
1/9

November 27, 2021

Beyond the good ol' LaunchAgents - 23 - emond, The
Event Monitor Daemon

theevilbit.github.io/beyond/beyond_0023

This is part 23 in the series of “Beyond the good ol' LaunchAgents”, where I try to collect
various persistence techniques for macOS. For more background check the introduction.

This post will be about emond , Apple’s Event Monitor daemon.

I think almost everything has been already told about this method and emond in general by

James Reynolds here and xorrior here so really not much left for me. There is no point for me

replicating their awesome posts, so please just read them. That’s it! Thank you for reading!

¯\(ツ)/¯ .

.

.

.

.

.

.

.

.

OK, well… I will still give a super-brief summary of how to persist with emond, and then, I

decided to add my contribution to the emond documentation, so stay tuned.

The TL;DR

The emond service is defined in

/System/Library/LaunchDaemons/com.apple.emond.plist .

https://theevilbit.github.io/beyond/beyond_0023/
https://theevilbit.github.io/beyond/beyond_intro/
http://magnusviri.com/what-is-emond.html
https://twitter.com/xorrior
https://www.xorrior.com/emond-persistence/

2/9

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>Disabled</key>
<false/>
<key>Label</key>
<string>com.apple.emond</string>
<key>MachServices</key>
<dict>
 <key>com.apple.emond.evtq</key>
 <dict>
 <key>HideUntilCheckIn</key>
 <true/>
 </dict>
</dict>
<key>Program</key>
<string>/sbin/emond</string>
<key>ProgramArguments</key>
<array>
 <string>/sbin/emond</string>
</array>
<key>QueueDirectories</key>
<array>
 <string>/private/var/db/emondClients</string>
</array>
<key>DrainMessagesOnFailedInit</key>
<true/>
<key>EnablePressuredExit</key>
<true/>
<key>EnableTransactions</key>
<false/>

</dict>
</plist>

It will start, whenever there is a file in the directory /private/var/db/emondClients/ ,

which is specified by QueueDirectories in the PLIST file. We can create even an empty

file, the content is not so important.

sudo touch /private/var/db/emondClients/some

Then emond will started by launchd and it will process the rules found inside

/etc/emond.d/rules/ . These rules define what action to perform when a specific event

occurs. For a detailed explanation of these events and actions please refer to the blog posts I

linked at the very beginning. For the persistence example I will show how we can run a

simple command when emond is starting up. First, let’s make a copy of the default sample

rule.

sudo cp /etc/emond.d/rules/SampleRules.plist /etc/emond.d/rules/startup.plist

and edit it so it looks like this.

3/9

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <dict>
 <key>name</key>
 <string>create file</string>
 <key>enabled</key>
 <true/>
 <key>eventTypes</key>
 <array>
 <string>startup</string>
 </array>
 <key>actions</key>
 <array>
 <dict>
 <key>command</key>
 <string>/bin/bash</string>
 <key>user</key>
 <string>root</string>
 <key>arguments</key>
 <array>
 <string>-c</string>
 <string>touch
/Library/emondstarted.txt</string>
 </array>
 <key>type</key>
 <string>RunCommand</string>
 </dict>
 </array>
 </dict>
</array>
</plist>

Here we define a command that will be executed when emond starts

(eventTypes : startup). Note that emond will startup during boot time, when the user is

not yet logged in. We can control the command with the command , arguments and user

keys. The above will execute /bin/bash -c touch /Library/emondstarted.txt as root.

Note that the enabled key is set to true .

Now if we restart emond by killing it or rebooting our machine the above command will be

executed and the file /Library/emondstarted.txt will be created.

The /etc/emond.d/emond.plist file contains configuration options, like other rule

directories (additionalRulesPaths) and also the following filter:

<key>filterByUID</key>
<string>0</string>
<key>filterByGID</key>
<string></string>

4/9

This filter controls who can call emond’s XPC service, what we will discuss next.

com.apple.emond.evtq

I decided to dig into a bit into the XPC internals of emond , which I think was not

documented before.

As defined in the launchd file, the XPC service name is com.apple.emond.evtq . If we open

emond in a disassembler, we can find that it’s created here:

/* @class Monitor */
-(int)SetXPCListenerFor:(void *)arg2 {
 r15 = arg2;
 r14 = self;
 rax = xpc_connection_create_listener("com.apple.emond.evtq", arg2, arg2);
 if (rax != 0x0) {
 xpc_connection_set_legacy(rax);
 var_48 = *__NSConcreteStackBlock;
 *(&var_48 + 0x8) = 0xffffffffc2000000;
 *(&var_48 + 0x10) = sub_10000e621;
 *(&var_48 + 0x18) = 0x10002c420;
 *(&var_48 + 0x20) = r14;
 *(&var_48 + 0x28) = r15;
 xpc_connection_set_event_handler(rax, &var_48);
 *(r14 + 0x18) = rax;
 xpc_retain(rax);
 xpc_connection_resume(rax);
 rax = 0x0;
 }
 else {
 rax = 0xffffffffffffffff;
 }
 return rax;
}

Inside the connection handler we find a call to filterBySourceUID:GID: .

int sub_10000e621(int arg0, int arg1, int arg2, int arg3, int arg4, int arg5) {
...
 r15 = xpc_connection_get_euid(r13);
 rax = xpc_connection_get_egid(r13);
 r12 = rax;
 sub_10000bbc5(0x3, "XPC Connection Request recieved from %d:%d
(uid:gid)", r15, rax, r8, r9, var_60);
 if ([*(r14 + 0x20) filterBySourceUID:r15 GID:r12] != 0x0) {
...

The actual UID/GID filter is populated at the EntryPoint .

5/9

*qword_100038cb8 = [[Monitor alloc] initWithRulebase:*qword_100038ca8
andVariables:r13];
[*qword_100038cb8 setEventFilterUID:sub_10000c060([*qword_100038ca0
objectForKey:@"filterByUID", r13]) FilterGID:sub_10000c060([*qword_100038ca0
objectForKey:@"filterByGID", r13])];

Without going into further details, if we follow these function, we will find that it parses the

config file, and reads in the values defined in filterByUID and filterByGID . This means

that by default only root level processes can communicate with emond , but we can also

modify this setting if needed, allowing other processes.

So we know that only root can connect. But how normally messages are sent? The

/System/Library/LaunchDaemons/com.apple.emlog.plist defines a perl script at

/usr/libexec/emlog.pl . This script uses the /usr/libexec/xssendevent binary to

send messages to emond .

For example:

echo "{ eventType = auth.failure; eventSource = emlog.pl; eventDetails = {clientIP =
\"1.1.1.1\"; hostPort = 21; protocolName = \"ftp\";};}" | /usr/libexec/xssendevent

Since only root can send messages, we need to execute this command as root.

I edited my /private/etc/emond.d/rules/SampleRules.plist to log a message for the

auth.failure event type.

6/9

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>

<dict>
 <key>name</key>
 <string>sample rule</string>
 <key>enabled</key>
 <true/>
 <key>eventTypes</key>
 <array>
 <string>auth.failure</string>
 </array>
 <key>actions</key>
 <array>
 <dict>
 <key>message</key>
 <string>Event Monitor started at ${builtin:now}

</string>
 <key>type</key>
 <string>Log</string>
 <key>logLevel</key>
 <string>Notice</string>
 <key>logType</key>
 <string>syslog</string>
 </dict>
 </array>
</dict>

</array>
</plist>

Now if we execute the command above, we will see a log message in the log stream.

sh-3.2# echo "{ eventType = auth.failure; eventSource = emlog.pl; eventDetails =
{clientIP = \"1.1.1.1\"; hostPort = 21; protocolName = \"ftp\";};}" |
/usr/libexec/xssendevent

csaby@mac ~ % log stream | grep "Event Monitor"
2021-11-27 14:47:02.926999+0100 0x66a7f3 Default 0x0 18157 0
emond: Event Monitor started at 659713622.926977

We can save the event in a json plist file, and specify it as the input for xssendevent . The

json formatted event PLIST file:

{ eventType = auth.failure; eventSource = emlog.pl; eventDetails = {clientIP =
"1.1.1.1"; hostPort = 21; protocolName = "ftp";};}

Then using the -e option, we can specify the previously saved file.

/usr/libexec/xssendevent -e event.plist

7/9

But how can we do this directly with xpc? xssendevent uses the

/usr/lib/libXSEvent.dylib library to send a message.

sh-3.2# otool -L /usr/libexec/xssendevent
/usr/libexec/xssendevent:

/usr/lib/libXSEvent.dylib (compatibility version 1.0.0, current version
1.0.0)

/System/Library/Frameworks/Security.framework/Versions/A/Security
(compatibility version 1.0.0, current version 60157.40.30)

/System/Library/Frameworks/Foundation.framework/Versions/C/Foundation
(compatibility version 300.0.0, current version 1855.103.0)

/usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version
228.0.0)

/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version
1311.0.0)

/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation
(compatibility version 150.0.0, current version 1855.103.0)

Instead of reversing everything, we can use Jonathan Levin’s XPoCe utility to sniff the XPC

communication, and then recreate the code ourselves. This is much easier as we will see the

messages directly without doing lot’s of manual reversing.

To do this we need a machine with SIP disabled, as XPoCe injects code into the target

process. Then we can send our event again.

sh-3.2# echo "{ eventType = auth.failure; eventSource = emlog.pl; eventDetails =
{clientIP = \"1.1.1.1\"; hostPort = 21; protocolName = \"ftp\";};}" | ./XPoCe
/usr/libexec/xssendevent
xpc_connection_create ("com.apple.emond.evtq",0x7f9c3640a0f0) = 0x7f9c36504080 ()
xpc_connection_send_message (connection@0x7f9c36504080,dictionary@0x7f9c3640b070)

= "<connection: 0x7f9c36504080> { name = com.apple.emond.evtq, listener = false, pid
= 0, euid = 4294967295, egid = 4294967295, asid = 4294967295 }"
= "<dictionary: 0x7f9c3640b070> { count = 3, transaction: 0, voucher = 0x0, contents
=

"eventDetails" => <dictionary: 0x7f9c3640b0d0> { count = 4, transaction: 0,
voucher = 0x0, contents =

 "clientIP" => <string: 0x7f9c3640b1f0> { length = 7, contents =
"1.1.1.1" }

 "protocolName" => <string: 0x7f9c3640b290> { length = 3, contents =
"ftp" }

 "hostPort" => <string: 0x7f9c3640b260> { length = 2, contents = "21"
}

 "eventSource" => <string: 0x7f9c3640b370> { length = 8, contents =
"emlog.pl" }

}
"eventType" => <string: 0x7f9c3640b340> { length = 12, contents =

"auth.failure" }
"eventTimestamp" => <double: 0x7f9c3640b130>: 659713961.621497

}"

We can easily translate the above output to the following C code suing the standard XPC

libraries.

8/9

#include <stdio.h>
#include <stdlib.h>
#include <xpc/xpc.h>

int main(int argc, const char **argv) {

 xpc_connection_t service;
 xpc_object_t msg, event_details;

 msg = xpc_dictionary_create(NULL, NULL, 0);
 event_details = xpc_dictionary_create(NULL, NULL, 0);

 xpc_dictionary_set_string(event_details, "clientIP", "1.1.1.1");
 xpc_dictionary_set_string(event_details, "protocolName", "ftp");
 xpc_dictionary_set_string(event_details, "hostPort", "21");
 xpc_dictionary_set_string(event_details, "eventSource", "myxpc");

 xpc_dictionary_set_string(msg, "eventType", "auth.failure");
 xpc_dictionary_set_value(msg, "eventDetails", event_details);
 xpc_dictionary_set_double(msg, "eventTimestamp", 659713961.621497);

 service = xpc_connection_create_mach_service("com.apple.emond.evtq", NULL, 0);
 if (service == NULL) {
 perror("xpc_connection_create_mach_service");
 }

 xpc_connection_set_event_handler(service, ^(xpc_object_t event) {
 xpc_type_t type = xpc_get_type(event);
 if (type == XPC_TYPE_ERROR)
 {
 printf("emond, client, xpc error: %s", xpc_dictionary_get_string(event,
XPC_ERROR_KEY_DESCRIPTION));
 }
 else
 {
 char* description = xpc_copy_description(event);
 printf("emond, client, xpc unexpected type: %s", description);

 }
 });

 xpc_connection_resume(service);

 xpc_connection_send_message(service, msg);

}

Then, once we compile it and execute, we can verify that our event message was properly

logged by emond , by our rule.

9/9

csaby@mac emond % sudo ./emondxpc

csaby@mac ~ % log stream | grep "Event Monitor"
2021-11-27 15:09:50.539508+0100 0x66de62 Default 0x0 18157 0
emond: Event Monitor started at 659714990.539463

If we set the “eventType” to “startup” we can get our file created.

What it is good for? I don’t know :))) I don’t think it’s good for any privilege escalation as we

can’t communicate it with emond as a regular user and emond doesn’t have any cool

entitlements. The effectiveness of our event message is also tied to the rules configured on

the machine, which is nothing by default. However we might find an environment where

emontd is configured differently, and maybe there is some interesting rule that we can

trigger. Other than that I just entertained myself with some reverse engineering and get to

know emond a bit better.

