes
made to the temporary CONTEXT copy will not be reflected if execution were to continue (i.e. if
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virtual unwind modified Rcx register, that doesn't change Rcx when execution continues).

If the handler returns EXCEPTION_CONTINUE_SEARCH, the virtual unwinding process continues,
looking for the next function with the UNW_FLAG_EHANDLER flag.

In the context of the C-specific language handler, the exception filter specified by the
"handler address" can return the two results above and EXCEPTION_EXECUTE_HANDLER. In this
case, even though we are in the context of RtlDispatchException, __C_specific_handler
will call RtlUnwind to unwind execution to the handler specified by the "jump target".

RtlUnwind is incredibly similar to RtlDispatchException, but it has a few notable
differences. First, the context record modified by the unwinding process in this function will
be reflected when execution continues. This is because RtlUnwind is intended to get both
the stack and registers into the state corresponding to the target exception handler's
function. So, for example, if you had an exception handler in a parent function of where the
exception occurred, RtlUnwind is responsible for making sure that Rsp is corrected such that
you can access any local variables from the context of your parent function as well as the
values in its nonvolatile registers.

The second significant difference is that only "termination" or unwind handlers are called, aka
functions with an UNWIND_INFO structure specifying the UNW_FLAG_UHANDLER flag. A good
example of an unwind handler would be a __try/__finally block intended to free resources
rather than catch an exception.

RtlUnwind will unwind the stack, calling relevant unwind handlers until the "target frame" is
reached. The target frame is generally the stack frame for the exception handler it is trying to
unwind to. When reached, RtlUnwind passes the modified context record to
RtlRestoreContext, which is responsible for continuing execution at the target handler.

We're going to cover RtlDispatchException and RtlUnwind further in later sections, but if
you'd like to learn more outside of this article, check out the publicly leaked Windows
Research Kernel (WRK), which contains the source code for RtlDispatchException and
RtlUnwind.

Although we've gone over how Structured Exception Handling works "under the hood" to an
extent, much was simplified for the purposes of this article. If you're interested in learning
more, I would encourage you to check out this article by Ry Auscitte, who goes into even
more detail.

We've explored the existing mitigations against stack-based attacks and how Structured
Exception Handling works. In the following sections, we'll discuss the practical approaches I
propose to simplify the exploitation of stack overflow vulnerabilities.

Bypassing Security Cookies

https://github.com/smartmaster/wrk-msvc/blob/master/BASE/NTOS/RTL/AMD64/EXDSPTCH.C#L114
https://github.com/smartmaster/wrk-msvc/blob/master/BASE/NTOS/RTL/AMD64/EXDSPTCH.C#L510
https://auscitte.github.io/posts/Exception-Directory-pefile
https://github.com/Auscitte
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Example

void GetString() { 
char tempBuffer[16]; 

scanf("%s", tempBuffer); 
printf(tempBuffer); 

} 

int main() { 
__try { 
 GetString(); 
} 
__except (EXCEPTION_EXECUTE_HANDLER) { 
 printf("Something bad happened!\n"); 
} 
return 0; 

} 

Let's start with an example of a simple vulnerable application I've compiled using
Clang/LLVM in Visual Studio. The buffer overflow is simple, scanf reads a string into the
tempBuffer stack variable without any bound checks.

If we take a look at the function in IDA Pro, there is a significant challenge preventing us from
exploiting this overflow primitive- the security cookie check at the epilogue of the function.
Since the return address is right "after" the security cookie on the stack, we couldn't modify it
without also corrupting the cookie. This would prevent us from gaining code execution since
the program would crash before the ret instruction.

https://i.imgur.com/qO3h4xa.png
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What can we do? Existing approaches to these scenarios include all of the methods we
discussed to bypass security cookies, such as trying to leak it. For example, if the attacker
had access to the stdout of this program, they could use printf to leak the security cookie
on the stack. However, the issue they'd run into is that the program would exit soon after.
Even if they could trigger another execution, a new random cookie would be generated.

This is where our new methodology can start to shine. Our exploit fails if we corrupt the
return address and hit the __security_cookie_check. What if we... corrupted the stack
and triggered an exception (i.e with a bad format string)?

int main() { 
__try { 
 GetString(); 
} 
__except (EXCEPTION_EXECUTE_HANDLER) { 
 printf("Something bad happened!\n"); 
} 
return 0; 

} 

Since main has a "catch-all" exception handler, the program would print Something bad
happened! and return. The security cookie check would never be reached because the
exception redirected execution to the handler! Also, because main does not have any stack
variables itself, it has no security cookie check. If we used our overflow to corrupt the return
address of main rather than GetString, once main returns after the exception is handled,
we'd gain control over what code is executed!

This example relies on an overflow vulnerability, a method of triggering an exception, and a
parent function having a "catch-all" exception handler. These first two requirements are
relatively straightforward as 1) security cookies are only relevant for overflow scenarios, and
2) causing an exception is relatively easy if you can corrupt local variables.

What about the last requirement that the context in which you have an overflow vulnerability
also contains a parent function with a catch-all handler? That is a much higher bar.
Fortunately, this is where we can abuse how unwinding works.

How did the unwinding process determine that it should call main's exception handler? When
main called GetString, the Rip register was pushed on the stack as the return address
GetString should return to. The unwinding process uses this return address on the stack
while searching for a parent function that contains an exception handler.

If we have a leak of the location for any module in the process that contains a C-specific
exception handler where 1) the exception filter returns EXCEPTION_EXECUTE_HANDLER and 2)
the handler will ret without a security cookie check, then we don't need a desirable parent in
our stack at all!
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By replacing the parent return address on the stack with an address protected by a
"desirable" exception handler which meets the previous requirements, the unwinding process
will pass the exception to the fake parent's handler, which will ret into an address we control
on the stack.

Finding these "desirable" handlers can be easier than it may seem. For example, if we
statically compile the previous barebone example application, we already have several
candidates to choose from.

[RUNTIME_FUNCTION] 
...  

[UNWIND_INFO] 
...   
Flags: UNW_FLAG_EHANDLER 
Unwind codes: .ALLOCSTACK 0x18 
 [SCOPE_TABLE] 
 Scope 0 
 BeginAddress:                  0x16cb 
 EndAddress:                    0x1755 
 HandlerAddress:                0x10314 
  push rbp 
  mov rbp, rdx 
  mov rax, qword ptr [rcx] 
  xor ecx, ecx 
  cmp dword ptr [rax], 0xc0000005 
  sete cl 
  mov eax, ecx 
  pop rbp 
  ret  
 JumpTarget:                    0x1755 
  xor al, al 
  add rsp, 0x18 
  ret  

Above is an excerpt from a tool I wrote to dump C-specific exception handlers. These
structures correspond to the __scrt_is_nonwritable_in_current_image function in the
MSVCRT. Look at the exception filter's disassembly. If we can generate an access violation
exception (i.e. by reading/writing an invalid pointer), the exception handler (jump target)
would be executed, returning to any address of our choice.

Theory

As we covered earlier, using exceptions to escape security cookies is not new. In the past,
however, the methods have involved x86-specific weaknesses, such as the exception
handler pointer being stored on the stack. This new approach works with 64-bit applications
by leveraging existing legitimate exception handlers.

Taking a step back and looking at this attack as a generic methodology. If you...
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1. Have a stack overflow primitive.
2. Can trigger an exception before a security cookie check.
3. Know the location of any module in the process that contains a region of code

protected by an exception handler...
Whose C-specific exception filter (handler address) returns
EXCEPTION_EXECUTE_HANDLER for the exception you can generate.
Whose C-specific exception handler (jump target) ret's without a security cookie
check.

4. Meet specific compiler requirements (discussed later).

You can spoof your call stack to include a region of code protected by the desirable
exception handler, trigger an exception, and bypass the security cookie check entirely.

Are All Compilers Impacted?

SEH Security Cookie Check

When I was parsing the exception handlers registered for modules such as ntdll.dll, I was
confused to see that only 203 out of 713 exception handlers were set to the expected
__C_specific_handler function. Here is a breakdown of the handlers for my version of
ntdll.dll:

713 total runtime function entries with a registered exception or termination handler
203 entries matched __C_specific_handler
454 entries matched __GSHandlerCheck?
48 entries matched __GSHandlerCheck_SEH?
5 entries matched LdrpICallHandler
1 entry matched KiUserApcHandler
1 entry matched RtlpExceptionHandler
1 entry matched RtlpUnwindHandler

The two __GSHandlerCheck functions caught my eye. What were these exception handlers
being used for?

1. __GSHandlerCheck - This handler takes an undocumented structure from the
UNWIND_INFO's ExceptionData field and passes it to __GSHandlerCheckCommon. If this
call succeeds, __GSHandlerCheck returns EXCEPTION_EXECUTE_HANDLER.

__GSHandlerCheckCommon parses this undocumented structure to find the location
of the security cookie for the function the exception was occurring in. Then, it
emulates the cookie check usually found in the epilog of a function by XOR'ing
the cookie from the stack and jumping to __security_check_cookie.
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2. __GSHandlerCheck_SEH - This function does nearly the same thing as
__GSHandlerCheck, except after checking the security cookie, it calls
__C_specific_handler.

Taking a look at the functions that __GSHandlerCheck and __GSHandlerCheck_SEH were
assigned to revealed that all of them had security cookie checks built into them. The
__GSHandlerCheck_SEH variant appeared to be used in functions that also had an exception
handler, whereas __GSHandlerCheck was used in functions with only a security cookie
check.

MSVC Mitigation

void GetString() { 
char tempBuffer[16]; 

scanf("%s", tempBuffer); 
printf(tempBuffer); 

} 

This was a smart mitigation by Microsoft. The purpose behind these exception handlers is to
prevent attackers from being able to escape a security cookie check by causing an
exception. For example, take a look at what happens when I compile the previous GetString
function using the MSVC++ compiler:

Although GetString does not use an exception handler, it is built with one anyway. The
disassembly above shows that the unwind handler is defined as __GSHandlerCheck. Even if
an attacker could cause an exception in GetString (i.e. with a bad format string), before
unwinding the stack, __GSHandlerCheck would be called, and a security cookie check would

https://i.imgur.com/bDjtjHo.png
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occur- preventing the bypass. Additionally, there are __GSHandlerCheck variants for several
other common "language-specific" handlers such as __GSHandlerCheck_EH for C++'s
__CxxFrameHandler3.

Outside of our example, this is an effective mechanism that makes abuse of exceptions in
applications that use the MSVC compiler significantly more difficult. With this mitigation,
an attacker would need to predict the security cookie of the function they can cause an
overflow in. Note that this doesn't mean an attacker knows the security cookie for all
functions.

If an attacker could get around the initial security cookie, they could likely leverage ROP.
There are some advanced attacks with exceptions we'll discuss that can provide more
powerful primitives than ROP, however. Additionally, as we'll review in a later section,
exceptions can be a solid alternative to ROP in environments that use the MSVC compiler
and hardware mitigations like Intel's Control Flow Enforcement Technology (CET).

What About Other Compilers?

A noteworthy caveat in my last paragraph is that Microsoft's mitigation makes our lives
harder only in applications that use MSVC. What about applications created with other
compilers for Windows?

Clang/LLVM

For the GetString original example, I used Clang/LLVM in Visual Studio, which does not
use the __GSHandlerCheck mitigation for functions with security cookie checks. This
means that any application compiled with Clang/LLVM at the time of writing is vulnerable.

https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://i.imgur.com/qO3h4xa.png
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GCC

Although GCC does not support SEH-style __try/__except blocks, it still uses SEH for C++
exceptions. We can replace our main function with a C++ try/catch block to compile the
application.

As you can see, there is no unwind block for GetString, demonstrating that applications
compiled for GCC are also vulnerable to this attack.

Honorable Mentions

A side note- several compiled languages outside of C/C++ for Windows, like Rust and
GoLang, do not have an equivalent to the __GSHandlerCheck mitigation. But, of course,
these languages are designed to be inherently safe against these vulnerabilities in the first
place, assuming developers don't use the unsafe functionality.

Most Applications Use MSVC, Though… Right?

https://i.imgur.com/n8RoTU5.png
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It may seem as if the threat of this attack is reduced on Windows because of the MSVC
mitigation. However, although many applications are compiled with MSVC, Clang/GCC is still
frequently used, especially for cross-platform applications.

I'll give you a great example. What if I told you that the top three browsers on Windows are
vulnerable to this attack?

Google Chrome, Firefox, and (ironically) Microsoft Edge use Clang/LLVM, which does not
have a __GSHandlerCheck mitigation equivalent (yet). This means that if there was a stack
overflow vulnerability in the browser you might be reading this article on, an attacker could
potentially abuse exceptions to escape security cookie checks!

The wrong takeaway would be that developers should use MSVC over its alternatives or that
this is somehow the fault of Clang/GCC's developers. Yes, applications compiled with
Clang/GCC are not protected against this attack at the time of writing, but that can change.
Microsoft should proactively work with compiler developers to share the mitigations
developed for MSVC. This would only help make the ecosystem more secure as a whole.

… Microsoft Has Known About This for How Long?

One question that caught my curiosity was, "How long has Microsoft known about the attack
of abusing exceptions to escape security cookies?". Several old versions of 64-bit binaries I
looked at seemed to contain the __GSHandlerCheck function.

For a more conclusive answer around a date, I sought out several old versions of Windows
and checked if their ntdll binaries contained __GSHandlerCheck. I was shocked to find an
ntdll binary signed in 2008 for Windows Vista with this mitigation in place. This suggests
that Microsoft has known about this attack for at least 15 years!

Now that we've introduced the trivial implementation of Exception Oriented Programming for
stack overflow vulnerabilities, let's revisit the SEH unwinding process and explore advanced
attacks.

An Alternative to ROP

Background

Unwind Operations

https://blog.llvm.org/2018/03/clang-is-now-used-to-build-chrome-for.html
https://www.mozilla.org/en-US/firefox/63.0beta/releasenotes#note-787678


16/46

typedef struct _UNWIND_INFO { 
unsigned char Version : 3; 
unsigned char Flags : 5; 
unsigned char SizeOfProlog; 
unsigned char CountOfCodes; 
unsigned char FrameRegister : 4; 
unsigned char FrameOffset : 4; 
UNWIND_CODE UnwindCode[1]; 

/*  UNWIND_CODE MoreUnwindCode[((CountOfCodes+1)&~1)-1]; 
*  union { 
*      OPTIONAL unsigned long ExceptionHandler; 
*      OPTIONAL unsigned long FunctionEntry; 
*  }; 
*  OPTIONAL unsigned long ExceptionData[]; 
*/ 
} UNWIND_INFO, * PUNWIND_INFO; 

In an earlier section about the exception directory and unwind info structure, we skipped over
the UNWIND_CODE structure as it was irrelevant at the time.

typedef union _UNWIND_CODE { 
struct { 
 unsigned char CodeOffset; 
 unsigned char UnwindOp : 4; 
 unsigned char OpInfo : 4; 
}; 
unsigned short FrameOffset; 

} UNWIND_CODE, *PUNWIND_CODE; 

UNWIND_CODE entries specify the operations required to "unwind" (or undo) the changes a
given function's prolog has made to registers or the stack. Here are the various documented
operations an UNWIND_CODE structure can contain:

1. UWOP_PUSH_NONVOL - This operation specifies that a nonvolatile integer register was
pushed to the stack. The OpInfo field specifies what register was pushed. For
example, if the prolog of a function contained push rbp, you would see a
corresponding UWOP_PUSH_NONVOL operation.

2. UWOP_ALLOC_LARGE / UWOP_ALLOC_SMALL - These operations specify that a specific size
was allocated on the stack. You would expect to see these operations for instructions
like sub rsp, 0xABC.

3. UWOP_SET_FPREG - Specifies the frame pointer register and some offset of rsp. This
operation is only used in functions that need a frame pointer in the first place, such as
those that need dynamic stack allocations. An example instruction for this operation
would include lea rbp, [rsp+offset].

https://learn.microsoft.com/en-us/cpp/build/exception-handling-x64
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4. UWOP_SAVE_NONVOL / UWOP_SAVE_NONVOL_FAR - These operations specify that a
nonvolatile integer register was saved on the stack using a mov instruction rather than a
push. Similar to UWOP_PUSH_NONVOL, the specific register is contained in the OpInfo
field.

5. UWOP_SAVE_XMM128 / UWOP_SAVE_XMM128_FAR - These operations are used to save XMM
register values.

6. UWOP_PUSH_MACHFRAME - This is a special type of operation that indicates the function is
a hardware interrupt or exception handler that receives a "machine frame" from the
stack. This frame contains information about the state of various registers at the time
the interrupt/exception occurred. An example of a function with this operation in user-
mode includes ntdll!KiUserExceptionDispatcher.

With a basic understanding of how the dispatcher can unwind the effects of various
functions, let's go through an example.

Dumping the Exception Directory of NTDLL

As a small demo of everything we've learned, we can use the Python pefile package to
enumerate the exception directory of any PE module. Here is a small script that will print the
runtime function entries of a binary specified by the first argument.

import sys 
import pefile 

pe = pefile.PE(sys.argv[1]) 
for runtime_function in pe.DIRECTORY_ENTRY_EXCEPTION: 
   print("\n".join(runtime_function.struct.dump())) 
   if hasattr(runtime_function, "unwindinfo") and \ 
      runtime_function.unwindinfo is not None: 
       print("\n\t".join(runtime_function.unwindinfo.dump())) 

The ntdll.dll on my machine produced 4884 unique runtime function entries. This doesn't
mean that there are 4884 functions in ntdll.dll with an exception handler- entries often
only contain the operations needed to unwind a given function.

https://github.com/erocarrera/pefile
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[RUNTIME_FUNCTION] 
0x168A40   0x0   BeginAddress:                  0x4C270    
0x168A44   0x4   EndAddress:                    0x4C45F    
0x168A48   0x8   UnwindData:                    0x146D50   
   [UNWIND_INFO] 
   0x143F50   0x0   Version:                       0x1        
   0x143F50   0x0   Flags:                         0x3        
   0x143F51   0x1   SizeOfProlog:                  0x1F       
   0x143F52   0x2   CountOfCodes:                  0x8        
   0x143F53   0x3   FrameRegister:                 0x0        
   0x143F53   0x3   FrameOffset:                   0x0        
   0x143F64   0x14  ExceptionHandler:              0x9CC44    
   Flags: UNW_FLAG_EHANDLER, UNW_FLAG_UHANDLER 
   Unwind codes: .ALLOCSTACK 0x70; .PUSHREG R15; .PUSHREG R14; .PUSHREG R13; 
.PUSHREG R12; .PUSHREG RDI; .PUSHREG RSI; .PUSHREG RBX 

I've noted a couple of times that the unwind operations are there to "undo" the prolog of the
function. I'd like to show a practical example of this. Above, we have the runtime function
entry for ntdll!RtlQueryAtomInAtomTable. Look at the instructions in the epilog of the
function (intended to "restore" the changes of the prolog) and see if you notice a pattern with
the unwind operations:

RtlQueryAtomInAtomTable proc near 
; __unwind { // __GSHandlerCheck_SEH 
; PROLOG 
; ... 
; FUNCTION CONTENT 
; ... 
mov     rcx, [rsp+0A8h+var_48] 
xor     rcx, rsp        ; StackCookie 
call    __security_check_cookie 
; EPILOG 
add     rsp, 70h   ; .ALLOCSTACK 0x70 
pop     r15    ; .PUSHREG R15 
pop     r14    ; .PUSHREG R14 
pop     r13    ; .PUSHREG R13 
pop     r12    ; .PUSHREG R12 
pop     rdi    ; .PUSHREG RDI 
pop     rsi    ; .PUSHREG RSI 
pop     rbx    ; .PUSHREG RBX 
retn 
; } 
RtlQueryAtomInAtomTable endp 

The instructions in the epilog match the unwind operations and occur in the same order too!
This is why runtime function entries are critical to the unwinding process. They effectively tell
you how to restore the state of the stack and registers at any point in time, even if you're in
the middle of executing a function. Without this context, writing a reliable unwinding
mechanism to support arbitrary continuation at an exception handler would be much more
challenging.
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What About CET / Shadow Stacks?

An interesting mitigation we have not yet covered is Hardware-enforced Stack Protection,
otherwise known as Control-flow Enforcement Technology (CET) for Intel CPUs and shadow
stacks for AMD CPUs.

At a high level, when a function is called and a return address is pushed on the regular stack,
a copy of that return address is also pushed on a "shadow stack" region. When the function
returns, the address on the normal stack, which could have been corrupted by an attacker, is
compared with the value on the shadow stack. If these values don't match, the program is
terminated.

This is an opt-in mitigation, meaning you won't find it turned on by default. In 2021, Google
Security wrote a blog about the work that went into enabling shadow stacks for Chrome.
Although shadow stacks certainly aren't commonplace for most applications, it's a mitigation
we may see increased adoption of in the future as it becomes more standardized.

This article is not intended to be a comprehensive look into how shadow stacks work in
practice. If you're curious and want to learn more about specific implementation details,
check out "RIP ROP: CET Internals in Windows 20H1" by Yarden Shafir and Alex Ionescu.

Going back to our trivial implementation of Exception Oriented Programming, let's say we are
in the context of a process with Hardware-enforced Stack Protection. Even if we did escape
a security cookie check by throwing an exception into a handler without one, when the
handler returns, our corrupted return address on the stack would not match what's on the
shadow stack and thus prevent our attack.

Core Concepts

In a classical ROP attack, the epilogues of functions are chained together to perform various
operations, such as modifying registers and the stack, before returning to a function,
simulating a call. Security cookies initially posed a significant challenge to ROP, as you
typically couldn't modify the return address without also corrupting the cookie. With the next
generation of system mitigations like shadow stacks, ROP is only becoming more
challenging of an attack to leverage in real-world scenarios.

The trivial approach of escaping a security cookie check by throwing an exception only
scratches the surface of what is possible through the unwinding process.

Here is a quick reminder about how exception dispatching works from a high level:

https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://security.googleblog.com/2021/05/enabling-hardware-enforced-stack.html
https://windows-internals.com/cet-on-windows/
https://twitter.com/yarden_shafir
https://twitter.com/aionescu
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1. RtlDispatchException is called, which "virtually unwinds" the stack and calls the
exception handlers for functions with the UNW_FLAG_EHANDLER flag in their UNWIND_INFO
structure.

If a handler returns EXCEPTION_CONTINUE_EXECUTION, the virtual unwinding
process is halted, and execution continues where the exception occurred, with
the original state of the registers.
If a handler returns EXCEPTION_CONTINUE_SEARCH, the virtual unwinding process
continues for other exception handlers.
If in the context of the C-specific language handler and the exception filter
(handler address) returns EXCEPTION_EXECUTE_HANDLER, RtlUnwind is called.

2. If RtlUnwind is called (i.e. by __C_specific_handler), the state of the stack/registers
is unwound to continue execution at the C-specific exception handler (jump target).
Unlike "virtual" unwinding, changes made to the CONTEXT structure by unwind
operations will be reflected when execution continues at the handler.

There is an enormous amount of attack surface here. Sure, in the context of 64-bit
applications, we will generally be limited to legitimate exception handlers and UNWIND_INFO
structures. This is similar to how we are stuck with executing the epilog's of legitimate
functions with ROP as "gadgets". As an attacker with a stack overflow vulnerability, however,
since we can overwrite the call stack with whatever we want, we have complete control
over what legitimate functions are used in the unwinding process and the order in
which they are used.

How? In our trivial example, we modified the caller of our function with a cookie check to be
a legitimate function that has an exception handler without a cookie check. Why stop at
adding only one function to the call stack? Why not leverage unwind operations to modify
registers to use untrusted values from the stack we control? This is where things start to get
interesting. Let's break these attacks down.

What Can We Do in RtlDispatchException with Control over the Stack?

The first half of exception dispatching is to "virtually unwind" the stack in
RtlDispatchException, calling exception handlers as we encounter them. As an attacker
with influence over the stack, we can dictate the legitimate functions that
RtlDispatchException will use when "virtually unwinding". So what does that let us do?

In the context of Windows binaries, we often deal with the C-specific language handler,
where functions can specify what exceptions they want to catch with an exception filter.
Remember that the C-specific exception handlers (jump targets) are triggered via RtlUnwind,
which is outside the scope of RtlDispatchException.
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Unfortunately, combined with the fact that the CONTEXT record we can influence when "virtual
unwinding" occurs isn't used anywhere outside of this function, there is not much we can do
in RtlDispatchException alone other than trigger a "desirable" C-specific exception handler
(jump target) for unwinding.

To trigger a legitimate function's C-specific exception handler (jump target), we face two main
requirements:

1. We need to know the address of the legitimate function (i.e. by knowing where the
module is located).

There is a slight exception we'll discuss later: we can leverage a partial return
address overwrite to access the functions in the same module as what's already
on our call stack.

2. The function's exception filter (handler address) needs to be 1 or return
EXCEPTION_EXECUTE_HANDLER for our exception code.

Once we meet these requirements, the next step is to figure out where to write our "fake
return address" on the stack. Our goal is to trick the unwinding process into thinking the
function with our desired exception handler "called" the function where we generated an
exception; hence it should be the one to handle our exception.

For our first parent caller, knowing the location to write is easy- it's just where the actual
return address for the previous function is. Once we overwrite the first return address,
however, we need to do some math.

[RUNTIME_FUNCTION] 
... 
   [UNWIND_INFO] 
   ...  
   Unwind codes: .ALLOCSTACK 0x70; .PUSHREG R15; .PUSHREG R14; .PUSHREG R13; 
.PUSHREG R12; .PUSHREG RDI; .PUSHREG RSI; .PUSHREG RBX 

Let's go through a quick example with ntdll!RtlQueryAtomInAtomTable. Imagine we
replaced the first caller on the stack with an address to RtlQueryAtomInAtomTable. Where
would we write the second caller's return address?

Each function's prolog is going to impact the stack differently. We have to account for each
unwind operation that modifies Rsp. In this case, we have a stack allocation of 0x70 bytes
(sub rsp, 0x70) and 7 registers being pushed (push r??). Assume our offset is relative to
the location of the previous return address + 0x8. To calculate the total stack
allocation for RtlQueryAtomInAtomTable, we do 0x70 + 0x8*7 = 0xA8, where 0x70 is our
stack allocation, and 0x8*7 accounts for each register that was pushed. This means our next
return address would be written to Rsp + 0xA8 following the previous one.
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As I mentioned earlier, you can look at the source code of RtlDispatchException in the
leaked Windows Research Kernel yourself. Additionally, here is the specific code that will tell
you exactly how each unwind operation modifies Rsp.

Now that we know how to do this math, we can chain together an unlimited amount of
functions on the call stack- while accounting for how they impact Rsp. However, before we
get into RtlUnwind, there is one more small step to understand.

typedef struct _SCOPE_TABLE_AMD64 { 
   DWORD Count; 
   struct { 
       DWORD BeginAddress; 
       DWORD EndAddress; 
       DWORD HandlerAddress; 
       DWORD JumpTarget; 
   } ScopeRecord[1]; 
} SCOPE_TABLE_AMD64, *PSCOPE_TABLE_AMD64; 

Our first requirement was to know the location of the legitimate function protected by our
desirable exception handler. Writing this function's address to the call stack alone is not
sufficient. Remember that the scope record structure specifies what part of the function is
protected by a given filter/handler with the BeginAddress/EndAddress fields. To ensure we
trigger our desired JumpTarget handler, we need to add at least the BeginAddress of the
relevant scope to our image base rather than only the function offset.

To recap, RtlDispatchException will virtually unwind through each function in our fake call
stack. Once the entry with our desirable exception handler is reached,
__C_specific_handler is called. Then, since our return address is within the scope bounds,
the exception filter is called, which returns EXCEPTION_EXECUTE_HANDLER (or is 1, which
means the same thing). This will trigger a final call to RtlUnwind, responsible for unwinding
the stack and resuming execution at our exception handler!

The following section is where we'll get into some fun bits and explore why we'd want to
include other functions (including those without exception handlers) before our final target.

What Can We Do in RtlUnwind with Control over the Stack?

Now that we understand how to create a fake call stack with any function we want and how
to trigger RtlUnwind from the context of an exception, let's get into some primitives.

A quick reminder about the differences between RtlDispatchException and RtlUnwind. In
RtlDispatchException, the CONTEXT structure being modified does not impact anything
other than the virtual unwind process itself, whereas in RtlUnwind, changes will be reflected
when execution continues. Also, in RtlDispatchException, only functions with
UNW_FLAG_EHANDLER in their unwind info structure will have their ExceptionHandler called,
whereas in RtlUnwind, the same is true with the UNW_FLAG_UHANDLER flag.

https://github.com/smartmaster/wrk-msvc/blob/master/BASE/NTOS/RTL/AMD64/EXDSPTCH.C#L114
https://github.com/smartmaster/wrk-msvc/blob/master/BASE/NTOS/RTL/AMD64/EXDSPTCH.C#L960
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The four primary "primitives" we can leverage in RtlUnwind are:

1. We can resume execution at any C-specific exception handler (jump target) whose
location we know and whose exception filter we've passed.

2. We can read untrusted values into registers from the stack and these values will be
reflected once execution is resumed at our C-specific exception handler.

3. We can influence the offset on the stack we resume execution at.
4. We can execute any termination/unwind handler we want on our way to the unwind

destination.
For example, before reaching our desired exception handler (jump target), we
could trigger the __finally blocks for any function we know the address of. This
can lead to scenarios like a use-after-free or double-free.

We've covered how to do #1 already in the previous section. What about the other
primitives?

Modify Any Register We Want

Earlier I said there were reasons we would want to include functions on our call stack prior to
the function with our desirable exception handler. We can leverage the unwind operations of
any function we know the location of to modify registers before we resume execution at a
desirable exception handler.

How? Many functions do not have an exception handler defined, but they still have a runtime
function / unwind info entry to allow them to be unwound. The reason unwind operations can
provide us with very powerful primitives is because they are designed to restore untrusted
data from the stack into registers to which we otherwise wouldn't have access.

For example, take the UWOP_PUSH_NONVOL operation that represents PUSH REGISTER
instructions. Let's say our fake call stack had two functions, one that has no handler with a
UWOP_PUSH_NONVOL unwind operation and one that has our desired exception handler. When
the first function is unwound, RtlVirtualUnwind in RtlUnwind will replace the value of
REGISTER with an untrusted value from the stack. By including this function in our call stack,
we have direct control over the value of REGISTER when execution resumes at our exception
handler. Even more powerful- we can chain together multiple functions with desirable unwind
operations on the call stack to ultimately influence the value of almost every register!

Although you can see what each unwind operation does in the leaked Windows Research
Kernel, I've created a small summary of the primitives they give us below:

1. UWOP_PUSH_NONVOL - Pulls an untrusted value from the stack and places it into a
register specified by the OpInfo field.

2. UWOP_ALLOC_LARGE / UWOP_ALLOC_SMALL - Increments Rsp by a constant value.

https://github.com/smartmaster/wrk-msvc/blob/master/BASE/NTOS/RTL/AMD64/EXDSPTCH.C#L960


24/46

3. UWOP_SET_FPREG - Set Rsp to the register specified by the FrameRegister field.
Subtract 16 * the FrameOffset field. Both fields are from the unwind info structure.

4. UWOP_SAVE_NONVOL / UWOP_SAVE_NONVOL_FAR - Read a value from a constant offset on
the stack into the register specified by the OpInfo field.

5. UWOP_PUSH_MACHFRAME - Pulls an untrusted value from the stack and places it into Rip.
Rsp is then replaced with an untrusted value from offset 0x18 of the current stack.

Note that Rip is replaced at the end of RtlUnwind (unless your exception code is
STATUS_UNWIND_CONSOLIDATE), so no, you can't just restore execution at some
arbitrary address from the stack.

As you can see, these operations provide powerful primitives to modify the state of registers
before restoring at a legitimate exception handler. Of course, you would need to find these
operations already present in an existing function's unwind info structure, but given that
every function has an unwind info structure, you have a lot to choose from.

Another side effect to worry about is "what if I only want to replace a few registers, but my
unwind info structure contains operations I don't want?". Fortunately, there is a trick we can
use to get around this.

typedef union _UNWIND_CODE { 
struct { 
 unsigned char CodeOffset; 
 unsigned char UnwindOp : 4; 
 unsigned char OpInfo : 4; 
}; 
unsigned short FrameOffset; 

} UNWIND_CODE, *PUNWIND_CODE; 

When unwind operations are enumerated, it's not as simple as "just enumerate every
operation if the exception address is in this function". For example, what happens if an
exception occurs in the prolog?

To account for this exists the CodeOffset field of each UNWIND_CODE (unwind operation). An
unwind operation is only executed if the address inside the function minus the function
address itself is greater than or equal to the CodeOffset. This way, if an exception occurred
in the prolog, only unwind operations corresponding to instructions that have already been
executed would be processed.

This functionality is helpful because we can specify which unwind operation we want to start
with!
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[UNWIND_INFO] 
Unwind codes: 
 0x10: .ALLOCSTACK 0x70 
 0xc: .PUSHREG R15 
 0xa: .PUSHREG R14 
 0x8: .PUSHREG R13 
 0x6: .PUSHREG R12 
 0x4: .PUSHREG RDI 
 0x3: .PUSHREG RSI 
 0x2: .PUSHREG RBX 

For example, above, the unwind operations for ntdll!RtlQueryAtomInAtomTable are
prepended with their CodeOffset fields. If we wanted to only replace the value of RBX, we
place the address of RtlQueryAtomInAtomTable + 0x2 on the stack. This works because
RtlpUnwindPrologue will assume an exception occurred at the PUSH RBX instruction, thus
only process that unwind operation.

Influence the Stack Pointer

Another useful primitive is the ability to modify the stack pointer. Here are the most prominent
reasons this would be helpful:

1. If we want to return to a legitimate function on the call stack that we haven't modified
after faking the functions "below it", we need to align Rsp with that legitimate function's
return address on the stack.

If we are executing a desirable exception handler (jump target) who will ret into a
legitimate caller, we'd need to account for the changes the handler will make to
the stack.

2. If we are using a partial return address overwrite (i.e. because we don't have a leak),
then controlling Rsp would let us choose which return address on the legitimate call
stack we want to perform an overwrite on.

Besides having a more comprehensive selection of modules to choose from,
maybe we control the local variables for some caller and can find an exception
handler that reads from these local variables.

The first method of influencing Rsp does require leaks, but it's relatively straightforward. As
previously discussed, each function's unwind operations will impact Rsp differently. By
placing legitimate functions on the call stack, we can use these unwind operations to
increment Rsp by any amount we want. We can control this even further by using the
previous trick of placing our return address in the middle of a prolog (to exclude certain
unwind operations).

The second method of influencing Rsp without leaks is slightly more nuanced. When I was
reading part 3 of Ken Johnson's series explaining how 64-bit exception handling worked on
Windows, this paragraph caught my eye:

https://github.com/smartmaster/wrk-msvc/blob/master/BASE/NTOS/RTL/AMD64/EXDSPTCH.C#L950
http://www.nynaeve.net/?p=105
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If RtlUnwindEx encounters a "leaf function" during the unwind process (a leaf function
is a function that does not use the stack and calls no subfunctions), then it is possible
that there will be no matching RUNTIME_FUNCTION entry for the current call frame
returned by RtlLookupFunctionEntry. In this case, RtlUnwindEx assumes that the
return address of the current call frame is at the current value of Rsp (and that the
current call frame has no unwind or exception handlers). Because the x64 calling
convention enforces hard rules as to what functions without RUNTIME_FUNCTION
registrations can do with the stack, this is a valid assumption for RtlUnwindEx to make
(and a necessary assumption, as there is no way to call RtlVirtualUnwind on a function
with no matching RUNTIME_FUNCTION entry). The current call frame's value of Rsp
(in the context record describing the current call frame, not the register value of rsp
itself within RtlUnwindEx) is dereferenced to locate the call frame's return address (Rip
value), and the saved Rsp value is then adjusted accordingly (increased by 8 bytes).

Ken described the logic that occurs during unwinding when a return address is retrieved from
the stack that does not have a corresponding function entry. This is helpful for our purposes
because what it means is that if we put an invalid address on the stack, the unwinding
process will consider it a "leaf function" (since it can't find a function entry) and skip over it!
This allows us to increment Rsp by 8 by including invalid addresses in our call stack.

I ran into an issue when I was testing this out myself. I had placed one constant address on
the stack repeatedly, hoping that Rsp would keep incrementing by 8. What happened instead
was after the first instance of the invalid constant, unwinding failed. I found the answer while
reading through the WRK leak of RtlDispatchException:

   // 
   // If the old control PC is the same as the return address, 
   // then no progress is being made and the function tables are 
   // most likely malformed. 
   // 
   if (ControlPc == *(PULONG64)(ContextRecord1.Rsp)) { 
       break; 
   } 

What was happening was that the unwinding process included a check to make sure the
previous control point did not match the next control point. So, to fix the behavior of
incrementing Rsp as many times as I wanted, all I had to do was swap between two invalid
constants. For example, if I wanted to increment Rsp by 0x20, my call stack would look like
the following:

0x1111111111111111 
0x2222222222222222 
0x1111111111111111 
0x2222222222222222 

https://github.com/smartmaster/wrk-msvc/blob/master/BASE/NTOS/RTL/AMD64/EXDSPTCH.C#L409
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This is helpful when we don't have a leak because we can create a "sled" to get to any other
legitimate return address on the stack.

Summary

To summarize the advanced variants of Exception Oriented Programming here is what we
can do as an attacker with a stack overflow vulnerability:

1. We can restore execution at any C-specific exception handler (jump target) we know
the location of.

2. We can directly control the state of registers when an exception is handled.
This could be leveraged to corrupt the caller's state when our exception handler
returns to a given function.

3. We can call the termination handler (__finally block) in any function we know the
location of.

This could be used to trigger a use-after-free or double-free scenario.

Without any leaks, we would be limited to partial return address overwrites. Fortunately, we
can influence Rsp such that we can overwrite any address on the stack rather than only our
direct parent. However, the primary method of controlling what values are used in unwind
operations would be to overwrite the return address of a function we control specific local
variables in. This is because we cannot overwrite the local variables without knowing the
complete return address.

Does This Work with CET / Shadow Stacks?

One of the considerable benefits of these attacks is that we only hit a return instruction
relevant to shadow stacks when our desired exception handler returns. Otherwise, the
unwinding process blindly trusts addresses from the stack we control.

Still, the return instruction in the exception handler could pose a problem; what can we do to
ensure we don't crash at that point?

First, whenever a new function on your call stack is enumerated by the unwinding process, a
return address is "popped" from the shadow stack. This is important because when you
unwind to a function N return addresses away, you need to get rid of those N return
addresses on the shadow stack to ensure that the next ret instruction will match what's on
the shadow stack.

https://i.imgur.com/WgORSPV.png
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This is a useful "feature" that we can abuse because we can cause corruption in the state of
an application by returning to any function in the call stack we want to. By chaining together
fake exception handlers, we can "pop" the shadow stack until we reach a desired parent
function and use a jump target's ret instruction to return to it early.

CET does not verify that your return address is at the same stack offset where it was initially
placed. Therefore, as long as the value matches what's on the shadow stack, it does not
matter where on the stack the return address is retrieved from.

In those CET times: It's possible to return in unwinding to any address in the SSP,
causing a "type confusion" between stack frames ;)

 I really like the different variants of this concept https://t.co/I44p8uVAl2:) Type
confusions are on fire! (stack frames, objc for PAC bypass) https://t.co/aZPcmb6XQb

— Saar Amar (@AmarSaar) January 21, 2020

This design weakness has been known for at least two years, however. Another security
researcher, Saar Amar, highlighted how an attacker could cause a "type confusion" condition
even with CET by unwinding to a desired function already on the call stack.

For example, imagine a parent function responsible for initializing a structure. By returning to
a function above it mid-way during the initialization process, that parent may end up using an
incomplete structure.

If you have a leak of the module location, you can predict the legitimate return address on
the shadow stack (after the popping occurs) and put it on the normal stack where the
following return address will be retrieved from. If you don't know the location of the legitimate
function and can avoid overflowing it on the stack, you can create a fake call stack that will
increment Rsp right up to that legitimate address.

Blast from the Past

Background

Part 5 of Ken Johnson's series on 64-bit exception handling discussed how certain edge
cases known as "collided unwinds" were addressed. To give a high-level overview of what
collided unwinds are, here is a good quote from Ken's blog:

https://t.co/I44p8uVAl2
https://t.co/aZPcmb6XQb
https://twitter.com/AmarSaar/status/1219711378409361409?ref_src=twsrc%5Etfw
https://twitter.com/amarsaar
http://www.nynaeve.net/?p=107
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A collided unwind occurs when an unwind handler initiates a secondary unwind
operation in the context of an unwind notification callback. In other words, a collided
unwind is what occurs when, in the process of a stack unwind, one of the call frames
changes the target of an unwind. This has several implications and requirements in
order to operate as one might expect:

 1. Some unwind handlers that were on the original unwind path might no longer be
called, depending on the new unwind target.

 2. The current unwind call stack leading into RtlUnwindEx will need to be interrupted.
 3. The new unwind operation should pick up where the old unwind operation left off.

That is, the new unwind operation shouldn't start unwinding the exception handler
stack; instead, it must unwind the original stack, starting from the call frame after the
unwind handler which initiated the new unwind operation.

An even more straightforward way of thinking about a collided unwind is that it occurs when
an unwind handler calls RtlUnwind itself. To solve this problem, Ken describes Microsoft's
"elegant" solution: any call to an unwind handler is executed through a helper function,
RtlpExecuteHandlerForUnwind.

typedef struct _DISPATCHER_CONTEXT { 
   ULONG64 ControlPc; 
   ULONG64 ImageBase; 
   PRUNTIME_FUNCTION FunctionEntry; 
   ULONG64 EstablisherFrame; 
   ULONG64 TargetIp; 
   PCONTEXT ContextRecord; 
   PEXCEPTION_ROUTINE LanguageHandler; 
   PVOID HandlerData; 
   struct _UNWIND_HISTORY_TABLE *HistoryTable; 
   ULONG ScopeIndex; 
   ULONG Fill0; 
} DISPATCHER_CONTEXT, *PDISPATCHER_CONTEXT; 

When RtlpExecuteHandlerForUnwind is called by RtlUnwindEx, it saves a pointer to the
current DISPATCHER_CONTEXT structure on the stack. As we can see above, this structure
contains the entire internal state of RtlUnwindEx.

In an earlier section, we dumped the exception handlers for functions in ntdll, where the
__GSHandlerCheck* variants were discovered. One of the other exception handlers I skipped
over was RtlpUnwindHandler. This exception handler is actually used to protect
 RtlpExecuteHandlerForUnwind.

This is where the "elegant" solution kicks in. When an unwind handler calls RtlUnwindEx and
the unwinding process occurs again, RtlUnwindEx calls the unwind handler of
RtlpExecuteHandlerForUnwind, which is RtlpUnwindHandler. What does this handler do? It
overwrites the current DISPATCHER_CONTEXT structure with the saved DISPATCHER_CONTEXT

https://github.com/smartmaster/wrk-msvc/blob/master/BASE/NTOS/RTL/AMD64/XCPTMISC.ASM#L243
https://github.com/smartmaster/wrk-msvc/blob/master/BASE/NTOS/RTL/AMD64/XCPTMISC.ASM#L172
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structure and returns ExceptionCollidedUnwind. When an unwind handler returns this
result, RtlUnwindEx will use the overwritten values to replace its internal unwinding state.
This allows the unwinding process to resume from where it was left off without any fuss.

An Overpowered Primitive

... there is not much we can do in RtlDispatchException alone other than trigger a
"desirable" C-specific exception handler (jump target) for unwinding ...

When I was covering what we could do with control over the stack in
RtlDispatchException, remember how I said, "not much"?

I lied.

While reading the leaked source for RtlDispatchException, I noticed that it too contained
code to handle the ExceptionCollidedUnwind result returned by exception handlers. This
may have been added to cover the unlikely edge case where an exception occurs,
RtlUnwindEx is called, an unwind handler is called, and another exception occurs.

This is where I got a wild idea- as an attacker with a stack overflow vulnerability, we can
modify the call stack to whatever we want, right? If we knew the location of ntdll, couldn't we
make it seem like the function we are causing an exception in was called by
RtlpExecuteHandlerForUnwind?

If this was true, knowing that RtlpUnwindHandler grabs the DISPATCHER_CONTEXT structure
pointer from the stack, if we had any memory location in the process that was attacker-
controlled, couldn't we overwrite the entire internal state of RtlDispatchException with our
own values?

https://github.com/smartmaster/wrk-msvc/blob/master/BASE/NTOS/RTL/AMD64/EXDSPTCH.C#L770
https://github.com/smartmaster/wrk-msvc/blob/master/BASE/NTOS/RTL/AMD64/EXDSPTCH.C#L372
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       // 
       // The dispostion is collided unwind. 
       // 
       // A collided unwind occurs when an exception dispatch 
       // encounters a previous call to an unwind handler. In 
       // this case the previous unwound frames must be skipped. 
       // 
   case ExceptionCollidedUnwind: 
       ControlPc = DispatcherContext.ControlPc; 
       ImageBase = DispatcherContext.ImageBase; 
       FunctionEntry = DispatcherContext.FunctionEntry; 
       EstablisherFrame = DispatcherContext.EstablisherFrame; 
       RtlpCopyContext(&ContextRecord1, 
       DispatcherContext.ContextRecord); 

  
       RtlVirtualUnwind(UNW_FLAG_EHANDLER, 
                        ImageBase, 
                        ControlPc, 
                        FunctionEntry, 
                        ContextRecord1, 
                        &HandlerData, 
                        &EstablisherFrame, 
                        NULL); 

       ContextRecord1.Rip = ControlPc; 
       ExceptionRoutine = DispatcherContext.LanguageHandler; 
       HandlerData = DispatcherContext.HandlerData; 
       HistoryTable = DispatcherContext.HistoryTable; 
       ScopeIndex = DispatcherContext.ScopeIndex; 
       Repeat = TRUE; 
       break; 

Knowing the location of ntdll and some memory we control certainly isn't trivial, but the
impact is astronomical. For example, in the (slightly corrected) WRK excerpt above, when
the ExceptionCollidedUnwind result is returned, the overwritten DispatcherContext
variable is used to update the current Rip, image base, runtime function entry, CONTEXT
record, the UNWIND_HISTORY_TABLE, and even a pointer that specifies an
ExceptionRoutine to immediately call. All of this is controlled by an attacker with a stack
overflow vulnerability.

See the Repeat variable getting set to TRUE? What happens is right after the break, the while
loop for calling an exception handler repeats without calling RtlLookupFunctionEntry, and
the attacker-controlled ExceptionRoutine is passed to RtlpExecuteHandlerForException,
whose the second argument (RDX/EstablisherFrame) is entirely controlled by the attacker as
well.
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To add insult to injury, the call inside of RtlpExecuteHandlerForException to the attacker-
controlled ExceptionRoutine is done without a Control Flow Guard (or xFG) check, meaning
we can call into the middle of any function or any unaligned address.

I can't help but draw parallels to the x86 SEH hijacking attacks from ~15+ years ago, where
an attacker could overflow the stack and replace the exception handler that would be called.
With this primitive, we can achieve the same result with even more control.

To give you an idea of what's possible with the variables we can modify:

1. We can call any function anywhere we want (via LanguageHandler) with the second
argument (RDX/EstablisherFrame) completely controlled.

2. When RtlVirtualUnwind is called following the ExceptionCollidedUnwind result, we
have full control over the ControlPc, ImageBase, RUNTIME_FUNCTION structure, and
UNWIND_INFO structure it uses.

This means we can execute any unwind operations we want. We'll talk more
about how this can be abused in practice later.

3. If we meet certain conditions (discussed later) and specify an exception handler that
returns EXCEPTION_CONTINUE_SEARCH, we can continuously hijack the
dispatching/unwinding process since we control the UNWIND_HISTORY_TABLE structure.

The history table is used as a cache to store previously retrieved
RUNTIME_FUNCTION entries. By creating a malicious history table, we can specify
our own RUNTIME_FUNCTION structure for any function we know the location of.

4. If we set LanguageHandler to the C-specific exception handler in ntdll, we can define a
custom SCOPE_TABLE structure to call any ntdll functions we want consecutively (as
long as the functions return 0).

Enough about what we can do; let's go through a practical example!

Planning Our Attack

https://i.imgur.com/eGGwsH6.png
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To leverage this primitive in a stack overflow attack, we need to meet two major
requirements:

1. We need to know the location of ntdll.
2. We need to know the location of attacker-controlled memory. This memory can be

anywhere in the process.

Although we have significant control over the unwinding process, we still have many quirks
and challenges to overcome. To best describe these limitations, I'll explain what occurs in
RtlDispatchException when the ExceptionCollidedUnwind result is returned.

1. The ControlPc, ImageBase, FunctionEntry, and ContextRecord variables in
RtlDispatchException are updated to attacker-controlled values.

The only variable we haven't explicitly covered is ControlPc, which represents
the current Rip value. During each step in the unwinding process, this is updated
to the return address from the call stack.

2. RtlVirtualUnwind is called. As an attacker, we have complete control over the runtime
function and unwind info structures used for the virtual unwind.

This means we can specify any unwind operations we want. Note that the Rsp
register in our context record must be a valid pointer no matter what- although it
doesn't need to point at the stack (i.e. it could point at our controlled memory).
These unwind operations are incredibly powerful. For example, we can easily
chain arbitrary reads by setting Rsp to some offset inside of ntdll and leveraging
UWOP_PUSH_NONVOL to read an address from Rsp, UWOP_ALLOC_* to increment Rsp
by any offset, etc.
At the end of this virtual unwind, our Rsp and Rip registers in the context record
are updated. By default, Rip is read by dereferencing Rsp, and Rsp is
incremented depending on the unwind operations (not true in cases like
UWOP_PUSH_MACHFRAME).
If Rip matches the current ControlPc, the unwinding process is halted because it
is assumed the stack is corrupted.

3. Once the virtual unwind is complete, the EstablisherFrame, HandlerData,
ExceptionRoutine, and HistoryTable are all updated to attacker-controlled values.

4. The exception handler loop continues and the function we specified in
LanguageHandler is called. The first argument (RCX) is a pointer to the exception
record, the second argument (RDX) is the establisher frame we control entirely, the third
argument (R8) is a pointer to the context record, and the fourth argument (R9) is a
pointer to the dispatcher context structure.
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5. The return value of this function is checked again.
If the result is ExceptionContinueExecution, execution continues where the
exception occurred.
If the result is ExceptionContinueSearch, the search for an exception handler
continues.
If the result is ExceptionNestedException, then the exception flags are updated
and the search continues.
If the result is ExceptionCollidedUnwind, we start over from step 1.
Any other result leads to a non-continuable exception. This effectively means that
any exception routine you specify must return a value between 1-2 to ensure the
search is continued.

6. If the search is continued, our first major challenge occurs. The Rsp record is validated
to be inside the low/high limit of the stack.

I'll talk about a complex way we can pass this check in a later section.
7. ControlPc is updated to Rip, and the unwind loop continues assuming Rsp is in the

stack's bounds.
8. At the beginning of the loop, ControlPc and our controlled HistoryTable are passed to

RtlLookupFunctionEntry to find a corresponding runtime function entry.
Since we control the history table, if we can predict the value of ControlPc, we
can define our own ImageBase and RUNTIME_FUNCTION pointers.

9. RtlVirtualUnwind is called again and practically the same logic we mentioned in step
2 occurs. The significant differences worth mentioning are:

The EstablisherFrame is updated to the value of Rsp. If the FrameRegister field
in the unwind info structure is populated, it is instead set to the value of that
register (minus 0x10 * the FrameOffset field).
If the UNW_FLAG_EHANDLER flag is set, the ExceptionRoutine is calculated by
adding the ExceptionHandler field from the unwind info structure to the
ImageBase.

10. After this virtual unwind is where our second major challenge occurs.
EstablisherFrame is validated to be within the bounds of the stack.

During the first loop, Rsp must have already been a value that points at the stack;
hence EstablisherFrame would likely be updated to that valid stack pointer.
The problem is that we no longer have arbitrary control over the second argument
to the exception handler. Any RDX value we specify must be within the stack's
low/high limits (also stored on the stack).

11. Assuming an exception handler was defined, the logic from step 3 starts over again.

As a reminder, you can read the source code for all of this logic in the leaked WRK.

The most significant barrier to simply looping over and over again, calling a different
exception handler of our choice each time, is that after the initial ExceptionCollidedUnwind
result is handled, we quickly lose control over the second argument and we need to

https://github.com/smartmaster/wrk-msvc/blob/master/BASE/NTOS/RTL/AMD64/EXDSPTCH.C#L114
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somehow guarantee that Rsp is within the bounds of the stack.

Of course, this is easy if the attacker-controlled memory you know the location of is the
stack. But requiring the location of attacker-controlled memory and requiring that it is on the
stack is lame. This is quite a powerful primitive; we should be able to perform this attack
regardless of whether our controlled memory is in the stack, the heap, or anywhere else.

Initially, I spent ~2 weeks developing a complex exploit chain to execute arbitrary shellcode
without needing to step outside the bounds of the unwinding process. It worked with CET
and CFG in strict mode but had some stability issues. What I realized was during this
process, I had discovered several quite powerful primitives such that if our goal is only to
execute code remotely, there were much simpler (and more stable) methods of gaining
arbitrary code execution. Let's discuss using some of these primitives to create a stable
proof-of-concept to execute arbitrary code.

Allowing Functions to Return Zero

A frustrating challenge I faced while writing an exploit was that any exception handler I called
had to return 1 (ExceptionContinueSearch) or 2 (ExceptionNestedException). Triggering 3
(ExceptionCollidedUnwind) would enter an infinite loop, as it would keep calling the
function repeatedly (since the dispatcher context would remain the same).

               } else { 
                   ExceptionFilter = 
                       (PEXCEPTION_FILTER)(ScopeTable-
>ScopeRecord[Index].HandlerAddress + ImageBase); 
                   Value = (ExceptionFilter)(&ExceptionPointers, EstablisherFrame); 
               } 
               // 
               // If the return value is less than zero, then dismiss the 
               // exception. Otherwise, if the value is greater than zero, 
               // then unwind to the target exception handler. Otherwise, 
               // continue the search for an exception filter. 
               // 
               if (Value < 0) { 
                   return ExceptionContinueExecution; 
               } else if (Value > 0) { 

                // RtlUnwind is called. 
                ... 
            } 
         // Loop continues. 
... 
// Eventually, ExceptionContinueSearch is returned. 
return ExceptionContinueSearch; 

While reading the code for the __C_specific_handler, which is included with the MSVCRT
(C:\Program Files (x86)\Microsoft Visual Studio
14.0\VC\crt\src\amd64\chandler.c), I discovered that if the exception filter it called
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returned zero, it will continue enumerating the scope table.

This meant we could call arbitrary functions by setting our exception handler to
__C_specific_handler and crafting a malicious scope table. As long as the return value of
our fake exception filter was zero, our search would continue without issue. Given that many
functions in the ntdll module return an NTSTATUS value and STATUS_SUCCESS is zero, this
significantly increased the number of functions we could call.

Execute Multiple Exception Handlers Consecutively

The following primitive was found quickly after the last- the ability to execute as many
functions as I wanted consecutively inside a module I knew the location of. If you think about
the RtlDispatchException unwinding process, it may seem as if to call multiple functions,
we'd need to perform an entire unwind loop to specify a new exception routine pointer.

typedef struct _SCOPE_TABLE_AMD64 { 
   DWORD Count; 
   struct { 
       DWORD BeginAddress; 
       DWORD EndAddress; 
       DWORD HandlerAddress; 
       DWORD JumpTarget; 
   } ScopeRecord[1]; 
} SCOPE_TABLE_AMD64, *PSCOPE_TABLE_AMD64; 

With a malicious scope table structure, we can define multiple scope records that overlap.
Nothing stops the BeginAddress/EndAddress fields from specifying the same scope. As long
as our exception filters (handler address) return zero, the table is entirely enumerated, and
we can call functions consecutively. One relevant limitation is that we are stuck with the
same second argument (RDX) value across all consecutive function calls.

What Functions Do We Call?

The collided unwind primitive is powerful sure, but what functions can we call to get remote
code execution only controlling the second argument?

Even though we don't control the other arguments entirely, they're worth calling out. For
example, the fact that the first argument (RCX) will be a consistent pointer to some writable
memory region can still be helpful.

I discovered most of the valuable functions we can abuse for this attack by spending hours
reviewing published headers for ntdll. For example, two great resources I used were the
Process Hacker Native API header collection and the source code of ReactOS. What I did
with these headers was use the return type and SAL annotations, which specify whether
arguments are written to or are used as input, to find potentially "desirable" functions.

https://github.com/processhacker/phnt
https://github.com/reactos
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For example, if a function's return type was NTSTATUS, a zero return value was guaranteed as
long as the function succeeded. SAL annotations let me search for functions that met
specific criteria like "find functions where the second argument I control is written to".

It's not worth going through every function I found potentially valuable, as there were quite a
lot. So instead, I'll focus on those we leverage in our minimal PoC.

RtlInitUnicodeStringEx

NTSTATUS 
NTAPI 
RtlInitUnicodeStringEx( 
   _Out_ PUNICODE_STRING DestinationString, 
   _In_opt_z_ PCWSTR SourceString 
   ); 

The first function I want to call out is RtlInitUnicodeStringEx, which takes our completely
controlled second argument and initializes a UNICODE_STRING structure in the buffer specified
by the first argument.

Remember how I said the fact that RCX was a writable location is still helpful? In the context
of the __C_specific_handler, the first argument is an EXCEPTION_POINTERS structure which
contains our exception and context record pointers. Fortunately, it doesn't matter what is
stored initially, as RtlInitUnicodeStringEx doesn't care.

I couldn't use RtlInitUnicodeString because it leverages the RAX register (return value) as
a "counter" representing the number of characters written, and we needed a return value of
zero. RtlInitUnicodeStringEx, on the other hand, wraps this call and returns zero as long
as our source string is not larger than SHRT_MAX.

This function lets us initialize RCX to point to a UNICODE_STRING containing whatever value we
want. Many functions inside ntdll accept a UNICODE_STRING pointer; hence this was useful for
expanding the accessible attack surface.

LdrLoadDll

What do we do with a UNICODE_STRING? One interesting attack idea I had was, "if all we want
to do is execute arbitrary code remotely, does it really need to be shellcode?". For example,
what's stopping us from loading a malicious DLL from our remote server?
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NTSTATUS 
NTAPI 
LdrpLoadDll( 
   PUNICODE_STRING DllName, 
   PVOID DllPathState, 
   ULONG Flags, 
   PLDR_MODULE* ModuleOut 
   ); 

LdrLoadDll wouldn't work directly as the DllPath needed to be a PWSTR, but all LdrLoadDll
did was wrap a call to LdrpLoadDll, which did accept a UNICODE_STRING as its first
argument.

Although this initially seemed like a good candidate, I ran into several issues during testing.
So, to make my life easier, I created a test program that would emulate the conditions inside
__C_specific_handler. For example, I called RtlInitUnicodeStringEx on a heap buffer
containing random data, and I passed two arbitrary heap pointers in the Flags and
ModuleOut arguments.

Flags being a pointer complicated things as different heap addresses would trigger different
logic inside LdrpLoadDll. I had similar issues with the DllPathState containing a wide
string.

Looking for alternatives, I used IDA Pro to check for cross-references to LdrpLoadDll. To my
surprise, I found a function named LdrpLoadWow64 which took a single UNICODE_STRING
argument. At a high level, the function:

https://i.imgur.com/Xh9tDLX.png
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1. Copies the UNICODE_STRING argument into a stack buffer.
2. Appends wow64.dll to this stack buffer.
3. Uses LdrpInitializeDllPath on the stack buffer, which "normalizes" a given path for

LdrpLoadDll.
4. Calls LdrpLoadDll to load the DLL from the finalized path.

There are a few more operations this function does after the DLL is loaded, such as trying to
parse certain exports, but that doesn't matter if we can get our arbitrary DLL loaded.

This appeared to be a great candidate because it took care of all the strange arguments
LdrpLoadDll took, which we had little control over. If we could initialize RCX with a path to a
malicious directory, LdrpLoadWow64 would append wow64.dll to it and load a DLL from that
path!

Preparing the Demo

For the demo, I developed a sample "vulnerable application" compiled using Visual Studio's
Clang/LLVM build tools. This example program has a small network protocol designed to
fulfill our requirements for the attack:

1. The application allows a remote caller to request a leak of the ntdll base address and
a pointer to a heap region allocated with a caller-specified size.

2. The application allows a remote caller to provide an arbitrary buffer to copy into the
previously allocated heap buffer.

3. The application allows a remote caller to provide an arbitrary buffer to unsafely copy
into a stack variable and then trigger an access violation exception.

Obviously, the requirements for this attack will be more complex in the real world. The
method by which you meet the requirements will change depending on the context of the
application you are exploiting. Therefore, in our sample PoC, these primitives are accessible
through a simple interface, allowing us to focus on the unwinding process.

To perform the attack, I created a small Python script requiring a target IP and several offsets
of functions inside your target's ntdll. Note that this exploit code was written to work against
any target application, not just the one we developed for this demo. Of course, you would
need to implement code to fulfill the requirements for the attack, but the nice part of the
LdrpLoadWow64 methodology is that it is stable across different versions of Windows.
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To up the stakes, I configured my target's "Exploit Protection" settings to require strict control
flow guard and strict hardware-enforced stack protection. Given that our exploit never needs
to return to a value that isn't on the shadow stack, this shouldn't cause issues, but it's always
better to confirm these assumptions.

Demo

We start the demo by running the vulnerable application on our victim machine. To show you
the attack step-by-step, I'm using IDA Pro remote debugging with WinDbg. After setting
relevant breakpoints, we can start the exploit script on our remote attacker machine.

https://i.imgur.com/4VHldOn.png
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The PoC requests a leak for ntdll and some heap memory, copies the malicious heap
buffer to the target, and triggers the overflow.

On our victim side, we can see an exception occurring inside the ProcessPacket function
after the overflow buffer is overwritten as intended.

At this point, we can verify that hardware-enforced stack protection is enabled by running the
WinDbg command rM 8002. This is a trick I learned from the Google Security blog
discussing CET to see the shadow stack pointer (ssp) and whether CET is enabled
(cetumsr). Since cetumsr is 1, we know that our previous exploit protection option took
effect.

https://i.imgur.com/CoorhBH.png
https://i.imgur.com/TpfsGVN.png
https://i.imgur.com/gumgVGd.png
https://security.googleblog.com/2021/05/enabling-hardware-enforced-stack.html
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Once we pass this exception to the target, our corrupted call stack leads
RtlDispatchException to call RtlpUnwindHandler, which is the exception handler for
RtlpExecuteHandlerForUnwind. This is where the dispatcher context structure in
RtlDispatchException is overwritten with our malicious dispatcher context pointer stored on
the stack.

Next, __C_specific_handler calls RtlInitUnicodeStringEx, which initializes the
ExceptionPointers variable to a UNICODE_STRING pointing at the wide string we specified in
our EstablisherFrame.

https://i.imgur.com/rjKdwBo.png
https://i.imgur.com/F6p1uMH.png
https://i.imgur.com/w2GWmqG.png
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The last step of the attack is a call to LdrpLoadWow64. By dumping the unicode string in RCX
right before the call to LdrpLoadDll, we can see that it has been initialized to our initial
directory path + wow64.dll.

https://i.imgur.com/0pEkQvx.png
https://i.imgur.com/pD3y8hH.png
https://i.imgur.com/T5NxTMo.png
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Once we continue, we see the wow64.dll file being requested from our attacker server and a
message box generated by our malicious DLL, completing the attack!

What Else Can We Do With This Attack?

Although we've gone through a minimal proof-of-concept, much more is possible with the
CollidedUnwind primitive. Here are some highlights:

1. Using __C_specific_handler, we can trigger a call to RtlUnwind while controlling the
function's internal state. RtlUnwind is more potent than RtlDispatchException as the
changes you make to the context record will be reflected once execution continues at
the unwind target.

2. In RtlDispatchException, a significant barrier to continuing the virtual unwind loop is
that your Rsp must be within the stack's bounds. There are quite a few ways to get
around this issue.

One method was to use unwind operations to read the TlsExpansionBitmap in
ntdll, which contained a pointer to the PEB. From here, we can go up to the TEB
of our process and copy the StackBase or StackLimit fields into Rsp, allowing us
to pass the bounds check.

https://i.imgur.com/VfcTqKn.png
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3. Another challenge I faced with complex variants was the unwind info structure in
RUNTIME_FUNCTION is located by adding a 32-bit address to the image base we
controlled. For us to call arbitrary exception handlers, the image base would need to be
the location of ntdll. For us to entirely control the unwind info structure, the image base
would need to be the base of our heap.

An interesting middle ground was that I could use any unwind info structure in
ntdll to call any exception handler. This worked by subtracting the exception
handler offset I didn't control from the target exception handler I wanted to call.
This new value would be my image base, and I would specify an unwind info
offset in my runtime function to account for this difference (i.e. real unwind info
location minus my fake image base).

What About Linux?

We discussed how exception handling works on Windows and how we can weaponize
structured exception handling to gain code execution. However, we didn't touch on how other
operating systems like Linux are impacted by the same theory.

A few weeks ago, academic researchers from Vrije Universiteit Amsterdam and the
University of California, Santa Barbara, released a paper titled, "Let Me Unwind That For
You: Exceptions to Backward-Edge Protection". Their paper complements this article
exceptionally well as they investigated how an attacker can abuse the unwinding process,
but with a strong Linux and C++ focus.

If you enjoyed this article, I strongly encourage you to check out their work.

Tools

To access the tools and proof-of-concept mentioned in this article, please visit the Exception
Oriented Programming repository.

Conclusion

In this article, we explored how an attacker can abuse fundamental weaknesses in the
design of structured exception handling on Windows in the context of stack-based attacks.
We started with the trivial approach to bypassing security cookies by triggering an exception
into a handler that would return to our target. We investigated how although the MSVC
compiler has mitigated this attack for fifteen years, much of the Windows ecosystem is still
unprotected.

Next, we dove deep into the internals of the unwinding process on Windows, discovering
how the unwind operations of legitimate functions can be weaponized by attackers to corrupt
the state of an application. Finally, we discussed how Exception Oriented Programming is a

https://download.vusec.net/papers/chop_ndss23.pdf
https://github.com/D4stiny/ExceptionOrientedProgramming
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compelling alternative to ROP when it comes to newer system mitigations such as hardware-
enforced stack protection.

In our last section, we abused edge cases to achieve the modern-day equivalent of an SEH
hijacking attack. We weaponized collided unwinds to gain code execution with strict
hardware-enforced stack protection and control flow guard enabled.

I look forward to seeing if we can implement mitigations against these attacks in other
compilers (and operating systems). There is quite a lot of opportunity to limit the attack
surface currently exposed by the unwinding process, and I look forward to working with the
broader compiler development community to see what can be done.

I hope you enjoyed reading this article as much as I enjoyed writing it. We covered a
significant amount, and I appreciate those that stuck around.

 
 


