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Introduction

With fileless malware becoming a ubiquitous feature of most modern Red Teams, knowledge
in the domain of memory stealth and detection is becoming an increasingly valuable skill to
add to both an attacker and defender’s arsenal. I’ve written this text with the intention of
further improving the skill of the reader as relating to the topic of memory stealth on Windows
both when designing and defending against such malware. First by introducing my pseudo-
malicious memory artifacts kit tool (open source on Github here), second by using this tool to
investigate the weak points of several defensive memory scanners, and finally by exploring
what I deem to be the most valuable stealth techniques and concepts from an attack
perspective based on the results of this investigation.

 

This is the third in a series of posts on malware forensics and bypassing defensive scanners.
It was written with the assumption that the reader understands the basics of Windows
internals, memory scanners and malware design.

https://www.forrest-orr.net/post/masking-malicious-memory-artifacts-part-iii-bypassing-defensive-scanners
https://github.com/forrest-orr/artifacts-kit
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Corpus

In order to accurately measure the efficacy of the scanners discussed in this text I’ve
constructed a modular pseudo-malware artifact generator program which I refer to
throughout this text as my artifact kit. It generates a myriad of dynamic shellcode and PE
implants in memory, covering all of the most common and effective fileless memory
residence techniques used by real malware in the wild. In this sense, while the actual
shellcode or PE implant itself may not match that of a real malware sample the attributes of
the memory which encapsulates it are intended to mimic the attributes of every real malware
which can or does already exist, whether they be performing process injections, process
hollowing or self-unpacking.

 

Similar to the modular/dynamic method of generating custom process injections by mixing
and matching allocation methods, copy methods and execution methods implemented by
FuzzySec and integrated into SharpSploit, the artifact kit in this text mixes and matches
different memory allocation, code implant and stealth techniques to mimic the dynamic
code operations made in fileless malware.

 

The memory allocation types handled in this corpus are as follows:

Mapped image hollowing - a DLL of sufficient size to accommodate the payload code is
used to create an image section via NTDLL.DLL!NtCreateSection with SEC_IMAGE, a
view of which is then mapped into the target process using
NTDLL.DLL!NtMapViewOfSection. In the part one of this series this is referred to as
DLL hollowing.

Mapped TxF image hollowing - a transacted file handle is opened to a DLL and used to
create a phantom image section from it with NTDLL.DLL!NtCreateSection with
SEC_IMAGE and which is then mapped into the target process using
NTDLL.DLL!NtMapViewOfSection. In the part one of this series this is referred to as
phantom DLL hollowing.

Loaded image hollowing - a DLL is loaded normally using NTDLL.DLL!LdrLoadDll.

Private memory - allocated using NTDLL.DLL!NtAllocateVirtualMemory

https://github.com/FuzzySecurity/BlueHatIL-2020
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwcreatesection
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwmapviewofsection
https://www.forrest-orr.net/post/malicious-memory-artifacts-part-i-dll-hollowing
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwcreatesection
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwmapviewofsection
https://www.forrest-orr.net/post/malicious-memory-artifacts-part-i-dll-hollowing
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FExecutable%20Images%2FLdrLoadDll.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntallocatevirtualmemory
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Mapped memory - allocated by mapping a view of a section created from the page file
using NTDLL.DLLNtCreateSection.

 

Each of these allocation types can be used with either a shellcode or PE payload as their
implant type. In cases where a variation of DLL hollowing is used as the allocation type in
conjunction with shellcode, an appropriate implant offset within the .text section which does
not conflict with relocations or data directories will be chosen for it.

Figure 1. A hollowed Kernel32.dll image with a malicious shellcode implanted in its code
section

 

In all allocation types where a PE payload is used, the PE will be directly written to the base
of the region and bootstrapped (relocations applied, IAT resolved, etc).

 

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwcreatesection
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Figure 2. A hollowed Kernel32.dll image overwritten with a malicious PE implant

 

In conjunction with all of these different allocation and payload types, one or more stealth
techniques can optionally be applied:

Header wiping - in the event a PE payload is used, its header will be overwritten with
0’s.

Figure 3. A malicious PE implant stored in private memory which has had its headers wiped

Header mirroring - in the event a PE payload is used in conjunction with a variation of
DLL hollowing, the header of the original DLL file underlying the hollowed section will
be preserved.
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Figure 4. A hollowed Kernel32.dll image has had its original headers preserved

RW -> RX - In the event that private or mapped allocation is used, it will initially be
allocated as +RW permissions (+RWX is the default) and then modified to +RX after
the implant has been written using NTDLL.DLL!NtProtectVirtualMemory

Dotnet - In the event that a variation of DLL hollowing is selected as the allocation type,
only PE DLLs with a .NET data directory will be selected.

Moating - allocated memory, regardless of its type, will require additional memory equal
to the size of the “moat” (default of 1MB). When the implant is written to the new
region, it will be written at an offset equal to the size of the moat, the data prior to which
will be junk.

http://www.codewarrior.cn/ntdoc/winnt/mm/NtProtectVirtualMemory.htm
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Figure 5. A malicious PE implant has been placed at an offset one megabyte deep into an
allocated region of private +RWX memory

 

Finally, the artifact kit allows the user to specify an execution method. This is the method by
which execution control is passed to the payload after its container region has been created,
its implant is finished and its obfuscations are finalized. This may be either:

1. A new thread by use of the KERNEL32.DLL!CreateThread API

2. A JMP hook placed on the entry point of the primary EXE module (which is called by
the artifact kit to simulate the type of hook often used in process hollowing)

3. A direct assembly CALL instruction. This distinction of execution method has great
significance, as the starting point of a thread and modification of existing image
memory are some of the many artifacts a scanner may leverage to form an IOC, as we
will explore later.

 

An example of the practical usage of the artifact kit is as follows: we would like to mimic the
memory artifacts generated by the loader of the Orisis malware family. I suggest reading this
analysis of the Osiris loader prior to reading the remainder of this section. This loader begins
by using the Lagos Island method in order to bypass hooks on ntdll.dll. We can artificially
generate an identical artifact using the artifact kit:

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread
https://blog.malwarebytes.com/threat-analysis/2018/08/process-doppelganging-meets-process-hollowing_osiris/
https://blog.malwarebytes.com/threat-analysis/2018/08/process-doppelganging-meets-process-hollowing_osiris/
https://www.first.org/resources/papers/telaviv2019/Ensilo-Omri-Misgav-Udi-Yavo-Analyzing-Malware-Evasion-Trend-Bypassing-User-Mode-Hooks.pdf
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Figure 6. Artifact kit mimicking Lagos Island technique by mapping ntdll.dll using its hollowing
feature without writing an implant to it

 

Using my tool Moneta (explored in detail in part two of this series) the memory of the artifact
process is enumerated and the authentic/original ntdll.dll loaded via static imports at process
startup can be seen at 0x00007FFEF4F60000 without IOCs:

Figure 7. Moneta enumerating the memory within the artifact process - the real ntdll.dll

 

Examining the memory scan output in further detail, a second ntdll.dll can be seen at
0x000001A30E010000. Notably, this ntdll.dll shows a missing PEB module IOC. This is
because the Lagos Island method (as well as the hollower in the artifact kit) use
NTDLL.DLL!NtCreateSection and NTDLL.DLL!NtMapViewOfSection rather than
NTDLL.DLL!LdrLoadDll. This results in an image backed by the authentic ntdll.dll on disk
being created in memory, but no corresponding entry for it being created in the PEB loaded

https://github.com/forrest-orr/moneta
https://www.forrest-orr.net/post/masking-malicious-memory-artifacts-part-ii-insights-from-moneta
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwcreatesection
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwmapviewofsection
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FExecutable%20Images%2FLdrLoadDll.html
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modules list. This is an abnormality unique to Lagos Island, DLL hollowing and some
usermode Rootkits which intentionally unlink themselves from the PEB to bypass scanners
which rely on this list for their usermode process enumeration.

Figure 8. Moneta enumerating the memory within the artifact process - the orphaned clone of
ntdll.dll

 

Using the hook-free Lagos Island ntdll.dll clone Osiris then activates its process hollowing
routine which launches a signed wermgr.exe in suspended mode. Next, it creates a file in
%TEMP% which holds its payload code using TxF (which prevents it from being scanned by
AV when written to disk). A section is generated from the TxF handle to this file, and a view
of this section is mapped into the suspended wermgr.exe process. The image base in the
PEB of wermgr.exe is redirected to this new image memory region, and a JMP is written to
the entry point of the original wermgr.exe image in memory to achieve code execution rather
than using KERNEL32.DLL!SetThreadContext (typically the preferred method in process
hollowing). Simply resuming the suspended wermgr.exe process causes the malicious
payload to be executed.

 

In order to generate artifacts which will mimic this loader behavior and simulate the IOC
contents of wermgr.exe, the artifact kit can be used to execute a PE payload using TxF
image map hollowing as its allocation method, while using a JMP from the process entry
point as its execution method.

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreadcontext
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Figure 9. Artifact kit mimicking Osiris process hollowing via phantom DLL hollowing

 

Scanning the artifact process using Moneta, the suspicious Osiris artifacts become easily
distinguished from legitimate memory:

Figure 10. Moneta enumerating the artifact memory within the artifact process - phantom
DLL hollowing in conjunction with an inline hook

 

The first of the two IOCs above (enumerated in the first highlighted region) are a result of the
technique that Osiris uses to do its hollowing. Due to the module containing the malicious
code being mapped into the target process using TxF, its file object is non-queryable from
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the context of an external process, leading Moneta to classify it as a phantom module and
marking it as an IOC. Secondly, due to this phantom module being manually mapped via
NTDLL.DLL!NtMapViewOfSection rather than legitimately using NTDLL.DLL!LdrLoadDll, it
has not been added to the loaded modules list in the PEB, leading to an IOC stemming from
the lack of a PEB module corresponding to the base address of 0x00007FF702DB0000
associated with the mapped image region.

 

The third and final IOC (enumerated in the second highlighted region in Figure 10)
corresponds to the .text section of the primary EXE module of the artifact process (in this
case ArtifactKit64.exe itself) at 0x00007FF7D3EA1000. In the final column to the right hand
side of the highlighted region the value of 0x1000 is displayed alongside the +RX region in
.text. This is a measure of the number of private bytes in the working set associated with the
memory region. For any +RX region (including the .text section) this value should always be
0, since the memory was not intended to be writable and should contain only static (as
opposed to dynamic) code. I suggest reading part one of this series for a more in-depth
explanation of this phenomenon. The fact that this region has private bytes associated with it
comes as a result of the inline hook written to the entry point within the .text section by the
artifact kit. This hook triggers a modified code IOC in imitation of the artifacts which would
result from a process hollowing operation of the Osiris loader.

 

The example provided above illustrates how the artifacts kit is able to mimic the memory
footprint of real malware. In order to conduct the research described throughout the
remainder of this text, the artifacts kit was used to generate every possible combination of
memory allocation, obfuscation and implant types together with one another. The
resulting artifacts were scanned with a series of defensive memory scanners to determine
their visibility. The remainder of this text will focus on the insights gained from these scans
and their wider implications when designing malware.

 

Malfind

The Volatility framework serves as the backbone for many of the popular malware memory
forensic scanners in use today. It makes use of a kernel mode driver in order to directly query
usermode memory, primarily relying upon VADs for its analysis. Best known among these
memory scanner plugins is Malfind, a plugin which exists both in the classic Volatility
framework as well as Rekall (a similar project which began as a fork of Volatility).

 

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwmapviewofsection
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FExecutable%20Images%2FLdrLoadDll.html
https://docs.microsoft.com/en-us/windows/win32/memory/working-set
https://www.forrest-orr.net/post/malicious-memory-artifacts-part-i-dll-hollowing
https://github.com/volatilityfoundation/volatility
https://github.com/google/rekall/blob/0cba8311d448ddd0046d21f9c17f74a2295c4098/rekall-core/rekall/plugins/windows/malware/malfind.py
http://www.rekall-forensic.com/
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For a set of initial tests, I used the artifact kit to generate six variations of empty memory
allocations without malicious implants to understand on a basic level which types of
allocations Malfind considers suspicious.

Figure 11. Malfind detection results for blank artifact kit allocation types

 

These results are somewhat surprising in that they illustrate a lack of detection for what
would commonly be considered the most suspicious type of memory allocation, private
+RWX regions. In contrast, a PAGE_EXECUTE_WRITECOPY allocation (Malfind doesn’t
differentiate between this and +RWX) of image memory corresponding to a DLL which has
been manually mapped rather than loaded via NTDLL.DLL!LdrLoadDll is detected. An
explanation for why private +RWX is not detected in this case can be seen in Figure 12
below.

 

def _is_vad_empty(self, vad, address_space):

"""

Check if a VAD region is either entirely unavailable

due to paging, entirely consiting of zeros, or a

combination of the two. This helps ignore false positives

whose VAD flags match task._injection_filter requirements

but there's no data and thus not worth reporting it.

 

@param vad: an MMVAD object in kernel AS

@param address_space: the process address space

"""

https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FExecutable%20Images%2FLdrLoadDll.html
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PAGE_SIZE = 0x1000

all_zero_page = "\x00" * PAGE_SIZE

 

offset = 0

while offset < vad.Length:

next_addr = vad.Start + offset

if (address_space.is_valid_address(next_addr) and

address_space.read(next_addr, PAGE_SIZE) != all_zero_page):

return False

offset += PAGE_SIZE

 

return True

 

Figure 12. Blank VAD filter logic within Malfind source code

 

This subroutine (as clearly stated in the highlighted region) is used to filter false positives by
eliminating any region of memory filled only with 0’s from the results of a malware scan. In
our case, the private and mapped +RWX regions allocated by the artifact kit will fall into this
category and will thus be eliminated.

 

An explanation of the second notable result from Figure 11 (the detection of unmodified
manually mapped image regions) can be seen in Figure 13 below.

 

for task in self.filter_processes():

# Build a dictionary for all three PEB lists where the
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# keys are base address and module objects are the values

inloadorder = dict((mod.DllBase.v(), mod)

for mod in task.get_load_modules())

 

ininitorder = dict((mod.DllBase.v(), mod)

for mod in task.get_init_modules())

 

inmemorder = dict((mod.DllBase.v(), mod)

for mod in task.get_mem_modules())

 

# Build a similar dictionary for the mapped files

mapped_files = dict((vad.Start, name)

for vad, name in self.list_mapped_files(task))

 

yield dict(divider=task)

 

# For each base address with a mapped file, print info on

# the other PEB lists to spot discrepancies.

for base in list(mapped_files.keys()):

yield dict(_EPROCESS=task,

base=base,

in_load=base in inloadorder,

in_load_path=inloadorder.get(

base, obj.NoneObject()).FullDllName,

in_init=base in ininitorder,
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in_init_path=ininitorder.get(

base, obj.NoneObject()).FullDllName,

in_mem=base in inmemorder,

in_mem_path=inmemorder.get(

base, obj.NoneObject()).FullDllName,

mapped=mapped_files[base])

 

Figure 13. PEB modules list and mapped files being check for discrepancies in Malfind

 

Malfind is generating dictionaries of all three of the linked lists stored in the PEB which
provide lists (in different orders) of the loaded modules in the process and cross-referencing
their base addresses with the base addresses of “mapped files.” Digging deeper into the
list_mapped_files routine called in the highlighted region, the logic being used for detection
becomes more evident:

 

def list_mapped_files(self, task):

"""Iterates over all vads and returns executable regions.

 

Yields:

vad objects which are both executable and have a file name.

"""

self.session.report_progress("Inspecting Pid %s",

task.UniqueProcessId)

 

for vad in task.RealVadRoot.traverse():

try:
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file_obj = vad.ControlArea.FilePointer

protect = str(vad.u.VadFlags.ProtectionEnum)

if "EXECUTE" in protect and "WRITE" in protect:

yield vad, file_obj.file_name_with_drive()

except AttributeError:

pass

 

Figure 14. Executable file mapping enumeration in Malfind

 

The list_mapped_files function shown in Figure 14 is looping through all of the regions of
committed memory within the process (by allocation base via VAD) and checking to see
whether or not they are derived from section objects which are +RWX and tied to valid file
paths corresponding to a mounted filesystem. Notably, Malfind is not checking whether the
memory is of a mapped or image type, only that it has a file underlying it on disk and that it is
+RWX. This has the unintended side-effect of allowing an attacker to bypass this routine by
using the page file as their underlying file object when allocating memory of the
MEM_MAPPED type.

 

With this logic in mind, it is clear why our unmapped DLL image triggered a detection despite
not containing any malicious code: it has no corresponding entry in the PEB loaded modules
list. Therefore, a bypass to this detection would be to use NTDLL.DLL!LdrLoadDll to
generate image memory for DLL hollowing, rather than NTDLL.DLL!NtCreateSection and
NTDLL.DLL!NtMapViewOfSection.

 

With a solid understanding of why Malfind produced the detections that it did for regions of
blank memory, I next tested it against a total of eighteen different sets of artifacts wherein
each allocation type was paired with each relevant stealth technique while using a PE as
my implant payload:

https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FExecutable%20Images%2FLdrLoadDll.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtCreateSection.html
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FSection%2FNtMapViewOfSection.html
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Figure 15. Malfind results from scans of PE implant artifacts

 

The results shown in Figure 15 above illustrate a lack of detection for all of the tested artifact
variations with the exception of those relying upon image memory derived from manually
mapped DLLs (which as discussed previously is due to their lack of an entry in the PEB
loaded modules list). This is consistent with the results of the blank allocation scans shown in
Figure 11, however it should be noted that the reason the private and mapped implants have
not been detected is that they were initially allocated as +RW and later changed to +RX
rather than being allocated as +RWX. This same two-stage permission modification process
is repeated for all tests relating to private and mapped memory throughout this text unless
specified otherwise.

 

In order to gain a better visibility into the detection logic behind the private and mapped
regions in these tests, I made a second series of twelve tests utilizing only private/mapped
memory, this time where each variation was repeated twice: once with the +RW -> +RX
permission modification trick, and once with +RWX. The results were unsurprising:

Figure 16. In-depth private memory artifact results from Malfind

 

It seems that no matter what stealth (if any) is used within a private +RX region, it will never
be detected by Malfind, while in contrast all variations of private +RWX memory containing
PE implants will be detected by Malfind regardless of the stealth method chosen to hide
them. The reason for this is illustrated in the snippet of Malfind source code seen in Figure
17 below.

 

def _injection_filter(self, vad, task_as):

"""Detects injected vad regions.
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This looks for private allocations that are committed,

memory-resident, non-empty (not all zeros) and with an

original protection that includes write and execute.

 

It is important to note that protections are applied at

the allocation granularity (page level). Thus the original

protection might not be the current protection, and it

also might not apply to all pages in the VAD range.

 

@param vad: an MMVAD object.

 

@returns: True if the MMVAD looks like it might

contain injected code.

"""

# Try to find injections.

protect = str(vad.u.VadFlags.ProtectionEnum)

write_exec = "EXECUTE" in protect and "WRITE" in protect

 

# The Write/Execute check applies to everything

if not write_exec:

return False

 

# This is a typical VirtualAlloc'd injection

if ((vad.u.VadFlags.PrivateMemory == 1 and
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vad.Tag == "VadS") or

 

# This is a stuxnet-style injection

(vad.u.VadFlags.PrivateMemory == 0 and

protect != "EXECUTE_WRITECOPY")):

return not self._is_vad_empty(vad, task_as)

 

return False

 

Figure 17. +RWX memory detection in Malfind

 

Interestingly, on the first highlighted region Malfind is excluding any memory which is not
both writable and executable from its results. Notably, because Malfind is using VADs for this
filter condition, the permissions it is checking will always represent the initial allocation
protections of a memory region, not necessarily their current protections (which are stored in
the PTE for the underlying page, not the VAD). This means that an attacker could allocate a
region with an initial protection of +RW, write their payload to it, and then change it to +RWX
without ever triggering a Malfind detection even though Malfind is explicitly searching for
+RWX regions. Furthermore, it explains why the RW -> RX trick used by the artifact kit
bypassed all of the detections in Figure 16.

 

As a final set of tests, ten variations of shellcode implants were generated using the artifact
kit:

Figure 18. Malfind results from scans of shellcode implant artifacts
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These results are consistent with our previous findings in Malfind: its most robust detection
capability involves finding image memory corresponding to files on disks which have no
entries in the PEB loaded modules list. Whether a shellcode or PE is used for an implant
appears to have no impact on its detection capabilities based on the logic observed within
the Rekall variation of the plugin. The Malfind plugin within the traditional Volatility framework
shares these same characteristics in common with the Rekall variation, but contains some
additional filter capabilities designed to reduce false positives by attempting to classify the
contents of a +RWX memory region as either a PE file or assembly byte code based on its
prefix bytes.

 

refined_criteria = ["MZ", "\x55\x8B"]

 

for task in data:

for vad, address_space in task.get_vads(vad_filter = task._injection_filter):

 

if self._is_vad_empty(vad, address_space):

continue

 

content = address_space.zread(vad.Start, 64)

 

if self._config.REFINED and content[0:2] not in refined_criteria:

continue

 

outfd.write("Process: {0} Pid: {1} Address: {2:#x}\n".format(

task.ImageFileName, task.UniqueProcessId, vad.Start))

 

outfd.write("Vad Tag: {0} Protection: {1}\n".format(

https://github.com/volatilityfoundation/volatility/blob/2e48f2dc07988c84023022006ac39ba4a17a8aee/volatility/plugins/malware/malfind.py
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vad.Tag, vadinfo.PROTECT_FLAGS.get(vad.VadFlags.Protection.v(), "")))

 

outfd.write("Flags: {0}\n".format(str(vad.VadFlags)))

outfd.write("\n")

 

# this is for address reporting in the output

data_start = vad.Start

 

# all zeros in the first page followed by 558B at the base of

# the second page is an indicator of wiped PE headers

if content.count(chr(0)) == len(content):

if address_space.zread(vad.Start, 0x1000).count(chr(0)) == 0x1000:

next_page = address_space.zread(vad.Start + 0x1000, 64)

if next_page[0:2] == "\x55\x8B":

outfd.write("**** POSSIBLE WIPED PE HEADER AT BASE *****\n\n")

content = next_page

data_start = vad.Start + 0x1000

 

Figure 19. Volatility Malfind plugin filtering unknown +RWX regions by their first two bytes

 

In Figure 19 above, Malfind is using a more refined filter algorithm. As discussed in thorough
detail in part two of this series, there are many +RWX regions of private and mapped
memory allocated by the Windows OS itself. This results in a significant false positive issue
for memory scanners, and in the source code above Malfind attempts to address this issue
by attempting to determine whether or not one such +RWX region contains either a
shellcode or PE file based on its first two prefix bytes. In the third highlighted region, it also
attempts to detect header wiping by skipping ahead 0x1000 bytes into a +RWX region which

https://www.forrest-orr.net/post/masking-malicious-memory-artifacts-part-ii-insights-from-moneta
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contains no MZ PE header, and attempting to identify code at this offset (which would
typically correspond to the .text section in an average PE). This is a clever trick Malfind uses
to achieve an outcome of filtering false positives while detecting malicious implants
simultaneously, even when the malware writer was prudent enough to wipe their PE implant
headers.

 

Hollowfind

While Malfind serves a practical role as a generic malicious memory scanner, it lacks
specialization into any particular type of fileless tradecraft. In particular, it contains a
significant weakness in the area of process hollowing. An alternative memory scanner,
specialized into the area of process hollowing is Hollowfind. This scanner, like Malfind, is
designed as a plugin for the Volatility framework and relies primarily upon VADs and other
kernel objects in order to make its detections.

 

I began my tests by generating a series of empty executable memory regions and having
them scanned:

Figure 20. Hollowfind is used to scan a series of blank allocations made by the artifact kit

 

In contrast to Malfind, Hollowfind flags both private and mapped +RWX regions as malicious
even when they are empty. Similar to Malfind, the RW -> RX permission trick bypasses the
generic suspicious memory region detection for MEM_PRIVATE and MEM_MAPPED regions
in Hollowfind:

 

outfd.write("Suspicious Memory Regions:\n")

for vad, addr_space in proc.get_vads():

content = addr_space.read(vad.Start, 64)

https://cysinfo.com/hollowfind/
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if content == None:

continue

vad_prot = str(vadinfo.PROTECT_FLAGS.get(vad.VadFlags.Protection.v()))

if obj.Object("_IMAGE_DOS_HEADER", offset = vad.Start, vm = addr_space).e_magic !=
0x5A4D:

flag = "No PE/Possibly Code"

if (vad_prot == "PAGE_EXECUTE_READWRITE"):

sus_addr = vad.Start

 

Figure 21. The generic non-hollowing detection in the Hollowfind source code

 

The source code shown in Figure 21 is part of Hollowfind’s generic (not process hollowing
specific) detection logic. In the event of a +RWX region of memory (whether it be private,
mapped or image) which does not contain an MZ header, a detection will always be
generated. This explains why both +RWX private/mapped regions were detected in Figure
20 despite not containing any data. It also explains why the manually mapped DLLs were not
detected, since technically these regions are PAGE_EXECUTE_WRITECOPY rather than
+RWX and also begin with MZ headers.

 

Next, the artifact kit was used to generate eighteen additional variations of PE implants using
different combinations of allocation types and stealth techniques.

Figure 22. Hollowfind scanner results when applied to PE implants generated by the artifact
kit
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These results highlight a very interesting trend: there are no detections on any of the
private/mapped regions (for reasons shown in Figure 21) however DLL hollowing in
conjunction with header wiping is detected. Notably, normal DLL hollowing is not detected.
So why would DLL hollowing be detected while using a stealth technique, while the lack of
the said stealth technique provides the opposite result?

 

if obj.Object("_IMAGE_DOS_HEADER", offset = vad.Start, vm = addr_space).e_magic !=
0x5A4D:

flag = "No PE/Possibly Code"

if (vad_prot == "PAGE_EXECUTE_READWRITE"):

sus_addr = vad.Start

outfd.write("\t{0:#x}({1}) Protection: {2} Tag: {3}\n".format(vad.Start,

flag,

vad_prot,

str(vad.Tag or "")))

if self._config.DUMP_DIR:

filename = os.path.join(self._config.DUMP_DIR,"process.{0}.{1:#x}.dmp".format(hol_pid,
sus_addr))

self.dump_vad(filename, vad, addr_space)

elif (vad_prot == "PAGE_EXECUTE_WRITECOPY"):

sus_addr = vad.Start

 

Figure 23. Hollowfind source code for headerless image memory detection

 

In Figure 23 above, the generic (non-hollowing) suspicious memory region detection routine
is revisited. In the first highlighted region, regions without MZ headers (PE files) are filtered
out. However, in the second highlighted region, an initial allocation permission of
PAGE_EXECUTE_WRITECOPY is used as an IOC and criteria for the detections we
observed in Figure 22. PAGE_EXECUTE_WRITECOPY is an initial allocation permission
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which is unique to regions of image memory. This means that in theory there should never
be a region with PAGE_EXECUTE_WRITECOPY permissions which does not begin with an
MZ header. It is this logic which is allowing Hollowfind to detect our DLL hollowing in
conjunction with header wiping.

 

As a final set of tests, ten variations of shellcode implant were generated by the artifact kit
and scanned with Hollowfind:

Figure 24. Hollowfind scan results for shellcode implant artifact variations

 

The complete lack of detections for shellcode implants seen in Figure 24 is consistent with
Hollowfind’s stated objective of detecting process hollowing (which typically utilizes PE
implants), however there are variations of process hollowing which utilize shellcode that
Hollowfind will miss based on these results. Notably, shellcode stored within +RWX regions
of mapped or private memory will be detected by Hollowfind, however due to the use of the
RW -> RX permission trick by the artifact kit, no such detection is triggered.

 

Pe-sieve

Pe-sieve is a runtime usermode memory scanner designed to identify and dump suspicious
memory regions based on malware IOCs. Similar to Moneta, it relies on usermode APIs such
as NTDLL.DLL!NtQueryVirtualMemory in order to do this rather than kernel mode objects
such as VADs. In contrast to Moneta, it uses a variety of data analysis tricks to refine its
detection criteria rather than relying exclusively upon memory attributes alone. I began my
tests by scanning a series of blank dynamic code regions using the artifact kit:

 

https://github.com/hasherezade/pe-sieve
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntqueryvirtualmemory
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Figure 25. Pe-sieve is used to scan a series of blank allocations made by the artifact kit

 

These results are as close to a “perfect” defensive outcome that could be expected. None of
these dynamic code allocations are inherently suspicious in of themselves (although as
shown previously some scanners will mark private/mapped +RWX as suspicious regardless
of its contents) with the exception of the phantom DLL load via a transacted section handle.
Pe-sieve classified this region as an implant as shown in the JSON results below:

 

{

"pid" : 9052,

"is_64_bit" : 0,

"is_managed" : 0,

"main_image_path" :
"C:\\Users\\Forrest\\Documents\\GitHub\\ArtifactsKit\\ArtifactsKit\\Release\\ArtifactsKit32.exe",

"scanned" :

{

"total" : 15,

"skipped" : 0,

"modified" :

{
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"total" : 1,

"patched" : 0,

"iat_hooked" : 0,

"replaced" : 0,

"hdr_modified" : 0,

"implanted_pe" : 1,

"implanted_shc" : 0,

"unreachable_file" : 0,

"other" : 0

},

"errors" : 0

}

 

Figure 26. Pe-sieve scan results for blank phantom DLL region

 

An explanation of the logic behind this detection can be found across several functions within
pe-sieve’s code base. The region in question has failed the check made by isRealMapping,
a method relying upon loadMappedName which in turn utilizes the
PSAPI.DLL!GetMappedFileNameA API.

 

bool pesieve::MemPageData::loadMappedName()

{

if (!isInfoFilled() && !fillInfo()) {

return false;

}

https://docs.microsoft.com/en-us/windows/win32/api/psapi/nf-psapi-getmappedfilenamea
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std::string mapped_filename = RemoteModuleData::getMappedName(this->processHandle,
(HMODULE)this->alloc_base);

if (mapped_filename.length() == 0) {

#ifdef _DEBUG

std::cerr << "Could not retrieve name" << std::endl;

#endif

return false;

}

this->mapped_name = mapped_filename;

return true;

}

 

bool pesieve::MemPageData::isRealMapping()

{

if (this->loadedData == nullptr && !fillInfo()) {

#ifdef _DEBUG

std::cerr << "Not loaded!" << std::endl;

#endif

return false;

}

if (!loadMappedName()) {

#ifdef _DEBUG

std::cerr << "Could not retrieve name" << std::endl;

#endif

return false;

https://www.forrest-orr.net/blog/hashtags/ifdef
https://www.forrest-orr.net/blog/hashtags/endif
https://www.forrest-orr.net/blog/hashtags/ifdef
https://www.forrest-orr.net/blog/hashtags/endif
https://www.forrest-orr.net/blog/hashtags/ifdef
https://www.forrest-orr.net/blog/hashtags/endif
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}

 

...

}

 

std::string pesieve::RemoteModuleData::getMappedName(HANDLE processHandle,
LPVOID modBaseAddr)

{

char filename[MAX_PATH] = { 0 };

if (!GetMappedFileNameA(processHandle, modBaseAddr, filename, MAX_PATH) != 0) {

return "";

}

std::string expanded = pesieve::util::expand_path(filename);

if (expanded.length() == 0) {

return filename;

}

return expanded;

}

 

Figure 27. Pe-sieve phantom image region detection

 

This is the same strategy I utilized in my own scanner Moneta to catch phantom DLL
hollowing. It works by anticipating a failure to query the FILE_OBJECT underlying a region of
image memory: a side-effect of the isolation intrinsic to transacted file handles, which in turn
underlie the image sections themselves.
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Notably, the fact that pe-sieve does not mark unmodified manual image section mappings as
malicious demonstrates a high level of sophistication in regards to false positives. As was
discussed in part two of this series, there are many existing phenomena in Windows which
result in image mappings with no corresponding PEB loaded modules list entry, such as
metadata files.

 

Next, PE implants (pe-sieve’s strongest area) were scanned using every available
permutation of allocation type and stealth technique in the artifacts kit for a total of
eighteen variations:

Figure 28. Pe-sieve scan results for PE artifacts

 

Again these results stand as impressive when compared to the Volatility-based scanners
explored previously. Every permutation of PE implant has been detected with one notable
exception: DLL hollowing of a legitimately loaded .NET DLL. Exploring the reason for this
caveat in pe-sieve’s detection capabilities touches back to some of the conclusions of the
research I conducted with my tool Moneta in the second part of this research series.
Specifically, the tendency for self-modification intrinsic to some Windows modules, and .NET
modules in particular. The logic responsible for this lack of detection on the part of pe-sieve
can be found in headers_scanner.cpp on the pe-sieve Github page:

 

HeadersScanReport* pesieve::HeadersScanner::scanRemote()

{

if (!moduleData.isInitialized() && !moduleData.loadOriginal()) {

std::cerr << "[-] Module not initialized" << std::endl;

return nullptr;

}

if (!remoteModData.isInitialized()) {

https://www.forrest-orr.net/post/masking-malicious-memory-artifacts-part-ii-insights-from-moneta
https://github.com/hasherezade/pe-sieve/blob/master/scanners/headers_scanner.cpp
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std::cerr << "[-] Failed to read the module header" << std::endl;

return nullptr;

}

 

HeadersScanReport *my_report = new HeadersScanReport(this->processHandle,
moduleData.moduleHandle, remoteModData.getModuleSize());

 

BYTE hdr_buffer1[peconv::MAX_HEADER_SIZE] = { 0 };

memcpy(hdr_buffer1, remoteModData.headerBuffer, peconv::MAX_HEADER_SIZE);

my_report->is64 = peconv::is64bit(hdr_buffer1);

my_report->isDotNetModule = moduleData.isDotNet();

 

size_t hdrs_size = peconv::get_hdrs_size(hdr_buffer1);

if (hdrs_size > peconv::MAX_HEADER_SIZE) {

hdrs_size = peconv::MAX_HEADER_SIZE;

}

 

BYTE hdr_buffer2[peconv::MAX_HEADER_SIZE] = { 0 };

memcpy(hdr_buffer2, moduleData.original_module, hdrs_size);

 

// some .NET modules overwrite their own headers, so at this point they should be excluded
from the comparison

DWORD ep1 = peconv::get_entry_point_rva(hdr_buffer1);

DWORD ep2 = peconv::get_entry_point_rva(hdr_buffer2);

if (ep1 != ep2) {
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my_report->epModified = true;

}

DWORD arch1 = peconv::get_nt_hdr_architecture(hdr_buffer1);

DWORD arch2 = peconv::get_nt_hdr_architecture(hdr_buffer2);

if (arch1 != arch2) {

// this often happend in .NET modules

//if there is an architecture mismatch it may indicate that a different version of the app was
loaded (possibly legit)

my_report->archMismatch = true;

}

//normalize before comparing:

peconv::update_image_base(hdr_buffer1, 0);

peconv::update_image_base(hdr_buffer2, 0);

 

zeroUnusedFields(hdr_buffer1, hdrs_size);

zeroUnusedFields(hdr_buffer2, hdrs_size);

 

//compare:

if (memcmp(hdr_buffer1, hdr_buffer2, hdrs_size) == 0) {

my_report->status = SCAN_NOT_SUSPICIOUS;

return my_report;

}

//modifications detected, now find more details:

my_report->dosHdrModified = isDosHdrModified(hdr_buffer1, hdr_buffer2, hdrs_size);

my_report->fileHdrModified = isFileHdrModified(hdr_buffer1, hdr_buffer2, hdrs_size);
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my_report->ntHdrModified = isNtHdrModified(hdr_buffer1, hdr_buffer2, hdrs_size);

my_report->secHdrModified = isSecHdrModified(hdr_buffer1, hdr_buffer2, hdrs_size);

 

if (moduleData.isDotNet()) {

#ifdef _DEBUG

std::cout << "[#] .NET module detected as SUSPICIOUS\n";

#endif

if (!my_report->isHdrReplaced()

&& (my_report->archMismatch && my_report->epModified)

)

{

//.NET modules may overwrite some parts of their own headers

#ifdef _DEBUG

std::cout << "[#] Filtered out modifications typical for .NET files, setting as not suspicious\n";

#endif

my_report->status = SCAN_NOT_SUSPICIOUS;

return my_report;

}

}

my_report->status = SCAN_SUSPICIOUS;

return my_report;

}

 

Figure 29. Pe-sieve header scanner logic ignoring .NET modules

 

https://www.forrest-orr.net/blog/hashtags/ifdef
https://www.forrest-orr.net/blog/hashtags/endif
https://www.forrest-orr.net/blog/hashtags/ifdef
https://www.forrest-orr.net/blog/hashtags/endif
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Sure enough, the highlighted regions in the code in Figure 29 above illustrate that
Hasherazade (the author of pe-sieve) has whitelisted .NET modules from certain detection
criteria. In the first highlighted region, she states the reason for this: “some .NET modules
overwrite their own headers.” Those who have read the second part in my memory forensics
series will already be familiar with the phenomena she is alluding to in this comment. This
particular function in pe-sieve is responsible for detecting discrepancies between the PE
headers of regions of image memory and their underlying files on disk: a method which
would be highly effective for detecting full overwrite DLL hollowing but which would be
bypassed using the technique of header mirroring shown in Figure 4. A further example of
.NET module exemption from detection criteria can be seen in workingset_scanner.cpp.

 

bool pesieve::WorkingSetScanner::scanImg()

{

const bool show_info = (!args.quiet);

 

if (!memPage.loadMappedName()) {

//cannot retrieve the mapped name

return false;

}

 

const HMODULE module_start = (HMODULE)memPage.alloc_base;

if (show_info) {

std::cout << "[!] Scanning detached: " << std::hex << module_start << " : " <<
memPage.mapped_name << std::endl;

}

RemoteModuleData remoteModData(this->processHandle, module_start);

if (!remoteModData.isInitialized()) {

if (show_info) {

std::cout << "[-] Could not read the remote PE at: " << std::hex << module_start << std::endl;

https://raw.githubusercontent.com/hasherezade/pe-sieve/39f83488f1dba8054406da44aa7626a6d7edd4ce/scanners/workingset_scanner.cpp
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}

return false;

}

 

//load module from file:

ModuleData modData(processHandle, module_start, memPage.mapped_name);

const t_scan_status status = ProcessScanner::scanForHollows(processHandle, modData,
remoteModData, processReport);

#ifdef _DEBUG

std::cout << "[*] Scanned for hollows. Status: " << status << std::endl;

#endif

if (status == SCAN_ERROR) {

//failed scanning it as a loaded PE module

return false;

}

if (status == SCAN_NOT_SUSPICIOUS) {

if (modData.isDotNet()) {

#ifdef _DEBUG

std::cout << "[*] Skipping a .NET module: " << modData.szModName << std::endl;

#endif

processReport.appendReport(new SkippedModuleReport(processHandle,
modData.moduleHandle, modData.original_size, modData.szModName));

return true;

}

if (!args.no_hooks) {

https://www.forrest-orr.net/blog/hashtags/ifdef
https://www.forrest-orr.net/blog/hashtags/endif
https://www.forrest-orr.net/blog/hashtags/ifdef
https://www.forrest-orr.net/blog/hashtags/endif
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const t_scan_status hooks_stat = ProcessScanner::scanForHooks(processHandle,
modData, remoteModData, processReport);

#ifdef _DEBUG

std::cout << "[*] Scanned for hooks. Status: " << hooks_stat << std::endl;

#endif

}

}

return true;

}

 

Figure 30. Pe-sieve working set scanner logic ignoring .NET modules

 

The code shown above in Figure 30 is what allows pe-sieve to detect DLL hollowing. By
checking for private pages of memory corresponding to sensitive portions of a mapped
image using the working set pe-sieve is able to detect every variation of PE implant
combined with DLL hollowing generated by the artifact kit, with the aforementioned exception
of .NET modules. Yet again the highlighted regions in Figure 30 illustrate how .NET modules
are whitelisted from certain aspects of working set scans, a decision which allows my PE
implant within a hollowed .NET module to go undetected.

 

A final series of tests were conducted using ten variations of shellcode implant:

Figure 31. Pe-sieve scanner results for shellcode implants

 

https://www.forrest-orr.net/blog/hashtags/ifdef
https://www.forrest-orr.net/blog/hashtags/endif
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While the cause for the lack of detection of shellcode implants within .NET modules is simple
to understand (these would also bypass the scanForHooks routine in the working set
scanner) the lack of detection for MEM_PRIVATE and MEM_MAPPED regions in Figure 31
is particularly interesting. Keep in mind, that pe-sieve was highly effective at detecting PE
implants within private and mapped memory (Figure 28 demonstrated this) even when
techniques such as header wiping and even moating were applied. Therefore, it is not the
case that Hasherazade was unaware of the suspicious nature of such memory when
designing pe-sieve, but rather that she deemed the false positive potential of flagging
executable private/mapped regions too high to be worth the risk without sufficient evidence.
In this case, she relies upon additional IOC within such regions to indicate the presence of a
PE before triggering a detection. Impressively, this is something she is able to do even when
there is no PE header and the .text section cannot be found at a reliable offset. This is a
strategy in stark contrast to my own tool Moneta, which avoids all explicit data analysis and
instead relies upon other clues within a process to indicate a just cause for the presence of
such dynamic code regions (for example +RWX private regions created as .NET heaps by
the CLR). Detection for such shellcode implants within private and mapped memory appear
to be the only significant blind spot in pe-sieve.

 

Last thoughts

As I stated in the conclusion to part two of this series, the phenomena I observed through
use of Moneta has led me to the belief that fileless malware utilizing dynamic code cannot be
reliably detected without bytescan signatures unless substantial efforts are taken by an
advanced defender to perfectly profile and filter the false positives inherent to the Windows
OS and common third party applications. My findings throughout this text while testing
existing defensive scanners are consistent with this theory. The Volatility-based plugins were
exceptionally outdated and as shown here are trivially simple to bypass. Pe-sieve is
considerably more sophisticated but has clear weak points in areas prone to false positives.

 

This basic reality will have enduring consequences for the detection of fileless malware.
Defenders are at a considerable disadvantage in this area, and attackers need only educate
themselves on the basics of memory stealth tradecraft in order to put themselves outside the
reach of detection.

 
 

https://www.forrest-orr.net/post/masking-malicious-memory-artifacts-part-ii-insights-from-moneta

