
1/13

Using Syscalls to Inject Shellcode on Windows
solomonsklash.io/syscalls-for-shellcode-injection.html

After learning how to write shellcode injectors in C via the Sektor7 Malware Development
Essentials course, I wanted to learn how to do the same thing in C#. Writing a simple
injector that is similar to the Sektor7 one, using P/Invoke to run similar Win32 API calls,
turns out to be pretty easy. The biggest difference I noticed was that there was not a directly
equivalent way to obfuscate API calls. After some research and some questions on the
BloodHound Slack channel (thanks @TheWover and @NotoriousRebel!), I found there are
two main options I could look into. One is using native Windows system calls (AKA
syscalls), or using Dynamic Invocation. Each have their pros and cons, and in this case the
biggest pro for syscalls was the excellent work explaining and demonstrating them by Jack
Halon (here and here) and badBounty. Most of this post and POC is drawn from their
fantastic work on the subject. I know TheWover and Ruben Boonen are doing some work
on D/Invoke, and I plan on digging into that next.

I want to mention that a main goal of this post is to serve as documentation for this proof of
concept and to clarify my own understanding. So while I’ve done my best to ensure the
information here is accurate, it’s not guaranteed to be 100%. But hey, at least the
code works.

Said working code is available here

Native APIs and Win32 APIs

To begin, I want to cover why we would want to use syscalls in the first place. The answer is
API hooking, performed by AV/EDR products. This is a technique defensive products use to
inspect Win32 API calls before they are executed, determine if they are
suspicious/malicious, and either block or allow the call to proceed. This is done by slightly
the changing the assembly of commonly abused API calls to jump to AV/EDR controlled
code, where it is then inspected, and assuming the call is allowed, jumping back to the code
of the original API call. For example, the CreateThread and CreateRemoteThread Win32
APIs are often used when injecting shellcode into a local or remote process. In fact I will
use CreateThread shortly in a demo of injection using strictly Win32 APIs. These APIs are
defined in Windows DLL files, in this case MSDN tells us in Kernel32.dll. These are user-
mode DLLs, which mean they are accessible to running user applications, and they do not
actually interact directly with the operating system or CPU. Win32 APIs are essentially a
layer of abstraction over the Windows native API. This API is considered kernel-mode, in
that these APIs are closer to the operating system and underlying hardware. There are
technically lower levels than this that actually perform kernel-mode functionality, but these

https://www.solomonsklash.io/syscalls-for-shellcode-injection.html
https://www.solomonsklash.io/malware-course-review.html
https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://twitter.com/TheRealWover
https://secbytes.net/
https://github.com/cobbr/SharpSploit/blob/master/SharpSploit/SharpSploit%20-%20Quick%20Command%20Reference.md#sharpsploitexecutiondynamicinvoke
https://jhalon.github.io/utilizing-syscalls-in-csharp-1/
https://jhalon.github.io/utilizing-syscalls-in-csharp-2/
https://github.com/badBounty/directInjectorPOC
https://twitter.com/FuzzySec
https://github.com/FuzzySecurity/BlueHatIL-2020
https://github.com/SolomonSklash/SyscallPOC
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread#requirements
https://en.wikipedia.org/wiki/Native_API


2/13

are not exposed directly. The native API is the lowest level that is still exposed and
accessible by user applications, and it functions as a kind of bridge or glue layer between
user code and the operating system. Here’s a good diagram of how it looks:

You can see how Kernell32.dll, despite the misleading name, sits at a higher level than
ntdll.dll, which is right at the boundary between user-mode and kernel-mode.

So why does the Win32 API exist? A big reason it exists is to call native APIs. When you
call a Win32 API, it in turn calls a native API function, which then crosses the boundary into
kernel-mode. User-mode code never directly touches hardware or the operating system. So
the way it is able to access lower-level functionality is through native PIs. But if the native
APIs still have to call yet lower level APIs, why not got straight to native APIs and cut out an
extra step? One answer is so that Microsoft can make changes to the native APIs with out
affecting user-mode application code. In fact, the specific functions in the native API often
do change between Windows versions, yet the changes don’t affect user-mode code
because the Win32 APIs remain the same.

So why do all these layers and levels and APIs matter to us if we just want to inject some
shellcode? The main difference for our purposes between Win32 APIs and native APIs is
that AV/EDR products can hook Win32 calls, but not native ones. This is because native



3/13

calls are considered kernel-mode, and user code can’t make changes to it. There are some
exceptions to this, like drivers, but they aren’t applicable for this post. The big takeaway is
defenders can’t hook native API calls, while we are still allowed to call them ourselves. This
way we can achieve the same functionality without the same visibility by defensive
products. This is the fundamental value of system calls.

System Calls

Another name for native API calls is system calls. Similar to Linux, each system call has a
specific number that represents it. This number represents an entry in the System Service
Dispatch Table (SSDT), which is a table in the kernel that holds various references to
various kernel-level functions. Each named native API has a matching syscall number,
which has a corresponding SSDT entry. In order to make use of a syscall, it’s not enough to
know the name of the API, such as NtCreateThread. We have to know its syscall number
as well. We also need to know which version of Windows our code will run on, as the
syscall numbers can and likely will change between versions. There are two ways to find
these numbers, one easy, and one involving the dreaded debugger.

The first and easist way is to use the handy Windows system call table created by Mateusz
“j00ru” Jurczyk. This makes it dead simple to find the syscall number you’re looking for,
assuming you already know which API you’re looking for (more on that later).

WinDbg

The second method of finding syscall numbers is to look them up directly at the source:
ntdll.dll. The first syscall we need for our injector is NtAllocateVirtualMemory. So we
can fire up WinDbg and look for the NtAllocateVirtualMemory function in ntdll.dll. This
is much easier than it sounds. First I open a target process to debug. It doesn’t matter
which process, as basically all processes will map ntdll.dll. In this case I used good
old notepad.

https://resources.infosecinstitute.com/hooking-system-service-dispatch-table-ssdt/
https://j00ru.vexillium.org/syscalls/nt/64/


4/13

We attach to the notepad process and in the command prompt enter x
ntdll!NtAllocateVirtualMemory. This lets us examine the NtAllocateVirtualMemory
function within the ntdll.dll DLL. It returns a memory location for the function, which we
examine, or unassemble, with the u command:

Now we can see the exact assembly language instructions for calling
NtAllocateVirtualMemory. Calling syscalls in assembly tends to follow a pattern, in that
some arguments are setup on the stack, seen with the mov r10,rcx statement, followed by
moving the syscall number into the eax register, shown here as mov eax,18h. eax is the
register the syscall instruction uses for every syscall. So now we know the syscall number



5/13

of NtAllocateVirtualMemory is 18 in hex, which happens to be the same value listed on in
Mateusz’s table! So far so good. We repeat this two more times, once for
NtCreateThreadEx and once for NtWaitForSingleObject.

Where are you getting these native functions?

So far the process of finding the syscall numbers for our native API calls has been pretty
easy. But there’s a key piece of information I’ve left out thus far: how do I know which
syscalls I need? The way I did this was to take a basic functioning shellcode injector in C#
that uses Win32 API calls (named Win32Injector, included in the Github repository for this
post) and found the corresponding syscalls for each Win32 API call. Here is the code
for Win32Injector:



6/13

This is a barebones shellcode injector that executes some shellcode to display a
popup box:



7/13

As you can see from the code, the three main Win32 API calls used via P/Invoke are
VirtualAlloc, CreateThread, and WaitForSingleObject, which allocate memory for our
shellcode, create a thread that points to our shellcode, and start the thread, respectively. As
these are normal Win32 APIs, they each have comprehensive documentation on MSDN.
But as native APIs are considered undocumented, we may have to look elsewhere. There is
no one source of truth for API documentation that I could find, but with some searching I
was able to find everything I needed.

In the case of VirtualAlloc, some simple searching showed that the underlying native API
was NtAllocateVirtualMemory, which was in fact documented on MSDN. One down, two
to go.

Unfortunately, there was no MSDN documentation for NtCreateThreadEx, which is the
native API for CreateThread. Luckily, badBounty’s directInjectorPOC has the function
definition available, and already in C# as well. This project was a huge help, so kudos
to badBounty!

Lastly, I needed to find documentation for NtWaitForSingleObject, which as you might
guess, is the native API called by WaitForSingleObject. You’ll notice a theme where many
native API calls are prefaced with “Nt”, which makes mapping them from Win32 calls easier.
You may also see the prefix “Zw”, which is also a native API call, but normally called from
the kernel. These are sometimes identical, which you will see if you do x
ntdll!ZwWaitForSingleObject and x ntdll!NtWaitForSingleObject in WinDbg. Again
we get lucky with this API, as ZwWaitForSingleObject is documented on MSDN.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntallocatevirtualmemory
https://github.com/badBounty/directInjectorPOC/blob/master/directInjectorPOC/syscalls.cs
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-zwwaitforsingleobject


8/13

I want to point out a few other good sources of information for mapping Win32 to native API
calls. First is the source code for ReactOS, which is an open source reimplementation of
Windows. The Github mirror of their codebase has lots of syscalls you can search for. Next
is SysWhispers, by jthuraisamy. It’s a project designed to help you find and implement
syscalls. Really good stuff here. Lastly, the tool API Monitor. You can run a process and
watch what APIs are called, their arguments, and a whole lot more. I didn’t use this a ton,
as I only needed 3 syscalls and it was faster to find existing documentation, but I can see
how useful this tool would be in larger projects. I believe ProcMon from Sysinternals has
similar functionality, but I didn’t test it out much.

Ok, so we have our Win32 APIs mapped to our syscalls. Let’s write some C#!

But these docs are all for C/C++! And isn’t that assembly
over there…

Wait a minute, these docs all have C/C++ implementations. How do we translate them into
C#? The answer is marshaling. This is the essence of what P/Invoke does. Marshaling is a
way of making use of unmanaged code, e.g. C/C++, and using in a managed context, that
is, in C#. This is easily done for Win32 APIs via P/Invoke. Just import the DLL, specify the
function definition with the help of pinvoke.net, and you’re off to the races. You can see this
in the demo code of Win32Injector. But since syscalls are undocumented, Microsoft does
not provide such an easy way to interface with them. But it is indeed possible, through the
magic of delegates. Jack Halon covers delegates really well here and here, so I won’t go
too in depth in this post. I would suggest reading those posts to get a good handle on them,
and the process of using syscalls in general. But for completeness, delegates are
essentially function pointers, which allow us to pass functions as parameters to other
functions. The way we use them here is to define a delegate whose return type and function
signature matches that of the syscall we want to use. We use marshaling to make sure the
C/C++ data types are compatible with C#, define a function that implements the syscall,
including all of its parameters and return type, and there you have it!

Not quite. We can’t actually call a native API, since the only implementation of it we have is
in assembly! We know its function definition and parameters, but we can’t actually call it
directly the same way we do a Win32 API. The assembly will work just fine for us though.
Once again, it’s rather simple to execute assembly in C/C++, but C# is a little harder. Luckily
we have a way to do it, and we already have the assembly from our WinDbg adventures.
And don’t worry, you don’t really need to know assembly to make use of syscalls. Here is
the assembly for the NtAllocateVirtualMemory syscall:

https://reactos.org/
https://github.com/jthuraisamy/SysWhispers
http://www.rohitab.com/apimonitor
https://docs.microsoft.com/en-us/dotnet/framework/interop/marshaling-data-with-platform-invoke
http://www.pinvoke.net/
https://jhalon.github.io/utilizing-syscalls-in-csharp-1/
https://jhalon.github.io/utilizing-syscalls-in-csharp-2/


9/13

As you can see from the comments, we’re setting up some arguments on the stack, moving
our syscall number into the eax register, and using the magic syscall operator. At a low
enough level, this is just a function call. And remember how delegates are just function
pointers? Hopefully it’s starting to make sense how this is fitting together. We need to get a
function pointer that points to this assembly, along with some arguments in a C/C++
compatible format, in order to call a native API.

Putting it all together

So we’re almost done now. We have our syscalls, their numbers, the assembly to call them,
and a way to call them in delegates. Let’s see how it actually looks in C#:

Starting from the top, we can see the C/C++ definition of NtAllocateVirtualMemory, as
well as the assembly for the syscall itself. Starting at line 38, we have the C# definition of
NtAllocateVirtualMemory. Note that it can take some trial and error to get each type in C#



10/13

to match up with the unmanaged type. We create a pointer to our assembly inside an
unsafe block. This allows us to perform operations in C#, like operate on raw memory, that
are normally not safe in managed code. We also use the fixed keyword to make sure the
C# garbage collector does not inadvertently move our memory around and change our
pointers. Once we have a raw pointer to the memory location of our shellcode, we need to
change its memory protection to executable so it can be run directly, as it will be a function
pointer and not just data. Note that I am using the Win32 API VirtualProtectEx to change
the memory protection. I’m not aware of a way to do this via syscall, as it’s kind of a chicken
and the egg problem of getting the memory executable in order to run a syscall. If anyone
knows how to do this in C#, please reach out! Another thing to note here is that setting
memory to RWX is generally somewhat suspicious, but as this is a POC, I’m not too worried
about that at this point. We’re concerned with hooking right now, not memory scanning!

Now comes the magic. This is the struct where our delegates are declared:

Note that a delegate definition is just a function signature and return type. The
implementation is up to us, as long as it matches the delegate definition, and it’s what we’re
implementing here in the C# NtAllocateVirtualMemory function. At line 65 above, we
create a delegate named assembledFunction, which takes advantage of the special
marshaling function Marshal.GetDelegateForFunctionPointer. This method allows us to
get a delegate from a function pointer. In this case, our function pointer is the pointer to the
syscall assembly called memoryAddress. assembledFunction is now a function pointer to an
assembly language function, which means we’re now able to execute our syscall! We can
call assembledFunction delegate like any normal function, complete with arguments, and

https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshal.getdelegateforfunctionpointer?view=netframework-4.8#System_Runtime_InteropServices_Marshal_GetDelegateForFunctionPointer_System_IntPtr_System_Type_


11/13

we will get the results of the NtAllocateVirtualMemory syscall. So in our return statement
we call assembledFunction with the arguments that were passed in and return the result.
Let’s look at where we actually call this function in Program.cs:

Here you can see we make a call to NtAllocateMemory instead of the Win32 API
VirtualAlloc that Win32Injector uses. We setup the function call with all the needed
arguments (lines 43-48) and make the call to NtAllocateMemory. This returns a block of
memory for our shellcode, just like VirtualAlloc would!

The remaining steps are similar:

We copy our shellcode into our newly-allocated memory, and then create a thread within
our current process pointing to that memory via another syscall, NtCreateThreadEx, in
place of CreateThread. Finally, we start the thread with a call to the syscall
NtWaitForSingleObject, instead of WaitForSingleObject. Here’s the final result:



12/13

Hello world via syscall! Assuming this was some sort of payload running on a system with
API hooking enabled, we would have bypassed it and successfully run our payload.

A note on native code

Some key parts of this puzzle I’ve not mentioned yet are all of the native structs,
enumerations, and definitions needed for the syscalls to function properly. If you look at the
screenshots above, you will see types that don’t have implementations in C#, like the
NTSTATUS return type for all the syscalls, or the AllocationType and ACCESS_MASK
bitmasks. These types are normally declared in various Windows headers and DLLs, but to
use syscalls we need to implement them ourselves. The process I followed to find them was
to look for any non-simple type and try to find a definition for it. Pinvoke.net was massively
helpful for this task. Between it and other resources like MSDN and the ReactOS source
code, I was able to find and add everything I needed. You can find that code in the
Native.cs class of the solution here.

Wrapup

Syscalls are fun! It’s not every day you get to combine 3 different languages, managed and
unmanaged code, and several levels of Windows APIs in one small program. That said,
there are some clear difficulties with syscalls. They require a fair bit of boilerplate code to
use, and that boilerplate is scattered all around for you to find like a little undocumented
treasure hunt. Debugging can also be tricky with the transition between managed and

http://www.pinvoke.net/
https://github.com/SolomonSklash/SyscallPOC


13/13

unmanaged code. Finally, syscall numbers change frequently and have to be customized
for the platform you’re targeting. D/Invoke seems to handle several of these issues rather
elegantly, so I’m excited to dig into those more soon.

 
 


