
1/5

By Oddvar Moe [MVP] 6 Sep 2018

Persistence using Universal Windows Platform apps (APPX)
oddvar.moe/2018/09/06/persistence-using-universal-windows-platform-apps-appx

TL;DR

Persistence can be achieved with Appx/UWP apps using the debugger options. This technique will not be visible by Autoruns.
 Two different approaches exists (registry keys). Listed below are the two techniques for two different apps that starts at logon:

Cortana app:

reg add 
HKCU\Software\Microsoft\Windows\CurrentVersion\PackagedAppXDebug\Microsoft.Windows.Cortana_1.10.7.17134_neutral_neutral_cw5n1h2txyew
/d "C:\windows\system32\cmd.exe" 
OR
reg add 
HKCU\Software\Classes\ActivatableClasses\Package\Microsoft.Windows.Cortana_1.10.7.17134_neutral_neutral_cw5n1h2txyewy\DebugInformati
/v DebugPath /d "C:\windows\system32\cmd.exe"

People app:

reg add HKCU\Software\Microsoft\Windows\CurrentVersion\PackagedAppXDebug\Microsoft.People_10.1807.2131.0_x64__8wekyb3d8bbwe /d 
"C:\windows\system32\cmd.exe" 
OR
reg add 
HKCU\Software\Classes\ActivatableClasses\Package\Microsoft.People_10.1807.2131.0_x64__8wekyb3d8bbwe\DebugInformation\x4c7a3b7dy2188y
/v DebugPath /d "C:\windows\system32\cmd.exe" 

When one of the techniques are added the file (cmd.exe) will be executed at logon, since Cortana and People will start at logon. This techique
is depending on the correct versions of the apps. Could be clever to add all possible versions of an application.

Description

I used some time to look for ways to evade Autoruns again and I ended up in finding a new method of achieving persistence. New in the terms
that I can not find anything about this being abused with the help from Google. If you are reading this and you have some resources on the
topic, please share it with me and I will update this blogpost. I decided to send this to MSRC even if I suspected that this would not be
serviced. I also sent an email directly to Mark Russinovich. (Awesome guy!)

In this post I will walk you through my process when I discovered this.

This all started while I was looking into the things that start when you logon to Windows and an idea struck my head. What about all these
modern apps that starts when the user logs on? I mean, the start menu in Windows is defined as an application. The question I ended up
asking myself was, how do the developers debug these applications? After a little Googling I ended up on this page that described
PLMDebug.exe. The interesting part from this page when I looked into this, was the following:

https://oddvar.moe/2018/09/06/persistence-using-universal-windows-platform-apps-appx/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/plmdebug


2/5

This really showed promise and I already had the Debugging tools present on my machine, so I started to play with it on a virtual machine I
had in Azure.

 I decided that I would do my initial testing against the People app, you know… this one:

First I needed to figure out the full package name since the PLMDebug command needed
it. Since I have previously worked a lot with both SCCM operating system deployment and
AppLocker I knew that you can list out all the packages with the Get-AppxPackage cmdlet.

 I was not 100% sure what it was named, so I listed all the Appx and only displayed the
name and packagefullname using this command:

Get-AppxPackage | fl name,packagefullname 

Then I scrolled the output until I found it:

I then supplied the PackageFullName to the plmdebug.exe using this command:

plmdebug.exe /enabledebug Microsoft.People_10.1807.2131.0_x64__8wekyb3d8bbwe c:\windows\system32\cmd.exe 

I then tried to start the People app from the start menu and voila:

https://oddvar.moe/wp-content/uploads/2018/09/2018-09-04_22-12-41.png
https://oddvar.moe/wp-content/uploads/2018/09/2018-09-04_22-22-16.png
https://oddvar.moe/wp-content/uploads/2018/09/2018-09-04_22-29-55.png
https://oddvar.moe/wp-content/uploads/2018/09/2018-09-04_22-35-54.png


3/5

After this was a success I tried to sign out and logon again to see if the cmd window appeared as part of the logon process. This was a
bummer, nothing happened. Also when I tried to re-launch the People app nothing happened. Decided that I would do a procmon dive when I
ran the PLMDebug command to understand what was going on under the hood. It did not take long until I found out where it was written in the
registry.

The registry path from the screenshot is this one (It shows something else in Procmon (HKU\SID), because I am running it as another user):

HKEY_CURRENT_USER\Software\Classes\ActivatableClasses\Package\Microsoft.People_10.1807.2131.0_x64__8wekyb3d8bbwe\

I then jumped into the registry location and exported all the keys. Then I tried to sign out and logon again, re-checked the registry location and
it was empty (as expected). Apparently the PLMDebug.exe “flags” something that makes the registry keys go away after logoff. I then decided
to try to add the exported registry keys manually and maybe in that way exclude the potential “flags” that PLMDebug.exe sets in addition, that
clears the settings at logoff.

After manually importing the registry keys, I signed out and logged on again. When I was logged on again the cmd window popped. (YES!)
I decided to change the persistence to the Cortana application (I did experience some hiccups using the People app early in my testing – but
have not experienced it since. Could be my lab setup that had issues), since it is used whenever you logon and everytime you use the search
function in the Start menu. I did try with the start menu (Microsoft.Windows.ShellExperienceHost) for a limited time during my research, but I
did have some issues with the start menu locking up so I ended up using Cortana as my PoC.

After doing the same “exercise” for Cortana (exporting the registry keys) I decided I would also try to trim down the registry file to a minimum. I
did the trimming by removing one registry key at a time until I only had a few left that was needed for the persistence to trigger.

I ended up with these few lines in order to make cmd.exe start at logon using the Cortana app:

Windows Registry Editor Version 5.00 

[HKEY_CURRENT_USER\Software\Classes\ActivatableClasses\Package\Microsoft.Windows.Cortana_1.10.7.17134_neutral_neutral_cw5n1h2txyewy]

[HKEY_CURRENT_USER\Software\Classes\ActivatableClasses\Package\Microsoft.Windows.Cortana_1.10.7.17134_neutral_neutral_cw5n1h2txyewy\

[HKEY_CURRENT_USER\Software\Classes\ActivatableClasses\Package\Microsoft.Windows.Cortana_1.10.7.17134_neutral_neutral_cw5n1h2txyewy\

"DebugPath"=hex(2):63,00,3a,00,5c,00,77,00,69,00,6e,00,64,00,6f,00,77,00,73,00,\
5c,00,73,00,79,00,73,00,74,00,65,00,6d,00,33,00,32,00,5c,00,63,00,6d,00,64,\ 
00,2e,00,65,00,78,00,65,00,00,00 

To make it easier to reproduce I created this command:

https://oddvar.moe/wp-content/uploads/2018/09/2018-09-04_22-37-33.png
https://oddvar.moe/wp-content/uploads/2018/09/2018-09-04_22-50-37.png


4/5

reg add 
HKCU\Software\Classes\ActivatableClasses\Package\Microsoft.Windows.Cortana_1.10.7.17134_neutral_neutral_cw5n1h2txyewy\DebugInformati
/v DebugPath /d "C:\windows\system32\cmd.exe" 

After adding this persistence mechanism I decided to check if it was listed in Autoruns and it was not there. I could show you a screenshot, but
there is nothing to show. So this is something that is not detected by Autoruns as of now. (v13.91)

I did all the testing with a normal user, and I also decided to test this with a user that had local admin rights. I did the same test and the cmd
was spawned elevated. This was pretty cool I thought. Decided that I would write a case to MSRC about this new technique, including UAC
and the persistence technique.

After a few days I got response from MSRC that the UAC elevation did not work and I had to retry this in my own lab to verify if I had done
something different then the information I provided MSRC. It turned out that there are special settings in terms of UAC on the vm’s hosted on
Azure and that was why it was elevated during logon for an administrator. This did not happen on a “normal” Windows vm hosted on my
computer, that was installed from scratch. After this was communicated with MSRC they decided that this did not meet the bar for servicing,
since this requires an attacker to already have code execution on the system. (As expected)

If you are planning on running a “custom” executable, it must be able to handle the input the application sends in. If you set the debug
application to notepad you can see what it sends into the application:

So, basically -P <number> and -tid <number> will be sent to the “debugger”.

All the testing was done with an up-to-date Windows 10 1803 with the last verification as of
September 6, 2018.

Failed tests

Other things I did test during this research that did not give any result:

Launch file from webdav
Launch file from HTTP
Launch file from ADS
Add registry key to HKLM (admin persistence)

Uncharted

There are probably more stuff to find out with Universal Platform Apps.

I have not researched this yet, but this is on my list to look at (feel free to dig into it your self):

COM hijacking – Seems CLSID is being used
HKEY_CLASSES_ROOT\ActivatableClasses\CLSID
HKEY_CLASSES_ROOT\ActivatableClasses\Package\Windows.PrintDialog_6.2.0.0_neutral_neutral_cw5n1h2txyewy\ActivatableClass

Other Apps
Did limited testing on the Microsoft.Windows.ShellExperienceHost (Start menu). Had some issues with the start menu hanging.

Bonus discovery

Also while writing this blogpost and correlating my notes, I discovered that this persistence technique can also be triggered in a much easier
way than adding the registry keys mentioned previous in this post. You could simply run the following command to add persistence to the
People app:

reg add HKCU\Software\Microsoft\Windows\CurrentVersion\PackagedAppXDebug\Microsoft.People_10.1807.2131.0_x64__8wekyb3d8bbwe /d 
"C:\windows\system32\cmd.exe" 

Or you could run the following command to add persistence to the Cortana app:

reg add 
HKCU\Software\Microsoft\Windows\CurrentVersion\PackagedAppXDebug\Microsoft.Windows.Cortana_1.10.7.17134_neutral_neutral_cw5n1h2txyew
/d "C:\windows\system32\cmd.exe" 

Blue team

Hopefully you will detect the attacker long before the persistence is created, but here are a the basic indicators using this technique:

https://oddvar.moe/wp-content/uploads/2018/09/2018-09-04_23-32-41.png


5/5

Software\Microsoft\Windows\CurrentVersion\PackagedAppXDebug
Software\Classes\ActivatableClasses\Package\<PackageName>\DebugInformation

Outro

I do not have any metrics if this technique is already in use in the wild. This post could possibly help to uncover if this is being used or not.
 Again, as a reminder I posted this to make it possible to detect it, not to make the world burn. Hopefully this will also inspire further research

into UWP/APPX, this could be another untapped source for interesting stuff. I do consider this the modern version of Image File Execution
Options.

Hope you enjoyed my post and as always, feedback is appreciated.

Disclosure timeline

August 17, 2018 – Discovery made – https://twitter.com/Oddvarmoe/status/1030465720054960128
August 20, 2018 – Report sent to MSRC and acknowledged
August 23, 2018 – Team reported that the UAC elevation did not work as stated. Asked if anything special was needed to bypass UAC.
My attached description did not work.
August 27, 2018 – I sent that I was not able to reproduce the UAC bypass myself.
August 28, 2018 – I sent that this only happened on Azure VMs
August 28, 2018 – Updates forwarded to the team working on the case from my case handler
September 3, 2018 – I asked if there where any updates to the case
September 4, 2018 – Case closed, it will not be serviced.
September 5, 2018 – Mail sent to Mark Russinovich about autoruns
September 6, 2018 – Mail reply from Mark Russinovich stating it was not a problem for him that I posted these details
September 6, 2018 – Sent blog draft to MSRC
September 6, 2018 – All good feedback from MSRC
September 7, 2018 – Posted

 
 

https://twitter.com/Oddvarmoe/status/1030465720054960128

