
1/7

March 15, 2019

Code injection on macOS
knight.sc/malware/2019/03/15/code-injection-on-macos.html

I was recently reviewing the MITRE ATT&CK™ knowledge base and came across the page on

process injection techniques for privilege escalation. For those that are not aware of what the

MITRE ATT&CK™ knowledge base is, it’s a group of documents and definitions that cover

common adversary tactics and techniques. The macOS and Linux sections for process

injection were lumped together and not very detailed. In some cases it seemed like the

information wasn’t even accurate for macOS. This article covers common process injection

techniques that apply to macOS.

DYLD_INSERT_LIBRARIES

This is one of the most well known and common techniques for code injection on macOS. By

setting the DYLD_INSERT_LIBRARIES environment variable to a dylib of their choice and

then starting an application an attacker can get the dylib code running inside of the started

process. In older versions of macOS this could be used to inject a dylib into an Apple

platform application with higher privileges. This would allow the injected dylib to also gain

those additional privileges. Since the addition of SIP in macOS 10.12 this technique can no

longer be used on Apple platform binaries. As of macOS 10.14 third party developers can also

opt in to a hardened runtime for their application. This can also prevent the injection of

dylibs using this technique.

Below are a few examples of how DYLD_INSERT_LIBRARIES works on macOS:

http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-Runtime.html

https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/

Thread Injection

If you look up code injection techniques on Windows, thread injection is one of the most

common. With APIs like CreateRemoteThread the entire process is fairly straight forward

and doesn’t take much code. If you try searching for the same thing on macOS you’ll find a lot

less resources. Luckily, Jonathan Levin, author of the great MacOS and iOS Internals

collection of books has a great example on his website.

http://newosxbook.com/src.jl?tree=listings&file=inject.c

This example makes use of the Mach thread_create_running API. Since macOS has a

dual personality, with low level Mach APIs as well as BSD APIs, there exists two sets of APIs

for working with threads. One is the Mach APIs and the other is the pthread APIs.

Unfortunately some internal parts of macOS expect every thread to have been properly

https://knight.sc/malware/2019/03/15/code-injection-on-macos.html
https://attack.mitre.org/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/
https://developer.apple.com/documentation/security/hardened_runtime_entitlements
http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-Runtime.html
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/
https://www.amazon.com/MacOS-iOS-Internals-User-Mode/dp/099105556X/ref=as_sl_pc_qf_sp_asin_til?tag=newosxbookcom-20&linkCode=w00&linkId=25d40cd80f346c76537ef5fb1ea1ed81&creativeASIN=099105556X
http://newosxbook.com/src.jl?tree=listings&file=inject.c

2/7

created from the BSD APIs and to have all Mach thread structures as well as pthread

structures set up properly. In order to handle this, the inject.c example above, attempts to

first call _pthread_set_self in the injected code in order to get the thread to a working

state.

This approach works well up to macOS 10.14 where some of the pthread internal code

changed. I wanted to get a working version of this example on 10.14 and up so I decided to

look into some of the pthread code. Prior to macOS 10.14, the _pthread_set_self code

did the following:

libpthread-301.50.1/src/pthread.c

PTHREAD_NOINLINE
void
_pthread_set_self(pthread_t p)
{

return _pthread_set_self_internal(p, true);
}

PTHREAD_ALWAYS_INLINE
static inline void
_pthread_set_self_internal(pthread_t p, bool needs_tsd_base_set)
{

if (p == NULL) {
 p = &_thread;
}

uint64_t tid = __thread_selfid();
if (tid == -1ull) {
 PTHREAD_ABORT("failed to set thread_id");
}

p->tsd[_PTHREAD_TSD_SLOT_PTHREAD_SELF] = p;
p->tsd[_PTHREAD_TSD_SLOT_ERRNO] = &p->err_no;
p->thread_id = tid;

if (needs_tsd_base_set) {
 _thread_set_tsd_base(&p->tsd[0]);
}

}

This code allows us to pass NULL into the _pthread_set_self call and in turn it will set

up some of the internal pthread structures based on the main thread of the application.

This is ideal in the injection case because we’re starting from a bare Mach thread with no

pthread structures set up and no reference to any other thread. On macOS 10.14 and

higher this code has changed and you can no longer pass NULL into _pthread_set_self

libpthread-330.201.1/src/pthread.c

http://newosxbook.com/src.jl?tree=listings&file=inject.c
https://opensource.apple.com/source/libpthread/libpthread-301.50.1/src/pthread.c.auto.html
https://opensource.apple.com/source/libpthread/libpthread-330.201.1/src/pthread.c.auto.html

3/7

PTHREAD_NOINLINE
void
_pthread_set_self(pthread_t p)
{
#if VARIANT_DYLD

if (os_likely(!p)) {
 return _pthread_set_self_dyld();
}

#endif // VARIANT_DYLD
_pthread_set_self_internal(p, true);

}

#if VARIANT_DYLD
// _pthread_set_self_dyld is noinline+noexport to allow the option for
// static libsyscall to adopt this as the entry point from mach_init if
// desired
PTHREAD_NOINLINE PTHREAD_NOEXPORT
void
_pthread_set_self_dyld(void)
{

pthread_t p = main_thread();
p->thread_id = __thread_selfid();

if (os_unlikely(p->thread_id == -1ull)) {
 PTHREAD_INTERNAL_CRASH(0, "failed to set thread_id");
}

// <rdar://problem/40930651> pthread self and the errno address are the
// bare minimium TSD setup that dyld needs to actually function. Without
// this, TSD access will fail and crash if it uses bits of Libc prior to
// library initialization. __pthread_init will finish the initialization
// during library init.
p->tsd[_PTHREAD_TSD_SLOT_PTHREAD_SELF] = p;
p->tsd[_PTHREAD_TSD_SLOT_ERRNO] = &p->err_no;
_thread_set_tsd_base(&p->tsd[0]);

}
#endif // VARIANT_DYLD

PTHREAD_ALWAYS_INLINE
static inline void
_pthread_set_self_internal(pthread_t p, bool needs_tsd_base_set)
{

p->thread_id = __thread_selfid();

if (os_unlikely(p->thread_id == -1ull)) {
 PTHREAD_INTERNAL_CRASH(0, "failed to set thread_id");
}

if (needs_tsd_base_set) {
 _thread_set_tsd_base(&p->tsd[0]);
}

}

4/7

The internal implementation was split into a dyld specific one not accessible in the user space

libpthread library and the other internal one which expects a valid thread to be passed in.

In fact _pthread_set_self_internal will crash if null is passed in because it expects the

argument to be there.

I decided to continue reviewing the pthread source code to look for another function that

could help bootstrap a bare Mach thread into a properly set up pthread . I ended up coming

across the pthread_create_from_mach_thread function. This function has existed since

macOS 10.12 so it should work on 10.12 and up. It calls into the internal _pthread_create

implementation passing in true to the from_mach_thread argument. I could only find

one binary on my system that actually used this API: RemoteInjectionAgent within the

Xcode DVTInstrumentsFoundation.framework .

The idea is to inject a bare Mach thread as a bootstrap thread and then use the

pthread_create_from_mach_thread to create a second fully configured, legitimate

pthread . Here’s the modified injectedCode from Jonathan Levin’s example.

5/7

 _injectedCode:
00000001000020d0 push rbp ;
DATA XREF=_inject+576, _inject+1014
00000001000020d1 mov rbp, rsp
00000001000020d4 sub rsp, 0x10
00000001000020d8 lea rdi, qword [rbp-8]
00000001000020dc xor eax, eax
00000001000020de mov ecx, eax
00000001000020e0 lea rdx, qword [_injectedCode+56] ;
0x100002108
00000001000020e7 mov rsi, rcx
00000001000020ea movabs rax, 0x5452434452485450 ;
PTHRDCRT
00000001000020f4 call rax
00000001000020f6 mov dword [rbp-0xc], eax
00000001000020f9 add rsp, 0x10
00000001000020fd pop rbp
00000001000020fe mov rax, 0xd13
0000000100002105 jmp _injectedCode+53 ;
CODE XREF=_injectedCode+53
0000000100002107 ret

0000000100002108 push rbp ;
DATA XREF=_injectedCode+16
0000000100002109 mov rbp, rsp
000000010000210c sub rsp, 0x10
0000000100002110 mov esi, 0x1
0000000100002115 mov qword [rbp-8], rdi
0000000100002119 lea rdi, qword [aLiblibliblib] ;
"LIBLIBLIBLIB"
0000000100002120 movabs rax, 0x5f5f4e45504f4c44 ;
DLOPEN__
000000010000212a call rax
000000010000212c xor esi, esi
000000010000212e mov edi, esi
0000000100002130 mov qword [rbp-0x10], rax
0000000100002134 mov rax, rdi
0000000100002137 add rsp, 0x10
000000010000213b pop rbp
000000010000213c ret
 aLiblibliblib:
000000010000213d db "LIBLIBLIBLIB", 0 ;
DATA XREF=_injectedCode+73

You can download a full updated working example of this code from the link below:

https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a

There’s a couple notes on this technique. First it depends on being able to call

task_for_pid to get the Mach task port of the victim process. You can only do this as root

and just like dylib injection you can not use task_for_pid on Apple platform binaries due

https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a

6/7

to SIP on macOS 10.12 and higher. So while it’s still an interesting technique it’s not as useful

for privilege escalation. This technique has been used in the past in iOS exploits in cases

where another exploit has allowed a task port to be leaked over to an attacker process.

Thread Hijacking

Another possible techinque on macOS is thread hijacking. Instead of creating a thread in a

remote process we instead retrieve an existing thread and coerce it into running what we

want. Apple has continued to lock down task_for_pid as well as any Mach API that takes

a task port in order to try to prevent the abuse of leaked task ports. Due to this, thread

hijacking has becomes a more interesting technique. Brandon Azad has an amazing write up

around this technique and I’m not going to attempt to cover it in great detail here. I highly

recommend you go and read the following:

https://bazad.github.io/2018/10/bypassing-platform-binary-task-threads/

I looked into this technique briefly and attempted to hijack a thread, run code and then put

the thread back to its original state. It appears that what we can save with

thread_get_state doesn’t really save all of the state and the thread often crashes. It’s

good enough for other uses though if you’re just trying to execute code in the context of a

privileged app but not good enough if you’re trying to take control of another process without

notice. You can see my code example here:

https://gist.github.com/knightsc/bd6dfeccb02b77eb6409db5601dcef36

If you’re interested in this technique I highly recommend reading over the code to Brandon

Azad’s threadexec library. It goes into great detail around this technique and goes along with

his article above. Unfortunately it seems like he came to a similar conclusion as me in that

trying to save and restore the thread state does not work that reliably.

ptrace?

If you read the ATT&CK page you might have been led to believe that on Linux and macOS

the ptrace APIs could be used for code injection. That’s not actually the case on macOS.

While the ptrace syscall does exist on macOS it is not fully implemented. For instance

none of the PTRACE_PEEKTEXT , PTRACE_POKETEXT , PTRACE_GETREGS ,

PTRACE_SETREGS calls exist.

Other techniques?

I think there could also exist other techniques that haven’t been explored yet. With

libdispatch being one of the core libraries enabling applications to do work in parallel it

seems like that might be an area that hasn’t fully been explored yet. My thought is that it

might be possible to inject code into a remote process that is in the format of a valid dispatch

https://bazad.github.io/2018/10/bypassing-platform-binary-task-threads/
https://gist.github.com/knightsc/bd6dfeccb02b77eb6409db5601dcef36
https://github.com/bazad/threadexec
https://github.com/bazad/threadexec/blob/master/src/thread_api/tx_init_thread.c#L124

7/7

block and then get that block submitted to a work queue. Alternatively it might be possible to

locate a block queued up but not currently running and hijack the code that the block points

too. I haven’t yet had time to dig into this more but I think it’s definitely an interesting area

of research.

Conclusion

Hopefully you can see that there are a wide variety of different techniques for code injection

on macOS. My hope is that with more articles like this the knowledge will continue to spread.

In my next article I plan on covering different ways that some of these techniques can be

detected.

