Android RootKkits

Adam Zakaria

adam.zakaria@tufts.edu

Ming Chow

mailto:adam.zakaria@tufts.edu

Abstract

A rootkit is software designed to help a user maintain “root” privileges through the hiding of
processes and the redirection of system calls. Rootkits are particularly insidious because they are often
kernel-based, making it very difficult for malware detection programs within an operating system to
combat them. Linux rootkits on the x86 architecture are a well-documented topic, but documentation
on Android rootkits, which typically run on the ARM architecture, is relatively sparse. My paper will
provide an overview of the Android architecture, explore methods of implementing Android rootkits,

and briefly discuss how to protect systems against them.

Introduction

To The Community

Given the increasing presence of mobile computing, and the increasing market share of Android,
development of malware for the platform has become very popular, and will continue to grow. It is thus
imperative that knowledge about Android rootkits is disseminated throughout both the developer and
end-user communities. I personally chose this topic because I greatly enjoy low level system hacking
and wanted to learn about the ARM architecture. This paper tries to speak in layman’s terms where
possible, and tries to provide sufficient explanation of technical concepts such that outside sources of
information will not need to be frequently consulted. I hope you enjoy it and please email me if you

have any questions or simply want to chat.

Android Architecture

Android is the world’s most popular mobile operating system and is written on top of the Linux

kernel. Similar to the Linux kernel, Android is an open source project, but its latest releases are
privately developed by Google, and once these releases are made available to the public their source
code is made available as well.

The linux kernel is the interface between Android’s software and the device’s hardware, it is
the lowest level software component. On top of the kernel are Android’s libraries, application
framework, and applications. Applications are written in Java and are run in Dalvik, a virtual machine
particularly suited for low resource devices and which uses just-in-time compilation to achieve a
performance boost.

Android applications are sandboxed, meaning each application runs in its own environment,
isolated from other applications. By default, applications are not privileged processes. Android
malware has experienced a huge jump in popularity thanks to the operating system’s increased market

share, and there is perhaps no juicier target for cybercriminals than the kernel.

Rootkit Primer

Once crackers gain root access to a system, it is often difficult to maintain their privileges
because of the “noise” (logs, running processes, etc.) that may have been created during the break in.
An effective way of maintaining root access is through the use of a kernel level rootkit. A rootkit is a
type of software designed to hide processes, change files, and do anything else necessary to keep root
access. Rootkits have several different flavors: user mode, kernel mode, firmware and hypervisor, the
most popular flavors being user mode and kernel mode. Kernel mode rootkits are particularly lethal
because they have the same privileges as the operating system, making it difficult for the anti-malware

systems within the operating system to detect them because they can easily manipulate the data being

analyzed.

Attackers that gain privileges on Android will want to maintain those privileges and they may do
so with a kernel level rootkit as aforementioned. Linux kernel rootkits are well documented for the x86
architecture, but most Android devices run on ARM processors and rootkits on the ARM architecture
are not well documented. Thus, the rest of this paper will be an analysis of the methods and difficulties

of installing a kernel rootkit in Android on the ARM architecture.

Rootkits: Installation

Finding the sys_call table

Rootkits are able to do their dirty work by hooking the kernel. Hooking is the act of
intercepting system calls and handling their interception in some way, perhaps by redirecting them
elsewhere. In the linux kernel, the addresses of system calls are stored in the sys call table. If we can
somehow overwrite addresses stored in the sys call table we can redirect system calls to arbitrary
locations in memory and essentially do whatever we want. However, it is not so simple. First of all, it is
often difficult to find where the sys_call table is because it is often not exported.

The linux kernel maintains the addresses of all of its global symbols, symbols being either
variables or functions, in /proc/kallsyms. Symbols can be either static, external, or exported. Static
symbols are only available visible within where they are written, external symbols are available from any
part of the kernel, and exported symbols are even available to loadable kernel modules. If
sys_call table is not exported, which it is not after kernel version 2.6, it will not be in /proc/kallsyms,

making it more difficult for us to find it. Even worse, the sys call table location depends on the kernel

version in use. Sys call table can also be made read only to further deter malicious activity.

One method of finding sys call table is by using the Exception Vector Table, which is a table
that maintains pointers to all exception handlers. The equivalent to ARM’s Exception Vector Table on
the x86 architecture is the Interrupt Descriptor Table All ARM systems have an Exception Vector
Table and it is usually stored at address 0x0, however, Android is a high-vector implementation so it is

stored at Oxffff0000.

Signals and System Calls

Exceptions are the result of software interrupt signals sent to the processor and tell the
processor something has happened that requires a change of control flow. System calls are often made
by libe (glib on GNU / Linux) wrapper functions, so named because they wrap up system calls in a way
that makes them more portable by putting the system call number and arguments in the registers they
need to be, regardless of architecture. When a system call is made by a user mode program, an
interrupt signal is sent to the processor, telling it to switch to kernel mode to execute the system call, at
which point the processor decides whether or not to permit the action. The underlying details of how
this is done are processor dependent; on the x86 architecture, the number of the system call you want to
execute is stored in the EAX register, with the system call parameters stored in the rest of the registers
(if there are fewer available registers than parameters, arguments can be stored on the stack and pointed
to by EBX). Once the registers are all set up, the syscall call is made by executing the 0x80 interrupt
instruction. The C programming language also provides a way to directly make the system calls through
the syscall function, or by using inline assembly. The process is relatively similar on ARM processors.

The system call number is typically loaded into the r7 (10 on older processors that do not support the

thumb user space) register, with the parameters loaded into the other available registers (typically

10,..,r6) as necessary. The SVC instruction (supervisor call, formerly SWI (software interrupt)) is then
executed to switch to kernel mode, the equivalent of the 0x80 instruction on the x86 architecture.
Additionally, software interrupt signals are used to signal programming errors that arise during execution,
such as a divide by zero error. There are also hardware interrupt signals that allow interrupt signals to

be sent to the processor from external devices. However, neither of these are important in the context

of this paper.

Finding sys call table, continued

Eight bytes past the start of the Exception Vector Table are instructions to call the just
mentioned Software Interrupt Handler, whose address is stored 420 bytes past the start of the
exception vector table. The Software Interrupt Handler references the sys call table, so by examining
its code we can deduce the address of the sys call table. By looking at the assembly instructions we
can obtain the opcode that references the sys_call table, and from there we can search through memory
for the location of the opcode and obtain the offset to sys call table. You may have noticed the
peculiarity of looking for offsets rather than for memory addresses, which is a difference between ARM
and x86. In order to make ARM assembly position independent, programs access data relative to the
PC, the program counter, rather than referencing addresses, thus allowing a program to run regardless
of where it is loaded in memory. This is desirable because ARM programs are loaded into RAM in
unpredictable locations, so the programmer cannot know where data will located. Thus, containing

references to absolute addresses would break the program, and thus offsets are used instead.

Finding sys call table with sys close

An even easier way of finding the sys_call table address uses the sys_close system call, and the
fact that it is always 6 words from the start of the sys_call table (it is the sixth system call). We can
simply increment the software interrupt handler address until we compare the address we are at and it
matches the address of the sys_close call. Since the start of sys_call table will be 6 words before that

address, simply subtracting 6 words from the location of sys_close will give us the address we need.

Writing to /dev/kmem

Now that we know where sys_call table is located, we can start trying to write to it to redirect
system calls. To do this, we use something called the /dev/kmem access technique. Kmem is a linux
device file that allows the user to access kernel memory and is often used to examine and patch the
system. Kmem allows arbitrary overwriting of the kernel. The kernel has been patched to disallow
writing to kmem by file input / output, but it is still possible by using mmap, which creates a new memory
mapping in the calling process’s virtual address space. We simply call mmap on the kmem device to
share the kernel memory space with the user space and then we can step through and write to the
memory using the Iseek, read, and write functions. Since we know the location of the sys call table we
can write to it and redirect system calls to handler functions that we design ourselves and are able to do

whatever we want.

Forging a copy of sys_call table

This method of writing to sys_call table directly is easily detected, so more stealthy hooking
techniques have been developed. Perhaps the best technique currently available is the forged
sys_call table technique. This involves making a copy of the sys_call table in heap memory and then
writing to the Exception Vector Table to have the Software Interrupt Handler reference the forged
sys_call table. To do this, we must again find the point where the Software Interrupt handler references
the sys_call table, find the offset to it, and then go to that point in memory so we can copy it.
However, we must know the size of the sys_call table ahead of time in order to copy it, but this proves
to be very tricky. Not only is sys call table’s size platform dependent, its size can also vary depending
on compile environments and config options. This means that even on two kernels of the same version,
the sys_call table may not be the same size! We can find the sys_call table size by examining the
assembly of the Software Interrupt Handler, finding the opcode that checks the upper bound of the
sys_call table, and then searching for that opcode within memory. We then copy the sys call table
into memory, and save the offset between the original sys call table and the forged sys call table.
Finally, we go back to the Software Interrupt Handler code that references the sys_call table and
overwrite the offset it uses to reference the table with the offset for the forged table. Now, anytime a
system call is made the Exception Vector Table will delegate to the Software Interrupt Handler, which
will now go to the forged sys_call table instead of the original. With this forged table we can arbitrarily

redirect system calls, and in a stealthy manner, because the original sys call table is unmodified.

Rootkits: Defense

Defending your Android device against rootkits is similar to defending it from any other

malware, there really is not a specific formula just for rootkits. First and foremost, install software from
trusted sources. But be wary, users often think that installing software from the Google Play store
guarantees safety, but there have been many recorded cases of malicious users bypassing Bouncer,
Android’s malware detection bot for the Play store, and successfully uploading malware. Thus it is also
very important to insure that all apps you install must follow the principle of least privilege, that is, they
only require the privileges they absolutely need to function properly. Finally, be wary of misinformation.
Android is a relatively new and misunderstood platform, so education and critical thinking on the part of
the user is imperative to a secure system.

The best thing to do to get rid of a rootkit is to format your drive and reinstall all of your
software. Trying to delete a rootkit does not make much sense because rootkits can potentially change
the behavior of every program on your system; you cannot expect to find a rootkit when the tools you

are using to detect it are potentially affected by the rootkit.

Conclusion

As Android rootkits are relatively few in number, tools that try to detect their presence have yet
to be developed. There are programs for Linux like Tripwire and AIDE that use MD5 to check the
integrity of files so that if the kernel or user space programs are modified, the modifications will be

detected. However, these tools can be rendered useless by sophisticated rootkits. One possibly

effective method of detection is monitoring API calls and CPU usage, because rootkits will often run
background daemons, though the tools used to detect these daemons may be affected by the rootkit

and cannot be trusted. If one is to take anything away from this paper, take away the fact that you
cannot trust anything about a computer infected with a rootkit. Rootkits are extremely sophisticated,
stealthy, and malicious pieces of software, and it does not seem like there will be any good ways to stop

them in the near future.

References:

[1] You, Dong-Hoon. "Android platform based linux kernel rootkit ." Phrack Magazine. 04 04 2011:

[2] Rainer, Wichmann. "Linux Kernel Rootkits." Linux Kernel Rootkits. la-samhna labs. Web. 13

Dec 2013. <http://www.la-samhna.de/library/rootkits/index.html>.

[3] Cockerell, Peter. "Assembly Programming Principles." ARM Assembly Language Programming.

http://www.google.com/url?q=http%3A%2F%2Fwww.la-samhna.de%2Flibrary%2Frootkits%2Findex.html&sa=D&sntz=1&usg=AFQjCNG4q8WS_mccj-CiqfG_wdyM4xbkOQ

Computer Concepts, n.d. Web. 13 Dec 2013. <http://www.peter-cockerell.net/aalp/html/ch-5.htmI>.

[4] "Android LKM Rootkit." wiki::rootkit. upche, 23 12 2009. Web. 13 Dec 2013.
<http://upche.org/doku.php?id=wiki:rootkit>.

[5] Percoco, Nicholas J., and Christian Papathanasiou. "“This is not the droid you’re looking for...”."
DEFCON. Defcon. Web. 13 Dec 2013.
<http://www.defcon.org/images/defcon-18/dc-18-presentations/Trustwave-Spiderlabs/DEFCON-18-

Trustwave-Spiderlabs-Android-Rootkit.pdf>.

[6] "When Malware Goes Mobile." SOPHOS. Sophos. Web. 13 Dec 2013.
<http://www.sophos.com/en-us/security-news-trends/security-trends/malware-goes-mobile/10-tips-to-

prevent-mobile-malware.asp&xgt;.

[7] Wang, Zhaohui. "Google Android Platform Introduction to the Android API, HAL and SDK." .
George Mason University. Web. 13 Dec 2013.

<http://cs.gmu.edu/~astavrou/courses/ISA 673 S12/Android Platform Extended.pdf>.

Supporting Material

Listed below is code for the two methods of finding the elusive sys call table, as described in the

paper. I have provided annotations within the code.

Sys_close method

/lnitialize pointers to traverse code section where sys_close should be contained

static unsigned long* sys_call_table;
static int get_sys_call table(void) {
unsigned long *ptr;
unsigned long *ptr_save = NULL,;
long delta;

ptr=(unsigned long *)init mm.start _code;

//Find sys_close, we subtract 6 words from address to take into account 6th position in sys_call_table
(6th system call)
while((unsigned long)ptr < (unsigned long)init mm.end_code) {
if((unsigned long *)*ptr == (unsigned long *)sys_close) {
ptr_save = ptr-6;

printk (KERN_INFO" -> matching detected at %p\n", ptr_save); }

//Compute the offset by matching against the relevant ARM opcodes

if((unsigned long *)*ptr == (unsigned long *)0xe3c07609 &&
(unsigned long *)*(ptr+1) == (unsigned long *)0xe3570071 &&

(unsigned long *)*(ptr+2) == (unsigned long *)0x13570f59 &&

(unsigned long *)*(ptr+3) == (unsigned long *)0x388d0060 &&
(unsigned long *)*(ptr+4) == (unsigned long *)0x31a00001 &&
(unsigned long *)*(ptr+5) == (unsigned long *)0x31a01002 &&
(unsigned long *)*(ptr+6) == (unsigned long *)0x31a02003 &&

(unsigned long *)*(ptr+7) == (unsigned long *)0x31a03004){

delta = ptr - ptr_save;

printk (KERN_INFO" -> opcode detected at %p, probable stc %p, delta = %ld\n", ptr, ptr_save, delta);

//We know that if we get an offset outside of this range we messed something up
if(delta > 0x154 && delta < 0x174){

sys_call table = (unsigned long *)ptr_save; return 0; } }

ptr++; } return-1;}

Doing Things The Hard Way

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/init_task.h>

#include <linux/syscalls.h>

unsigned long* find sys_call table();
//Nice little greeting message for when the Linux Kernel Module is loaded
int init_module() {

printk("<1> Hello, kernel!\n");

unsigned long *sys_call table = find_sys call table();

return 0;

}

//Nice little exit message

void cleanup module() {
printk("<1>I'm not offended that you"

"unloaded me. Have a pleasant day!\n");

}

unsigned long* find sys call table()

{

//Software Interrupt Table handler address (remember, in some ARM systems this would be stored at

0x8, but Android is a vector implementation and is thus stored at this address)

const void *swi_addr = 0xFFFF0008;

unsigned long* sys_call table = NULL;
unsigned long* ptr = NULL;

unsigned long vector_swi_offset = 0;
unsigned long vector_swi_instruction = 0;

unsigned long *vector swi_addr ptr =NULL;

//Get the instructions for vector_swi

memcpy(&vector_swi_instruction, swi_addr, sizeof(vector_swi_instruction));

printk(KERN_INFO "-> vector_swi instruction %Ix\n", vector_swi_instruction);

//Get vector_swi offset

vector_swi_offset = vector_swi_instruction & (unsigned long)0x00000fft;

printk (KERN_INFO "-> vector_swi offset %Ix\n", vector _swi_offset);

//Calculate vector_swi address

vector swi_addr ptr = (unsigned long *)((unsigned long)swi_addr + vector swi_offset + 8);

printk (KERN_INFO "-> vector_swi_addr_ptr %p, value %Ix\n", vector_swi_addr_ptr, *vector_swi_addr_ptr);

//Here we start to try to find the reference to sys_call_table from the SWI handler
ptr=*vector _swi_addr ptr;
bool foundFirstLighthouse = false;

unsigned long sys_call_table offset = 0;

printk (KERN_INFO "-> ptr %p, init mm.end_code %Ix\n", ptr, init mm.end_code);

while ((unsigned long)ptr < init mm.end _code && sys_call_table == NULL)

{
//Lighthouse values to insure we’re in the right spot in memory (lighthouses guide, duh)
if ((*ptr & (unsigned long)0xftffOfff) == 0xe3a00000)

{

foundFirstLighthouse = true;
printk (KERN_INFO "-> found first lighthouse at %p, value %lx\n", ptr, *ptr);

}

//Looking for the load sys_call instruction

if (foundFirstLighthouse && ((*ptr & (unsigned long)0xffff0000) == 0xe28f0000))
{
// Get syscall table offset

sys_call table offset = *ptr & (unsigned 1ong)0x00000fft;

printk (KERN_INFO "-> sys_call table reference found at %p, value %lx, offset %Ix\n", ptr, *ptr,

sys_call_table offset);

// VOILA! Address obtained!

sys_call table = (unsigned long)ptr + 8 + sys_call table offset;
printk (KERN_INFO "-> sys _call_table found at %p\n", sys_call_table);

break;

}

ptrt+;

return sys_call_table;

