
1/17

By Yarden Shafir

Investigating Filter Communication Ports
windows-internals.com/investigating-filter-communication-ports

If you spent any time writing or researching filter drivers, you may have run into filter
communication ports. This is a standard communication method between a filter driver and
its user-mode process, implemented and managed by the filter manager (FltMgr.sys). The
ports allow the process and the drivers to send messages back and forth. Ports are named,
so that processes can easily find and connect to them, and they allow the filter driver to
decide who can get access to the port through a security descriptor, a maximum connection
number field and a method that gets invoked whenever a new connection attempt is made,
allowing the driver to dynamically allow or deny a specific connection request.

If you’re interested in learning how to create and use communication ports, I recommend
taking a look at the Windows Driver Samples Github repository. In this post, I’ll focus on the
forensics side and see how we can investigate filter communication ports to get some
interesting information. Specifically, I’ll show how we can answer two questions:

1. How can we find out what communication ports a filter driver created?
2. Which user-mode processes are connected to a communication port?

As usual, I conduct my investigation in WinDbg kernel debugging session.

Finding Communication Ports

We can answer the first question easily. To find out what ports are created by a filter driver
we can use the FltKd extension – one of the many useful debugger extensions provided in
the SDK. This extension DLL isn’t always loaded by default so you might have to manually
load the DLL into the debugger with the .load command. The DLL should be in "C:\Program
Files (x86)\Windows Kits\10\Debuggers\x64\winxp\fltkd.dll" if you are using the
legacy debugger or under the WinDbg Preview installation path if you are using Preview.

FltKd has several useful commands to debug filter drivers (you can see them all by running
!fltkd.help). The first command will use is !fltkd.filters, which shows all the registered
filters in the system:

!fltkd.filters
Filter List: ffff9c8f51af0320 "Frame 0"
FLT_FILTER: ffff9c8f5bce7010 "bindflt" "409800"
FLT_INSTANCE: ffff9c8f6aa51010 "bindflt Instance" "409800"
FLT_FILTER: ffff9c8f55b86ba0 "FsDepends" "407000"
FLT_INSTANCE: ffff9c8f554c1b40 "FsDepends" "407000"

https://windows-internals.com/investigating-filter-communication-ports/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/communication-between-user-mode-and-kernel-mode
https://github.com/microsoft/Windows-driver-samples/blob/main/filesys/miniFilter/avscan/filter/communication.c

2/17

FLT_INSTANCE: ffff9c8f554ca6a0 "FsDepends" "407000"
FLT_INSTANCE: ffff9c8f68fd2010 "FsDepends" "407000"
FLT_INSTANCE: ffff9c8f68fea930 "FsDepends" "407000"
FLT_INSTANCE: ffff9c8f68fea4a0 "FsDepends" "407000"
FLT_INSTANCE: ffff9c8f68fea010 "FsDepends" "407000"
FLT_FILTER: ffff9c8f53d3dab0 "WdFilter" "328010"
FLT_INSTANCE: ffff9c8f53eb48a0 "WdFilter Instance" "328010"
FLT_INSTANCE: ffff9c8f551398e0 "WdFilter Instance" "328010"
FLT_INSTANCE: ffff9c8f553858e0 "WdFilter Instance" "328010"
FLT_INSTANCE: ffff9c8f55643010 "WdFilter Instance" "328010"
FLT_INSTANCE: ffff9c8f5573d8e0 "WdFilter Instance" "328010"
FLT_INSTANCE: ffff9c8f5577c8a0 "WdFilter Instance" "328010"
FLT_INSTANCE: ffff9c8f5a3d38a0 "WdFilter Instance" "328010"
FLT_FILTER: ffff9c8f627d1ba0 "storqosflt" "244000"
FLT_FILTER: ffff9c8f5a6d7030 "wcifs" "189900"
FLT_INSTANCE: ffff9c8f6add9010 "wcifs Outer Instance" "189899"
FLT_FILTER: ffff9c8f62eee8a0 "CldFlt" "180451"
FLT_INSTANCE: ffff9c8f557b8010 "CldFlt" "180451"
FLT_FILTER: ffff9c8f628cbba0 "bfs" "150000"
FLT_INSTANCE: ffff9c8f55734b00 "bfs" "150000"
FLT_INSTANCE: ffff9c8f5a7e0ba0 "bfs" "150000"
FLT_INSTANCE: ffff9c8f5a7e1ba0 "bfs" "150000"
FLT_INSTANCE: ffff9c8f627ee8a0 "bfs" "150000"
FLT_INSTANCE: ffff9c8f627ed8a0 "bfs" "150000"
FLT_INSTANCE: ffff9c8f627ec8a0 "bfs" "150000"
FLT_INSTANCE: ffff9c8f627eb8a0 "bfs" "150000"
FLT_INSTANCE: ffff9c8f627ea8a0 "bfs" "150000"
FLT_INSTANCE: ffff9c8f627e98a0 "bfs" "150000"
FLT_FILTER: ffff9c8f550d4c60 "FileCrypt" "141100"
FLT_FILTER: ffff9c8f5a85e010 "luafv" "135000"
FLT_INSTANCE: ffff9c8f629cf010 "luafv" "135000"
FLT_FILTER: ffff9c8f552e8c40 "npsvctrig" "46000"
FLT_INSTANCE: ffff9c8f5516d8a0 "npsvctrig" "46000"
FLT_FILTER: ffff9c8f53d38a00 "Wof" "40700"
FLT_INSTANCE: ffff9c8f5510b8a0 "Wof Instance" "40700"
FLT_INSTANCE: ffff9c8f5569f8a0 "Wof Instance" "40700"
FLT_INSTANCE: ffff9c8f5572c8e0 "Wof Instance" "40700"
FLT_INSTANCE: ffff9c8f5574a8a0 "Wof Instance" "40700"
FLT_FILTER: ffff9c8f53d3b8a0 "FileInfo" "40500"
FLT_INSTANCE: ffff9c8f53ea28a0 "FileInfo" "40500"
FLT_INSTANCE: ffff9c8f550d58a0 "FileInfo" "40500"
FLT_INSTANCE: ffff9c8f55364010 "FileInfo" "40500"

3/17

FLT_INSTANCE: ffff9c8f556486e0 "FileInfo" "40500"
FLT_INSTANCE: ffff9c8f556cd8a0 "FileInfo" "40500"
FLT_INSTANCE: ffff9c8f557458a0 "FileInfo" "40500"
FLT_INSTANCE: ffff9c8f5a3c9730 "FileInfo" "40500"
This command enumerates the frames in FLTMGR!FltGlobals, then enumerates the filters
registered for each frame. We could recreate this with DX if we wanted to but for now the
FltKd output is good enough.

Our next step is to find all the ports registered by a filter driver. We can use FltKd for this as
well, with the fltkd.portlist command. For this exercise we’ll pick the Windows Defender
filter driver, wdfilter:

!fltkd.portlist 0xffff9c8f53d3dab0
FLT_FILTER: ffff9c8f53d3dab0 Client Port List : Mutex (ffff9c8f53d3dd08) List
[ffff9c8f6b6312f0-ffff9c8f6b633270] mCount=5
FLT_PORT_OBJECT: ffff9c8f6b6312f0
FilterLink : [ffff9c8f6b630870-ffff9c8f53d3dd40]
ServerPort : ffff9c8f524f3420
Cookie : ffff9c8f53d3e108
Lock : (ffff9c8f6b631318)
MsgQ : (ffff9c8f6b631350) NumEntries=0 Enabled
MessageId : 0x0000000000000000
DisconnectEvent : (ffff9c8f6b631428)
Disconnected : FALSE
FLT_PORT_OBJECT: ffff9c8f6b630870
FilterLink : [ffff9c8f6b634770-ffff9c8f6b6312f0]
ServerPort : ffff9c8f524f4550
Cookie : ffff9c8f53d3e148
Lock : (ffff9c8f6b630898)
MsgQ : (ffff9c8f6b6308d0) NumEntries=8 Enabled
MessageId : 0x0000000000000000
DisconnectEvent : (ffff9c8f6b6309a8)
Disconnected : FALSE
FLT_PORT_OBJECT: ffff9c8f6b634770
FilterLink : [ffff9c8f6b634cb0-ffff9c8f6b630870]
ServerPort : ffff9c8f524f44a0
Cookie : ffff9c8f53d3e138
Lock : (ffff9c8f6b634798)
MsgQ : (ffff9c8f6b6347d0) NumEntries=16 Enabled
MessageId : 0x0000000000000000
DisconnectEvent : (ffff9c8f6b6348a8)
Disconnected : FALSE

4/17

FLT_PORT_OBJECT: ffff9c8f6b634cb0
FilterLink : [ffff9c8f6b633270-ffff9c8f6b634770]
ServerPort : ffff9c8f524f3840
Cookie : ffff9c8f53d3e118
Lock : (ffff9c8f6b634cd8)
MsgQ : (ffff9c8f6b634d10) NumEntries=16 Enabled
MessageId : 0x000000000000a3c1
DisconnectEvent : (ffff9c8f6b634de8)
Disconnected : FALSE
FLT_PORT_OBJECT: ffff9c8f6b633270
FilterLink : [ffff9c8f53d3dd40-ffff9c8f6b634cb0]
ServerPort : ffff9c8f524f3e70
Cookie : ffff9c8f53d3e128
Lock : (ffff9c8f6b633298)
MsgQ : (ffff9c8f6b6332d0) NumEntries=2 Enabled
MessageId : 0x0000000000001e98
DisconnectEvent : (ffff9c8f6b6333a8)
Disconnected : FALSE
Great, we found five ports created by wdfilter! However, in this case, we probably do want
to try and get this information with a DX command and not settle for the legacy extension
output. That’s because the output of legacy extension commands can’t be enumerated or
operated on and there’s no legacy command that answers our second question. This means
that to find the connected process we’d have to operate on each port separately, resulting in
a lot of manual steps. If we want to automate the process, we should get this information with
the debugger data model and save the ports in a variable that we can use for our other
commands.

Each filter driver is managed through a FLT_FILTER structure. This structure contains all the
management information for the filter, including the list of all its communication ports, linked
in its PortList field. The data for each port is saved in a FLT_PORT_OBJECT structure.
Conveniently, we got the addresses of the FLT_FILTER structures for all the registered filters
from our earlier command – !fltkd.filters. So let’s take the address of the wdfilter
FLT_FILTER structure, and use DX to parse the port list. To make this easier to use later, I’ll
create a helper function to do this, and also save the wdfilter address in a variable:

dx @$enumPortsForFilter = (filter =>

Debugger.Utility.Collections.FromListEntry(((fltmgr!_FLT_FILTER*)filter)-

>PortList.mList, "fltmgr!_FLT_PORT_OBJECT", "FilterLink"))

dx @$wdfilter = 0xffff9c8f53d3dab0

Now we can call the function and get all the ports registered by the driver, and save them in
a variable that we will use in the rest of the post:

5/17

dx @$wdfilterports = @$enumPortsForFilter(@$wdfilter)

@$wdfilterports = @$enumPortsForFilter(@$wdfilter)
 [0x0] [Type: _FLT_PORT_OBJECT]

 [0x1] [Type: _FLT_PORT_OBJECT]
 [0x2] [Type: _FLT_PORT_OBJECT]
 [0x3] [Type: _FLT_PORT_OBJECT]
 [0x4] [Type: _FLT_PORT_OBJECT]

Before we get to the second part of the question and try to find the processes using each
port, there’s one more piece of information we might want to find about each port: its name.
To do that, we need to look at the port structure itself, since the communication ports we
retrieved aren’t named, as we can see with the !object command:

dx -r0 &@$wdfilterports.First()
 &@$wdfilterports.First() : 0xffff9c8f6b6312f0 [Type:

_FLT_PORT_OBJECT *]

!object 0xffff9c8f6b6312f0
 Object: ffff9c8f6b6312f0 Type: (ffff9c8f4f0f5f00) FilterCommunicationPort

 ObjectHeader: ffff9c8f6b6312c0 (new version)
 HandleCount: 1 PointerCount: 3

Instead, we need to look at the ServerPort field of the FLT_PORT_OBJECT, which points to a
connection port object that represents the driver’s connection to the port:

dx -r0 @$wdfilterports.First().ServerPort
 @$wdfilterports.First().ServerPort : 0xffff9c8f524f3420 [Type:

_FLT_SERVER_PORT_OBJECT *]

!object 0xffff9c8f524f3420
 Object: ffff9c8f524f3420 Type: (ffff9c8f4f0f5400) FilterConnectionPort

 ObjectHeader: ffff9c8f524f33f0 (new version)
 HandleCount: 1 PointerCount: 3

 Directory Object: ffffd584ae22c930 Name:
MicrosoftMalwareProtectionControlPortWD

Now we found the port’s name – MicrosoftMalwareProtectionControlPortWD. We can run
!object on the server port for each of the communication ports and find the name for all of
them as well. This can be automated with dx and the ExecuteCommand routine, but if you are
running a modern build of WinDbg you can just find the object header of the connection port
and access the ObjectName field to retrieve the name. This field isn’t actually a part of the
OBJECT_HEADER structure, but in modern builds the debugger data model parses the name
and adds it as a synthetic field. Unfortunately, the debugger data model doesn’t supply us
with an easy way to get the address of the header for a given object and hard-coding offsets
isn’t ideal, so we’ll use the C++ #FIELD_OFFSET macro to save the offset in a register and use
it in our DX command. Then we can quickly get the name for each port created by wdfilter:

6/17

r? @$t1 = #FIELD_OFFSET(nt!_OBJECT_HEADER, Body)

dx @$wdfilterports.Select(p => ((nt!_OBJECT_HEADER*)((__int64)p.ServerPort -
@$t1))->ObjectName)

 @$wdfilterports.Select(p => ((nt!_OBJECT_HEADER*)((__int64)p.ServerPort -
@$t1))->ObjectName)

 [0x0] : "MicrosoftMalwareProtectionControlPortWD"
 [0x1] : "MicrosoftMalwareProtectionAsyncPortWD"

 [0x2] : "MicrosoftMalwareProtectionRemoteIoPortWD"
 [0x3] : "MicrosoftMalwareProtectionPortWD"

 [0x4] : "MicrosoftMalwareProtectionVeryLowIoPortWD"

If you are using an older build of WinDbg you may not have the ObjectName field
automatically added and need to parse it yourselves. The process of doing that is a bit ugly
and also not the topic of this post so I’ll skip this step and just recommend that you use the
latest version of the debugger.

Alternatively, we could have skipped this whole part of the post and use the search function
of WinObjEx to search for all FilterConnectionPort objects and look at each individual one
to find which driver created it:

https://windows-internals.com/wp-content/uploads/2023/01/winobjex_filterports.png

7/17

But tools like WinObjEx aren’t always available (for example, when you analyze a crash
dump and don’t have access to the live machine) and besides, we can only answer the
second part of the question using a kernel debugger. So, let’s try to find out who is
connected to all these ports.

Finding the Connected Process

The first step when finding the connected processes is to check if there are any connected
processes at all. This information is easy to find, we just need to look at the
NumberOfConnections field of the server connection port:

dx @$wdfilterports.Select(p => p.ServerPort->NumberOfConnections)
 @$wdfilterports.Select(p => p.ServerPort->NumberOfConnections)

 [0x0] : 1 [Type: long]
 [0x1] : 1 [Type: long]
 [0x2] : 1 [Type: long]
 [0x3] : 1 [Type: long]
 [0x4] : 1 [Type: long]

Looks like all the Windows Defender ports have one process connected to them (and if you
look at the MaxConnections field you’ll see that’s the most each of them can have). But how
can we find out which process that is? Unfortunately, the connected process isn’t linked to
the port itself, or, in fact, saved anywhere. So, there is no easy way to find the information
we’re looking for. But obviously the system must have a way to link the connected process to
the port in order to pass messages between the driver and the process, so let’s follow the
trails.

To connect to a communication port, a process needs to call
FilterConnectCommunicationPort. It receives a handle to the port, which it can use to send
or receive messages. This handle is not a handle to a FilterConnectionPort object, but
rather to a file object. As James Forshaw explains in this excellent Project Zero blog post:

In FltCreateCommunicationPort the filter manager creates a new named kernel object
of type FilterConnectionPort with the OBJECT_ATTRIBUTES and associates it with the
callbacks. There’s no NtOpenFilterConnectionPort system call to open a port. Instead
when a user wants to access the port it must first open a handle to the filter manager
message device object, \FileSystem\Filters\FltMgrMsg, passing an extended attributes
structure identifying the full OMNS path to the port.

It is much easier to open a port by calling the FilterConnectCommunicationPort API
in user-mode, so you don’t need to deal with connecting manually. When opening a
port you can also specify an arbitrary context buffer to pass to the connect callback.
This can be used to configure the open port instance. On connection the connect
notification callback passed to FltCreateCommunicationPort will be called.

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html

8/17

Every opened handle to a communication port is linked to the device
\FileSystem\Filters\FltMgrMsg, so we could search for all handles to this device and find
the processes that interact with communication ports. We can start by using the search
function of System Informer:

This is a good start, but this still isn’t giving us the full picture. First, we don’t necessarily see
the handles for every process, since I’m running System Informer without loading its driver,
so it doesn’t have visibility into protected processes. Also, this also doesn’t tell us which port
(or ports) each process is connected to. But with this knowledge we can go back into the
debugger and hunt for handles to this device, then see how we can find the connection back
to the port itself.

In the debugger, we can’t just search for handles to the device itself since each new
connection receives a handle to a unique file object which points to the device. Unfortunately,
these file objects aren’t named, making them a bit more complicated to search for (don’t be
confused by the System Informer results, there is a lot going on behind the scenes there to
get the correct name for each file). However, these FILE_OBJECTs have a DeviceObject field
that should point to the FltMgrMsg device. Getting the address of the device is easy – we
can just use the !object command to search for it by name:

!object \FileSystem\Filters\FltMgrMsg
 Object: ffff9c8f518ec960 Type: (ffff9c8f4ef646c0) Device

 ObjectHeader: ffff9c8f518ec930 (new version)
 HandleCount: 0 PointerCount: 2

 Directory Object: ffffd584aec0f3e0 Name: FltMgrMsg

For convenience, I’ll save the object’s address in a variable:

dx @$fltmgrmsg = 0xffff9c8f518ec960

And write a helper function to search for file objects pointing to this device in a process’
handle table:

https://windows-internals.com/wp-content/uploads/2023/01/systeminformer_fltmgrmsg.png

9/17

dx @$fltmgrmsgHandles = (p => p.Io.Handles.Where(h => h.Type == "File" &&

h.Object.UnderlyingObject.DeviceObject == @$fltmgrmsg))

Just to test it out, I’ll give it the OneDrive.exe process that we’ve seen in System Informer,
since we already know it should have open handles to this device:

dx -r2 @$fltmgrmsgHandles(@$cursession.Processes[12696])
 @$fltmgrmsgHandles(@$cursession.Processes[12696])

 [0x5f8]
 Handle : 0x5f8

 Type : File
 GrantedAccess : Synch | Read/List | Write/Add

 Object [Type: _OBJECT_HEADER]
 [0xc34]</code

 Handle : 0xc34
 Type : File
 GrantedAccess : Synch | Read/List | Write/Add

 Object [Type: _OBJECT_HEADER]

We got two results, the same ones we saw in System Informer! Now, how do we get from
here to the ports themselves? To link between a file handle and the related port we need to
look at the underlying FILE_OBJECT and its FsContext2 field, which point to the CCB, or the
Context Control Block. This field contains additional information about the file object,
including a Port field:

dx ((fltmgr!_FLT_CCB*)

(@$fltmgrmsgHandles(@$cursession.Processes[12696]).First().Object.UnderlyingOb

ject.FsContext2))->Data
 ((fltmgr!_FLT_CCB*)

(@$fltmgrmsgHandles(@$cursession.Processes[12696]).First().Object.UnderlyingOb
ject.FsContext2))->Data [Type: <unnamed-tag>]

 [+0x000] Manager [Type: _MANAGER_CCB]

 [+0x000] Filter [Type: _FILTER_CCB]
 [+0x000] Instance [Type: _INSTANCE_CCB]

 [+0x000] Volume [Type: _VOLUME_CCB]
 [+0x000] Port [Type: _PORT_CCB]

In the Port field we can find a pointer to a communication port:

dx ((fltmgr!_FLT_CCB*)

(@$fltmgrmsgHandles(@$cursession.Processes[12696]).First().Object.UnderlyingOb

ject.FsContext2))->Data.Port
 ((fltmgr!_FLT_CCB*)

(@$fltmgrmsgHandles(@$cursession.Processes[12696]).First().Object.UnderlyingOb
ject.FsContext2))->Data.Port [Type: _PORT_CCB]

 [+0x000] Port : 0xffff9c8f6b6433b0 [Type: _FLT_PORT_OBJECT *]
 [+0x008] ReplyWaiterList [Type: _FLT_MUTEX_LIST_HEAD]

10/17

And once again, if we grab the ServerPort from the communication port, we can find the
port name:

dx -r0 ((fltmgr!_FLT_CCB*)

(@$fltmgrmsgHandles(@$cursession.Processes[12696]).First().Object.UnderlyingOb
ject.FsContext2))->Data.Port.Port->ServerPort

 ((fltmgr!_FLT_CCB*)
(@$fltmgrmsgHandles(@$cursession.Processes[12696]).First().Object.UnderlyingOb

ject.FsContext2))->Data.Port.Port->ServerPort :

0xffff9c8f5b1afa20 [Type: _FLT_SERVER_PORT_OBJECT *]

!object 0xffff9c8f5b1afa20
 Object: ffff9c8f5b1afa20 Type: (ffff9c8f4f0f5400) FilterConnectionPort

 ObjectHeader: ffff9c8f5b1af9f0 (new version)
 HandleCount: 1 PointerCount: 5

 Directory Object: ffffd584ae22c930 Name: CLDMSGPORT

We now know how to get from a file handle to the name of the communication port, so we
can follow the same path for all processes that opened handles to communication ports. We
can implement that as debugger data model queries in WinDbg, but scanning all the handle
tables for all processes is a bit slow, so I wrote the same logic in JavaScript:

function initializeScript()
 {

 return [new host.functionAlias(GetFileHandlesToDevice,
"DeviceFileHandles"),

 new host.apiVersionSupport(1, 6)];
 }

function GetFileHandlesToDevice(Device)

 {
 // Get easy access to the debug output method

 let dbgOutput = host.diagnostics.debugLog;

 // Loop over each process
 let processes = host.currentSession.Processes;

 let objHeaderType = host.getModuleType("nt", "_OBJECT_HEADER");
 let objHeaderOffset = objHeaderType.fields.Body.offset;

 for (let process of processes)
 {

 let handles = process.Io.Handles;
 try {

 for (let handle of handles) {
 try {

 let fileObj = handle.Object.ObjectType;
 if (fileObj === "File") {

 if

11/17

(host.parseInt64(handle.Object.UnderlyingObject.DeviceObject.address,

16).compareTo(Device) == 0)
 {

 let fscontext2 =
handle.Object.UnderlyingObject.FsContext2.address;

 let fltCcbType = host.getModuleType("FltMgr",

"_FLT_CCB");
 let port = host.createTypedObject(fscontext2,

fltCcbType).Data.Port.Port;
 let portObjHeader =

host.createTypedObject(port.ServerPort.address.subtract(objHeaderOffset),

objHeaderType);
 dbgOutput("\tProcess ", process.Name, " has handle

", handle.Handle, " to port ", portObjHeader.ObjectName, "\n");
 }

 }

 } catch (e) {
 dbgOutput("\tException parsing handle ", handle.Handle,

"in process ", process.Name, "!\n");
 }

 }
 } catch (e) {

 dbgOutput("\tException parsing handle table for process ",

process.Name, " PID ", process.Id, "!\n");
 }

 }
 }

Running the script, we can find the handles to communication ports:

dx @$scriptContents.GetHandlesToDevice(@$fltmgrmsg)

We see here the three handles we saw in System Informer (all to the CLDMSGPORT port) and
some handles that System Informer didn’t show us since they belong to MsMpEng.exe – the
user-mode process belonging to Windows Defender, running as a PPL. Those five handles
match the five ports created by wdfilter.

What Else Can We Learn About the Port?

https://windows-internals.com/wp-content/uploads/2023/01/file_handles_ports.png

12/17

At this point, we have a few pieces of information about each communication port in the
system:

1. The port’s name
2. The driver that created the port
3. The user-mode process or processes that are connected to the port

But we’re not done yet – these ports contain some more information that can tell us a little bit
about how they are used. Every port can be used to send messages from the process to the
driver or from the driver to the process, or both. Some ports are only used for unidirectional
communication, and others are used in both directions. Knowing the direction of a port could
help us tell if a port is used to send requests or commands to the driver, or to send
information to the user-mode process (for example to pass data collected by the driver that
should be sent to a server by the process).

Knowing if the driver expects to receive messages from the process is relatively easy – on
port creation the driver can register a MessageNotifyCallback routine that will get called
when a message is sent from the connected process. Registering this callback is optional,
and if no callback is registered, the driver can’t receive any messages.

So, let’s get back to the wdfilterports variable that we created in the beginning of the post
and, once again, look at all the ports registered by wdfilter. For each one, we’ll print the
MessageNotify field of the server port and see if one is registered. Let’s also print the name
of each port, so we can easily identify them:

r? @$t1 = #FIELD_OFFSET(nt!_OBJECT_HEADER, Body)
 dx -g @$wdfilterports.Select(p => new {Name = ((nt!_OBJECT_HEADER*)

((__int64)p.ServerPort - @$t1))->ObjectName, MessageNotify = p.ServerPort-
>MessageNotify})

Looks like out of the five registered ports, only one is configured to receive messages:
MicrosoftMalwareProtectionControlPortWD. All the other ports seem to be informational
ports, where communication only flows from the driver to the process. But
MicrosoftMalwareProtectionControlPortWD might also send information to the user-mode
process, we can’t know for sure. Yet.

To find out if anyone is expecting to receive messages from a communication port, we need
to look at wait queues.

https://windows-internals.com/wp-content/uploads/2023/01/ports_message_notify.png

13/17

Every port has a message queue that allows threads to wait for new messages from the
driver. This means that if we enumerate that wait queue, we can find out which ports have
waiters that expect to receive messages. This doesn’t necessarily mean that the driver plans
to send messages, but in most cases we can assume that someone waiting on the port
means that messages will be sent from the driver at some point. Knowing which thread is
waiting on a port can sometimes be helpful, but if it’s a worker thread (in case this is an
asynchronous wait) it may not be.

If we look at the wait queue of a port, what we’ll find is a list of IRPs. These IRPs will be
completed when a message is sent that fits the requirements of the waiting thread. The
waiting thread will then be alerted and process the message. Usually, the processing thread
calls FilterGetMessage in a loop, so after it finishes processing a message it will get right
back into the wait queue.

To parse the wait queues, we go back to our list of ports and look at the MsgQ field. This is
our message queue, which contains a WaiterQ field, that holds the list of pending IRPs:

dx -r2 @$wdfilterports.Select(p => p.MsgQ.WaiterQ)
@$wdfilterports.Select(p => p.MsgQ.WaiterQ)
[0x0] [Type: _FLT_MUTEX_LIST_HEAD]
[+0x000] mLock [Type: _FAST_MUTEX]
[+0x038] mList [Type: _LIST_ENTRY]
[+0x048] mCount : 0x0 [Type: unsigned long]
[+0x048 (0: 0)] mInvalid : 0x0 [Type: unsigned char]
[0x1] [Type: _FLT_MUTEX_LIST_HEAD]
[+0x000] mLock [Type: _FAST_MUTEX]
[+0x038] mList [Type: _LIST_ENTRY]
[+0x048] mCount : 0x10 [Type: unsigned long]
[+0x048 (0: 0)] mInvalid : 0x0 [Type: unsigned char]
[0x2] [Type: _FLT_MUTEX_LIST_HEAD]
[+0x000] mLock [Type: _FAST_MUTEX]
[+0x038] mList [Type: _LIST_ENTRY]
[+0x048] mCount : 0x20 [Type: unsigned long]
[+0x048 (0: 0)] mInvalid : 0x0 [Type: unsigned char]
[0x3] [Type: _FLT_MUTEX_LIST_HEAD]
[+0x000] mLock [Type: _FAST_MUTEX]
[+0x038] mList [Type: _LIST_ENTRY]
[+0x048] mCount : 0x20 [Type: unsigned long]
[+0x048 (0: 0)] mInvalid : 0x0 [Type: unsigned char]
[0x4] [Type: _FLT_MUTEX_LIST_HEAD]
[+0x000] mLock [Type: _FAST_MUTEX]
[+0x038] mList [Type: _LIST_ENTRY]

14/17

[+0x048] mCount : 0x4 [Type: unsigned long]
[+0x048 (0: 0)] mInvalid : 0x0 [Type: unsigned char]
The first (potentially) useful piece of information we can see here is mCount, telling us how
many waiters are in the queue. The first port, MicrosoftMalwareProtectionControlPortWD,
has an empty wait queue, meaning that no one is expecting to receive any messages from it.
That probably means that this port is only used to send messages from the process to the
driver (and at most receive an immediate reply, that doesn’t require any waiting), so the
process has nothing to wait for. The other four ports do have several waiters expecting
messages, so let’s see if we can find out the identity of these threads.

We start by parsing the list of IRPs linked in Port->MsgQ.WaiterQ.mList. This list links the
IRPs through their Tail.Overlay.ListEntry field, and we can use DX to parse it. For anyone
(like me) getting confused by all the structures, this diagram shows how all these data
structures fit together:

And now we can write a helper function to parse the list of queued IRPs:

dx @$getIrpList = (port =>

Debugger.Utility.Collections.FromListEntry(((fltmgr!_FLT_PORT_OBJECT*)port)-
>MsgQ.WaiterQ.mList, "nt!_IRP", "Tail.Overlay.ListEntry"))

Now let’s call @$getIrpList for each port in the list and grab the thread address for every
IRP. We can find that in Irp.Tail.Overlay.Thread, or just use Irp->CurrentThread, since
the debugger data model adds a synthetic field for our convenience:

dx -r2 @$wdfilterports.Select(p => @$getIrpList(&p).Select(i => i->CurrentThread))

https://windows-internals.com/wp-content/uploads/2023/01/flt_structs_diagram.png

15/17

@$ports.Select(p => @$getIrpList(&p).Select(i => i->CurrentThread))
[0x0]
[0x1]
[0x0] : 0xffffc685acdb6080 [Type: _ETHREAD *]
[0x1] : 0xffffc685acdb6080 [Type: _ETHREAD *]
[0x2] : 0xffffc685acdb6080 [Type: _ETHREAD *]
[0x3] : 0xffffc685acdb6080 [Type: _ETHREAD *]
[0x4] : 0xffffc685acdb6080 [Type: _ETHREAD *]
[0x5] : 0xffffc685acdb6080 [Type: _ETHREAD *]
[0x6] : 0xffffc685acdb6080 [Type: _ETHREAD *]
[0x7] : 0xffffc685acdb6080 [Type: _ETHREAD *]
[0x2]
[0x0] : 0xffffc685af203080 [Type: _ETHREAD *]
[0x1] : 0xffffc685af203080 [Type: _ETHREAD *]
[0x2] : 0xffffc685af203080 [Type: _ETHREAD *]
[0x3] : 0xffffc685af203080 [Type: _ETHREAD *]
[0x4] : 0xffffc685af203080 [Type: _ETHREAD *]
[0x5] : 0xffffc685af203080 [Type: _ETHREAD *]
[0x6] : 0xffffc685af203080 [Type: _ETHREAD *]
[0x7] : 0xffffc685af203080 [Type: _ETHREAD *]
[0x8] : 0xffffc685af203080 [Type: _ETHREAD *]
[0x9] : 0xffffc685af203080 [Type: _ETHREAD *]
[0xa] : 0xffffc685af203080 [Type: _ETHREAD *]
[0xb] : 0xffffc685af203080 [Type: _ETHREAD *]
[0xc] : 0xffffc685af203080 [Type: _ETHREAD *]
[0xd] : 0xffffc685af203080 [Type: _ETHREAD *]
[0xe] : 0xffffc685af203080 [Type: _ETHREAD *]
[0xf] : 0xffffc685af203080 [Type: _ETHREAD *]
[0x3]
[0x0] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0x1] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0x2] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0x3] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0x4] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0x5] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0x6] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0x7] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0x8] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0x9] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0xa] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0xb] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0xc] : 0xffffc685aae61080 [Type: _ETHREAD *]

16/17

[0xd] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0xe] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0xf] : 0xffffc685aae61080 [Type: _ETHREAD *]
[0x4]
[0x0] : 0xffffc685ada78080 [Type: _ETHREAD *]
[0x1] : 0xffffc685b0668080 [Type: _ETHREAD *]
It looks like we have a lot of duplicates here. This is normal, as the same thread might
appear in multiple IRPs. Since we don’t care about each individual IRP, and only care about
the threads themselves, we can clean up our view using the Distinct() method and get the
thread ID for each thread. And then clean up our view even more by using SelectMany to
flatten the array:

dx @$wdfilterports.SelectMany(p => @$getIrpList(&p).Select(i => i-
>CurrentThread).Distinct().Select(t => t->Cid.UniqueThread))
@$wdfilterports.SelectMany(p => @$getIrpList(&p).Select(i => i-
>CurrentThread).Distinct().Select(t => t->Cid.UniqueThread))
[0x0] : 0x31c4 [Type: void *]
[0x1] : 0x13a8 [Type: void *]
[0x2] : 0xc84 [Type: void *]
[0x3] : 0xcb8 [Type: void *]
<!--EndFragment -->
We can also get the process ID to know which process hosts these threads, but we already
know that the only process that’s connected to the Windows Defender ports is MsMpEng.exe
so there’s no need. Finally, let’s put everything together and add the port name and message
notify routine:

r? @$t1 = #FIELD_OFFSET(nt!_OBJECT_HEADER, Body)
 dx -g @$wdfilterports.Select(p => new {Name = ((nt!_OBJECT_HEADER*)

((__int64)p.ServerPort - @$t1))->ObjectName, MessageNotify = p.ServerPort-

>MessageNotify, ListeningThreads = @$getIrpList(&p).Select(i => i-
>CurrentThread).Distinct().Count()})

There we have it. The first port is used to send messages to the driver, and the other four are
used to send information back to the process. You can use these queries to find the thread
IDs, analyze the call stacks and find the user-mode message handlers of each of the ports.
This is especially cool when analyzing a crash dump of a suspicious machine, where there
aren’t any tools to help us except the debugger.

https://windows-internals.com/wp-content/uploads/2023/01/ports_message_notify_listening_threads.png

17/17

Hope this post has been useful to at least some of you, and I hope to see more memory
forensic scripts and methods in the future!

