Beyond the good ol' LaunchAgents - 28 - Authorization
Plugins

@ theevilbit.github.io/beyond/beyond 0028

February 9, 2022

This is part 28 in the series of “Beyond the good ol' LaunchAgents”, where I try to collect
various persistence techniques for macOS. For more background check the introduction.

This persistence mechanism was described in very detail by Chris Ross in his blogpost:
Persistent Credential Theft with Authorization Plugins. He also developed sample code,
which can be found on his GitHub. Thus this blog will only focus on the high level summary,
and some changes that happened since he wrote that post.

On a high level, authorization plugins are extensions that can be used by the system to
grant specific authorization rights.

For installation we need to perform two steps. First is adding the plugin bundle to the
directory /Library/Security/SecurityAgentPlugins/ . Second we need to modify the
authorization database and add an entry so that our plugin is loaded and invoked as needed.

For example I made a testAuthPlugin based on Chris’s code, and used his install script to
place it under the system.login.console right. The plugin is added under the
mechanisms, as testAuthPlugin:login, privileged .

1/4


https://theevilbit.github.io/beyond/beyond_0028/
https://theevilbit.github.io/beyond/beyond_intro/
https://twitter.com/xorrior
https://posts.specterops.io/persistent-credential-theft-with-authorization-plugins-d17b34719d65
https://github.com/xorrior/macOSTools/tree/master/auth_plugins

csaby@mantarey ~ % security authorizationdb read system.login.console
<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>class</key>
<string>evaluate-mechanisms</string>
<key>comment</key>
<string>Login mechanism based rule. Not for general use, yet.</string>
<key>created</key>
<real>657182100.19664896</real>
<key>mechanisms</key>
<array>
<string>builtin:policy-banner</string>
<string>builtin:prelogin</string>
<string>loginwindow:login</string>
<string>builtin:login-begin</string>
<string>builtin:reset-password, privileged</string>
<string>loginwindow:FDESupport, privileged</string>
<string>builtin:forward-login, privileged</string>
<string>builtin:auto-login, privileged</string>
<string>builtin:authenticate,privileged</string>
<string>PKINITMechanism:auth, privileged</string>
<string>builtin:login-success</string>
<string>loginwindow:success</string>
<string>HomeDirMechanism:login, privileged</string>
<string>HomeDirMechanism:status</string>
<string>testAuthPlugin:login,privileged</string>
<string>MCXMechanism:login</string>
<string>CryptoTokenKit:login</string>
<string>loginwindow:done</string>
</array>
<key>modified</key>
<real>665844824.116117</real>
<key>shared</key>
<true/>
<key>tries</key>
<integer>10000</integer>
<key>version</key>
<integer>8</integer>
</dict>
</plist>
YES (0)

After a logoff and login, the plugin will be loaded.

What I would like to highlight is that the process this plugins runs inside was changed. In the
past it was running inside authorizationhost . If we check the entitlements of this
process, we can see that it would be problematic.

2/4



Executable=/System/Library/Frameworks/Security.framework/Versions/A/MachServices/authc

Identifier=com.apple.authorizationhost

Format=bundle with Mach-0 universal (x86_64 armé64e)

CodeDirectory v=20400 size=2388 flags=0x0(none) hashes=64+7 location=embedded
Platform identifier=13
Signature size=4442
Signed Time=2021. Dec 20. 1:50:34
Info.plist entries=22
TeamIdentifier=not set
Sealed Resources version=2 rules=2 files=0
Internal requirements count=1 size=76

[Dict]

[Key] com.apple.ahp
[Value]
[Bool] true

[Key] com.apple.keystore.device

[Value]
[Bool] true

[Key] com.apple.keystore.console

[Value]
[Bool] true

[Key] com.apple.keystore.filevault

[Value]
[Bool] true

[Key] com.apple.security.smartcard

[Value]

[Bool] true
[Key] com.apple.authkit
[Value]

[Bool] true

.client.private

[Key] com.apple.keystore.device.verify

[Value]
[Bool] true

[Key] com.apple.keystore.domain.select

[Value]
[Bool] true

[Key] com.apple.authorization.extract-password

[Value]

[Bool] true
[Key] com.apple.private
[Value]

[Bool] true
[Key] com.apple.private
[Value]

[Bool] true
[Key] com.apple.private
[Value]

[Bool] true
[Key] com.apple.private
[Value]

[Bool] true
[Key] com.apple.private
[Value]

.applecredentialmanager.allow

.security.clear-library-validation

.opendirectoryd.registerexternalauth

.configurationprofiles.bootstraptoken.readonly

.tcc.allow

3/4



[Array]
[String] kTCCServiceSystemPolicyNetworkVolumes

The plugin would access all of these entitlements, and for example by accessing

kTCCServiceSystemPolicyNetworkVolumes is a TCC bypass straight away. Apple has
changed this (maybe someone reported this), and now the plugin is loaded by an XPC
service, authorizationhosthelper.x86_64 , which lacks all of these rights.

Executable=/System/Library/Frameworks/Security.framework/Versions/A/MachServices/authc

Identifier=com.apple.authorizationhosthelper.x86_64
Format=bundle with Mach-0 thin (x86_64)
CodeDirectory v=20400 size=1281 flags=0x0(none) hashes=29+7 location=embedded
Platform identifier=13
Signature size=4442
Signed Time=2021. Dec 20. 1:49:47
Info.plist entries=21
TeamIdentifier=not set
Sealed Resources version=2 rules=2 files=0
Internal requirements count=1 size=88
[Dict]
[Key] com.apple.security.smartcard
[Value]
[Bool] true
[Key] com.apple.private.security.clear-library-validation
[Value]
[Bool] true

This is similar to what we see in other processes used by Apple, like coreaudiod ,loading of
external plugins is done by an XPC service.

We can confirm this by checking the logs, for example my testAuthPlugin logs a simple
message.

2022-02-06 13:55:48.739099+0100 0x3e25 Default 0x0 1151 O
authorizationhosthelper.x86_64: (testAuthPlugin) testAuthPlugin was executed

4/4



