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A common offensive technique used by operators and malware developers alike has been to
execute malicious code at runtime to avoid static detection. Often, methods of achieving
runtime execution have focused on placing arbitrary code into executable memory that can
then be executed.

In this article, we will explore a new approach to executing runtime code that does not rely on
finding executable regions of memory, but instead relies on abusing existing trusted memory
to execute arbitrary code.

Background

Some common methods of runtime execution include:

1. Allocating executable memory at runtime.
2. Abusing Windows Section objects.
3. Abusing existing RWX (read/write/execute) regions of memory allocated by legitimate

code.
4. Loading legitimate binaries that include an RWX PE section that can be overwritten.

One common pattern in all these methods is that they have always had a heavy focus on
placing arbitrary shellcode in executable regions of memory. Another technique that has not
seen significant adoption in the malware community due to its technical complexity is Return-
Oriented Programming (ROP).

As a brief summary, ROP is a common technique seen in memory corruption exploits where
an attacker searches for “snippets of code” (gadgets) inside binaries that perform a desired
instruction and soon after return to the caller. These “gadgets” can then be used in a chain to
perform small operations that add up to a larger goal.

Although typically used for memory corruption exploits, there has been limited use in
environments where attackers already have code execution. For example, in the Video
Game Hacking industry, there have been open-source projects that allow cheaters to abuse
ROP gadgets to execute simplified shellcode for the purposes of gaining an unfair advantage
in a video game.

The greatest limitation with ROP for runtime execution however is that the instruction set of
potential gadgets can be extremely limited and thus is challenging to port complex shellcode
to.

https://billdemirkapi.me/exception-oriented-programming-abusing-exceptions-for-code-execution-part-1/
https://github.com/Speedi13/ROP-COMPILER


2/10

As an attacker that already has execution in an environment, ROP is an inefficient method of
performing arbitrary operations at runtime. For example, assume you are given the following
assembly located in a legitimate binary:

imul eax, edx 
add eax, edx 
ret

Using ROP, an attacker could only abuse the add eax, edx instruction because any
previous instructions are not followed by a return instruction.

On a broader scale, although legitimate binaries are filled with a variety of different
instructions performing all-kinds of operations, the limitations of ROP prevent an attacker
from using most of these legitimate instructions.

Continuing the example assembly provided, the reason an attacker could not abuse the
initial imul eax, edx instruction without corrupting their output is because as soon as the
imul instruction is executed, the execution flow of the program would simply continue to the
next add eax, edx instruction.

Theory: Runtime Obfuscation

I propose a new method of abusing legitimate instructions already present in trusted code,
Exception Oriented Programming. Exception Oriented Programming is the theory of
chaining together instructions present in legitimate code and “stepping over” these
instructions one-by-one using a single step exception to simulate the execution of arbitrary
shellcode.

As a general method, the steps to performing Exception Oriented Programming given
arbitrary shellcode are:

1. Setup the environment such that the program can intercept single step exceptions.
2. Split each assembly instruction in the arbitrary shellcode into their respective

assembled bytes.
3. For each instruction, find an instance of the assembled bytes present in any legitimate

module and store the memory location of these legitimate instructions.
4. Execute any code that will cause an exception that the exception handler created in

Step 1 can intercept. This can be as simple as performing a call instruction on an int3
(0xCC) instruction.

5. In the exception handler, set the single step flag and set the instruction pointer register
to the location of the next legitimate instruction for that shellcode.

6. Repeat Step 5 until all instructions of the shellcode are executed.
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The largest benefit to this method is that Exception Oriented Programming has significantly
less requirements than Return Oriented Programming for an attacker that already has
execution capabilities.

Next, we will cover some practical implementations of this theory. Although the
implementations you will see are operating system specific, the theory itself is not restricted
to one operating system. Additionally, implementation suggestions will stick strictly to
documented methods, however it may be possible to implement the theory via
undocumented methods such as directly hooking ntdll!KiUserExceptionDispatcher.

Vectored Exception Handlers

In this section, we will explore how to use Vectored Exception Handlers (VEH) to implement
the EOP theory. Vectored Exception Handlers are an extension to Structured Exception
Handling on Windows and are not frame-based. VEH will be called for unhandled exceptions
regardless of the exception's location.

The flow for the preparation stage of this implementation is as follows:

1. The application will register a VEH via the AddVectoredExceptionHandler Windows
API.

2. The application will split each instruction of the given shellcode using any
disassembler. For the example proof-of-concept, we will use the Zydis disassembler
library.

3. For each split instruction, the application will attempt to find an instance of that
instruction present in the executable memory of any loaded modules. These memory
locations will be stored for later use by the exception handler.

4. The application will finish preparing by finding any instance of an int3 instruction (a
single 0xCC byte). This instruction will be stored for use by the exception handler and
is returned to the caller which will invoke the arbitrary shellcode.

Once the necessary memory locations have been found, the caller can invoke the arbitrary
shellcode by executing the int3 instruction that was returned to them.

1. Once the caller has invoked the int3 instruction, the exception handler will be called
with the code STATUS_BREAKPOINT. The exception handler should determine if this
exception is for executing arbitrary shellcode by comparing the exception address with
the previously stored location of the int3 instruction.

https://doar-e.github.io/blog/2013/10/12/having-a-look-at-the-windows-userkernel-exceptions-dispatcher
https://docs.microsoft.com/en-us/windows/win32/debug/vectored-exception-handling
https://github.com/zyantific/zydis
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2. If the breakpoint is indeed for the arbitrary shellcode, then the exception handler
should:

1. Retrieve the list of legitimate instructions needed to simulate the arbitrary
shellcode.

2. Store these instructions in thread-local storage.
3. Set the instruction pointer to the first legitimate instruction to execute.
4. Set the Trap flag on the FLAGS register.
5. Continue execution.

3. The rest of the instructions will cause a STATUS_SINGLE_STEP exception. In these
cases, the exception handler should:

1. Retrieve the list of legitimate instructions to execute from the thread-local storage.
2. Set the instruction pointer to the next legitimate instruction's memory location.
3. If this instruction is not the last instruction to execute, set the Trap flag on the

FLAGS register. Otherwise, do not set the Trap flag.
4. Continue execution.

Assuming the shellcode ends with a return instruction, eventually the execution flow will be
gracefully returned to the caller. A source code sample of Exception Oriented Programming
through Vectored Exception Handlers is provided in a later section.

Structured Exception Handlers

Although Vectored Exception Handlers are great, they're not exactly stealthy. For example,
an anti-virus could use user-mode hooks to detect when vectored exception handlers are
registered. Obviously there are plenty of ways to bypass such mitigations, but if there are
stealthier alternatives, why not give them a try?

One potential path I wanted to investigate for Exception Oriented Programming was using
generic Structured Exception Handling (SEH). Given that VEH itself is an extension to SEH,
why wouldn't frame-based SEH work too? Before we can dive into implementing Exception
Oriented Programming with SEH, it's important to understand how SEH works.

void my_bad_code() { 
   __try { 
       __int3; 
   } __except(EXCEPTION_EXECUTE_HANDLER) { 
    printf("Exception handler called!"); 
   } 
}

Let's say you surround some code with a try/except SEH block. When an exception occurs in
that code, how does the application know what exception handler to invoke?

https://en.wikipedia.org/wiki/Trap_flag
https://docs.microsoft.com/en-us/cpp/cpp/structured-exception-handling-c-cpp
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Exception Directory of ntdll.dll

Nowadays SEH exception handling information is compiled into the binary, specifically the
exception directory, detailing what regions of code are protected by an exception handler.
When an exception occurs, this table is enumerated during an "unwinding process", which
checks if the code that caused the exception or any of the callers on the stack have an SEH
exception handler.

An important principle of Exception Oriented Programming is that your exception handler
must be able to catch exceptions in the legitimate code that is being abused. The problem
with SEH? If a function is already protected by an SEH exception handler, then when an
exception occurs, the exception may never reach the exception handler of the caller.

This presents a challenge for Exception Oriented Programming, how do you determine
whether a given function is protected by an incompatible exception handler?

Fortunately, the mere presence of an exception handler does not mean a region of code
cannot be used. Unless the function for some reason would create a single step exception
during normal operation or the function has a "catch all" handler, we can still use code from
many functions protected by an exception handler.

To determine if a region of memory is compatible with Exception Oriented Programing:

https://billdemirkapi.me/content/images/2022/02/image.png
https://docs.microsoft.com/en-us/cpp/cpp/exceptions-and-stack-unwinding-in-cpp
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1. Determine if the region of memory is registered as protected in the module's exception
directory. This can be achieved by directly parsing the module or by using the function
RtlLookupFunctionEntry, which searches for the exception directory entry for a given
address.

2. If the region of memory is not protected by an exception handler (aka
RtlLookupFunctionEntry returns NULL), then you can use this region of memory with
no problem.

3. If the region of memory is protected by an exception handler, you must verify that the
exception handler will not corrupt the stack. During the unwinding process, functions
with an exception handler can define "unwind operations" to help clean up the stack
from changes in the function's prolog. This can in turn corrupt the call stack when an
exception is being handled.

1. To avoid this problem, check if the unwind operations contains either the
UWOP_ALLOC_LARGE operation or the UWOP_ALLOC_SMALL operation.
These were found to cause direct corruption to the call stack during testing.

Once compatible instruction locations are found within legitimate modules, how do you
actually perform the Exception Oriented Programming attack with SEH? It's surprisingly
simple.

With SEH exception handling using a try except block, you can define both an exception filter
and the handler itself. When an exception occurs in the protected try except block, the
exception filter you define determines whether or not the exception should be passed to the
handler itself. The filter is defined as a parameter to the __except block:

void my_bad_code() { 
   __try { 
       __int3; 
   } __except(MyExceptionFilter()) { 
    printf("Exception handler called!"); 
   } 
}

In the example above, the exception filter is the function MyExceptionFilter and the handler is
the code that simply prints that it was called. When registering a vectored exception handler,
the handler function must be of the prototype typedef LONG(NTAPI* ExceptionHandler_t)
(PEXCEPTION_POINTERS ExceptionInfo).

It turns out that the prototype for exception filters is actually compatible with the prototype
above. What does this mean? We can reuse the same exception handler we wrote for the
VEH implementation of Exception Oriented Programming by using it as an exception filter.

https://docs.microsoft.com/en-us/windows/win32/api/winnt/nf-winnt-rtllookupfunctionentry
https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64#struct-unwind_code
https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=msvc-170#:~:text=codes%20except%20UWOP_PUSH_MACHFRAME.-,UWOP_ALLOC_LARGE,-(1)%202%20or
https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=msvc-170#:~:text=to%204GB%20%2D%208.-,UWOP_ALLOC_SMALL,-(2)%201%20node
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void my_bad_code() { 
   __try { 
       __int3; 
   } __except(VectoredExceptionHandler(GetExceptionInformation())) { 
    printf("Exception handler called!"); 
   } 
}

In the code above, the vectored exception handler is invoked using the
GetExceptionInformation macro, which provides the function the exception information
structure it can both read and modify.

That's all that you need to do to get Exception Oriented Programming working with standard
SEH! Besides ensuring that the instruction locations found are compatible, the vectored
exception handler is directly compatible when used as an exception filter.

Why is standard SEH significantly better than using VEH for Exception Oriented
Programming? SEH is built into the binary itself and is used legitimately everywhere. Unlike
vectored exception handling, there is no global function to register your handler.

From the perspective of static detection, there are practically no indicators that a given SEH
handler is used for Exception Oriented Programming. Although dynamic detection may be
possible, it is significantly harder to implement compared to if you were using Vectored
Exception Handlers.

Bypassing the macOS Hardened Runtime

Up to this point, the examples around abuse of the method have been largely around the
Windows operating system. In this section, we will discuss how we can abuse Exception
Oriented Programming to bypass security mitigations on macOS, specifically parts of the
Hardened Runtime.

The macOS Hardened Runtime is intended to provide "runtime integrity of your software by
preventing certain classes of exploits, like code injection, dynamically linked library (DLL)
hijacking, and process memory space tampering".

One security mitigation imposed by the Hardened Runtime is the restriction of just-in-time
(JIT) compilation. For app developers, these restrictions can be bypassed by adding
entitlements to disable certain protections.

The com.apple.security.cs.allow-jit entitlement allows an application to allocate
writable/executable (WX) pages by using the MAP_JIT flag. A second alternative, the
com.apple.security.cs.allow-unsigned-executable-memory entitlement, allows the

https://docs.microsoft.com/en-us/windows/win32/debug/getexceptioninformation
https://developer.apple.com/documentation/security/hardened_runtime
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application to allocate WX pages without the need of the MAP_JIT flag. With Exception
Oriented Programming however, an attacker can execute just-in-time shellcode without
needing any entitlements.

The flow for the preparation stage of this implementation is as follows:

1. The application will register a SIGTRAP signal handler using sigaction and the
SA_SIGINFO flag.

2. The application will split each instruction of the given shellcode using any
disassembler. For the example proof-of-concept, we will use the Zydis disassembler
library.

3. For each split instruction, the application will attempt to find an instance of that
instruction present in the executable memory of any loaded modules. Executable
memory regions can be recursively enumerated using the mach_vm_region_recurse
function. These memory locations will be stored for later use by the signal handler.

4. The application will finish preparing by finding any instance of an int3 instruction (a
single 0xCC byte). This instruction will be stored for use by the signal handler and is
returned to the caller which will invoke the arbitrary shellcode.

Once the necessary memory locations have been found, the caller can invoke the arbitrary
shellcode by executing the int3 instruction that was returned to them.

1. Once the caller has invoked the int3 instruction, the signal handler will be called. The
signal handler should determine if this exception is for executing arbitrary shellcode by
comparing the fault address - 1 with the previously stored location of the int3
instruction. One must be subtracted from the fault address because in the SIGTRAP
signal handler, the fault address points to the instruction pointer whereas we need the
instruction that caused the exception.

2. If the breakpoint is indeed for the arbitrary shellcode, then the signal handler should:
1. Retrieve the list of legitimate instructions needed to simulate the arbitrary

shellcode.
2. Store these instructions in thread-local storage.
3. Set the instruction pointer to the first legitimate instruction to execute.
4. Set the Trap flag on the FLAGS register.
5. Continue execution.

https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man2/sigaction.2.html
https://developer.apple.com/documentation/kernel/1402114-mach_vm_region_recurse
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3. The rest of the instructions will call the signal handler, however, unlike Vectored
Exception handlers, there is no error code passed differentiating a breakpoint and a
single step exception. The signal handler can determine if the exception is for a
legitimate instruction being executed by checking its thread-local storage for the
previously set context. In these cases, the signal handler should:

1. Retrieve the list of legitimate instructions to execute from the thread-local storage.
2. Set the instruction pointer to the next legitimate instruction's memory location.
3. If this instruction is not the last instruction to execute, set the Trap flag on the

FLAGS register. Otherwise, do not set the Trap flag.
4. Continue execution.

Assuming the shellcode ends with a return instruction, eventually the execution flow will be
gracefully returned to the caller.

Exception Oriented Programming highlights a fundamental design flaw with the JIT
restrictions present in the Hardened Runtime. The JIT mitigation assumes that to execute
code "just-in-time", an attacker must have access to a WX page. In reality, an attacker can
abuse a large amount of the instructions already present in legitimate modules to execute
their own malicious shellcode.

Proof of Concept

Both the Windows and macOS proof-of-concept utilities can be accessed at this repository.

Conclusion

As seen with the new methodology in this article, code execution can be achieved without
the need of dedicated memory for that code. When considering future research into runtime
code execution, it is more effective to look at execution from a high-level perspective, an
objective of executing the operations in a piece of code, instead of focusing on the
requirements of existing methodology.

In part 2 of this series, we will explore how Exception Oriented Programming expands the
possibilities for buffer overflow exploitation on Windows. We'll explore how to evade
Microsoft's ROP mitigations such as security cookies and SafeSEH for gaining code
execution from common vulnerabilities. Make sure to follow my Twitter to be amongst the
first to know when this article has been published!

Parallel Discovery

Recently, another researcher (@x86matthew) published an article describing a similar idea
to Exception Oriented Programming, implemented using vectored exception handlers for
x86.

https://github.com/D4stiny/ExceptionOrientedProgramming
https://twitter.com/BillDemirkapi
https://twitter.com/x86matthew
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Whenever my research leads me to some new methodology I consider innovative, one
practice I take is to publish a SHA256 hash of the idea, such that in the future, I can prove
that I discovered a certain idea at a certain point in time. Fortunately, I followed this practice
for Exception Oriented Programming.

On February 3rd, 2021, I created a public gist of the follow SHA256 hash:

5169c2b0b13a9b713b3d388e61eb007672e2377afd53720a61231491a4b627f7

To prove that this hash is a representation of a message summarizing Exception Oriented
Programming, here is the message you can take a SHA256 hash of and compare to the
published one above.

Instead of allocating executable memory to execute shellcode, split the shellcode into
individual instructions, find modules in memory that have the instruction bytes in an
executable section, then single step over those instructions (changing the RIP to the
next instruction and so on).

Since the core idea was published by Matthew, I wanted to share my additional research in
this article around stealthier SEH exception handlers and how the impact is not only limited
to Windows. In a future article, I plan on sharing my additional research on how this
methodology can be applied on previously unexploitable buffer overflow vulnerabilities on
Windows.

 
 

https://gist.github.com/D4stiny/f339cbac4a9f8f2eeec63778bf546f28

