
1/22

May 26, 2024

QakBOT v5 Deep Malware Analysis
zw01f.github.io/malware analysis/qakbot/

17 minute read

Meet Qakbot

QakBot, also recognized as QBot, QuackBot, and Pinkslipbot, has been operational for years, initially as a
financial malware targeting governments and businesses for financial fraud by pilfering user credentials and
keystrokes.

https://zw01f.github.io/malware%20analysis/qakbot/

2/22

Over time, it has evolved into a malware dropper, spreading sensitive information to other network systems.
The threat group has updated its code-base to support 64-bit versions of Windows, enhanced encryption
algorithms, and added further obfuscation techniques. With the release of Qakbot version 5.0, the string
encryption algorithm underwent a significant change. While strings are still encrypted using a simple XOR
key, the key is no longer hard-coded in the data section. Instead, it is encrypted with AES.

Technical in Points

1. Qakbot uses API hashing to hide its imports. It uses CRC32 hashing, along with another layer of
XORing with a hard-coded key. It’s parsing the loaded DLLs in memory and getting its export tables. As
a result, Qakbot can resolve imported APIs and build its IAT.

2. Qakbot comes with encrypted strings inside the .data section, These strings are encrypted using a
XOR key and that key is encrypted using AES algorithm.

3. Environment Detection: Qakbot includes checks to detect if it is running in a virtual machine or
sandbox environment, commonly used tools for malware analysis. If such conditions are detected,
Qakbot may change its behavior or terminate itself to avoid detection.

4. Configuration Extraction: Qakbot comes with AES encrypted configuration.This configuration
contains details related to the malicious campaign and the C2 which the malware will communicate with
for further commands.

5. C2 Communication: After extracting its C2, Qakbot establishes a connection with its C2 servers to
receive commands for downloading, executing additional modules, updating configuration values, and
exfiltrating gathered information from the infected system.

6. Qakbot gathers comprehensive information about the compromised host to send to its C2 server and
create a unique victim fingerprint. This includes OS version, domain trusts, computer name, username,
screen resolution, system time, system uptime, and bot uptime. It mainly relies on Windows
Management Instrumentation(WMI) to collect details such as hardware ID, installed languages, and
installed programs.

Sample Basic Information

SHA-256 af6a9b7e7aefeb903c76417ed2b8399b73657440ad5f8b48a25cfe5e97ff868f

File type Win DLL

Target Machine x64

Creation Time 2024-01-29 13:43:37 UTC

First Seen In The Wild 2024-02-07 10:12:50 UTC

3/22

Figure(1): sample on VirusTotal

Anti Analysis

API Resolution

QakBot uses Windows API Hashing (Dynamic API Resolution) to evade signature-based anti-malware
scanners and make static analysis harder.

Figure(2): API hashes

https://zw01f.github.io/assets/images/malware-analysis/qakbot/virus_total.png
https://zw01f.github.io/assets/images/malware-analysis/qakbot/api_hash_1.png

4/22

We can see based on algorithm constants that Qakbot uses the CRC32 hash algorithm, also there is another
layer of XORing, and here are the steps in some detail :

The DllName is decrypted by XORing with a hard-coded key 0xA235CB91. After decryption, a handle to the
DLL is obtained. This handle is then passed to a function that iterates over the DLL’s exported functions. A
function resolves the addresses of the exports by iterating over the export table of the module, hashing the
name of each export using CRC32, and comparing the result with a hard-coded CRC32 hash to determine if
it has found the correct address.

Figure(3): API resolving Steps

With knowledge of the algorithm name and XOR key, we can use the awesome hashdb plugin from OALabs
that performs string hash lookup against a remote database.

Figure(4): hashdb result

https://zw01f.github.io/assets/images/malware-analysis/qakbot/api_res_process.png
https://github.com/OALabs/hashdb-ida
https://zw01f.github.io/assets/images/malware-analysis/qakbot/hashdb_res.png

5/22

Once the HashDB plugin decrypts all API names, we create structures to store the API lists from each DLL.
This simplifies our workflow and make our life easier while analysis .

Figure(5): populated IAT

Defeating encrypted Strings

Qakbot strings are obfuscated, making the analysis more difficult, so the next step is to decrypt them.

Decryption routine

This version decrypts the strings with an XOR key just like the earlier versions but this XOR key is encrypted
using the AES algorithm.

It first Calculates a SHA256 hash for aes_key_ref and uses the calculated hash as the AES Key then
decrypts the enc_xor_key blob using AES in CBC mode to have the dec_xor_key.

Figure(6): The XOR key decryption process

https://zw01f.github.io/assets/images/malware-analysis/qakbot/dec_iat.png
https://zw01f.github.io/assets/images/malware-analysis/qakbot/str_dec_0.png
https://zw01f.github.io/assets/images/malware-analysis/qakbot/str_dec_1.png

6/22

The final step is to use the dec_xor_key to decrypt the string array.

Figure(7): String decryption process
Writing a decryption script

We now can write an IDAPython script to decrypt the strings and add comments to the code, making analysis
easier here are some notes before the script :

The first 16 bytes of the enc_xor_key are used as the AES IV.
There are two encrypted string tables used.
There are two decryption functions with 4 wraps.
The wrap function decrypts the string array and selects the string based on an index [the only
argument].

Figure(8): Index pattern used in script

https://zw01f.github.io/assets/images/malware-analysis/qakbot/str_dec_2.png

7/22

#--------------- imports --------------------#
import hashlib
from Crypto.Cipher import AES
from Crypto.Util.Padding import unpad
import idautils
#------------- helper ------------------------#
def hex_to_int(x):
 if type(x) == int :
 return x
 return (int(x[:-1], 16))
def search_by_index(table , ind):
 return(table[ind:].split('\x00')[0])
#------------- IDA py ------------------------#
def read_data_ida(address,size):
 data = idc.get_bytes(address, size)
 return data
def set_comment(address, text):
 idc.set_cmt(address, text,0)
#------------ Decryption ---------------------#
def calculate_sha256(input_data):
 sha256_hash = hashlib.sha256()
 sha256_hash.update(input_data)
 hash_hex = sha256_hash.digest()
 return hash_hex
def aes_decrypt(ciphertext, key, iv):
 cipher = AES.new(key, AES.MODE_CBC, iv)
 plaintext = cipher.decrypt(ciphertext)
 unpadded_plaintext = unpad(plaintext, AES.block_size)
 return unpadded_plaintext
def xor_decrypt(data,key):
 dec_data = ''
 for i in range(len(data)):
 dec_data += chr(data[i] ^ key[i % len(key)])
 return dec_data
def full_dec(enc_str , enc_xor_key , aes_key_init):
 aes_key = calculate_sha256(aes_key_init)
 dec_xor_key = aes_decrypt(enc_xor_key[16:],aes_key,enc_xor_key[:16])
 dec_str = xor_decrypt(enc_str,dec_xor_key)
 return dec_str
#----------- Decrypt enc str tbl 1 -------------#
enc_str_1 , enc_xor_key_1 , aes_key_init_1 = read_data_ida(0x1800297A0 , 0x1836) ,
read_data_ida(0x18002AFE0,0xA0) , read_data_ida(0x180029700,0x9F) #read our data .
tbl_1 = full_dec(enc_str_1,enc_xor_key_1,aes_key_init_1)
#----------- Decrypt enc str tbl 2 -------------#
enc_str_2 , enc_xor_key_2 , aes_key_init_2 = read_data_ida(0x1800282A0 , 0x5AD) ,
read_data_ida(0x1800281C0,0xD0) , read_data_ida(0x180028150,0x63) #read our data .
tbl_2 = full_dec(enc_str_2,enc_xor_key_2,aes_key_init_2)

#--> pattern used: mov ecx , immediate_val
def do_magic(table,references):
 for ref in references:
 prev_instruction_address = idc.prev_head(ref)
 if (idc.print_insn_mnem(prev_instruction_address) == 'mov' and
idc.print_operand(prev_instruction_address,0) == 'ecx' and
idc.get_operand_type(prev_instruction_address,1) == 5):
 ind = print_operand(prev_instruction_address,1)
 set_comment(ref,search_by_index(table,hex_to_int(ind)))
 else :
 prev_instruction_address = idc.prev_head(prev_instruction_address)
 if (idc.print_insn_mnem(prev_instruction_address) == 'mov' and
idc.print_operand(prev_instruction_address,0) == 'ecx' and

8/22

idc.get_operand_type(prev_instruction_address,1) == 5):
 ind = print_operand(prev_instruction_address,1)
 set_comment(ref,search_by_index(table,hex_to_int(ind)))
 else:
 prev_instruction_address = idc.prev_head(prev_instruction_address)
 if (idc.print_insn_mnem(prev_instruction_address) == 'mov' and
idc.print_operand(prev_instruction_address,0) == 'ecx' and
idc.get_operand_type(prev_instruction_address,1) == 5):
 ind = print_operand(prev_instruction_address,1)
 set_comment(ref,search_by_index(table,hex_to_int(ind)))
 else:
 print('not working' ,hex(ref))

reference_1 = list(idautils.CodeRefsTo(idc.get_name_ea_simple("wrap_mw_decrpyion_fun_1"), 0))
#codeRefs-to need "ea" as arguemt .
reference_1 = reference_1 +
list(idautils.CodeRefsTo(idc.get_name_ea_simple('wrap_2_mw_decrpyion_fun_1') , 0))

reference_2 = list(idautils.CodeRefsTo(idc.get_name_ea_simple('wrap_2_mw_decrpyion_fun_2'), 0))
reference_2 = reference_2 +
list(idautils.CodeRefsTo(idc.get_name_ea_simple('wrap_mw_decrpyion_fun_2'), 0))
def main():
 do_magic(tbl_1,reference_1)
 do_magic(tbl_2,reference_2)

if __name__ == '__main__':
 main()

Figure(9): IDA python script result

https://zw01f.github.io/assets/images/malware-analysis/qakbot/script_res.png

9/22

you can get the full decrypted strings list from here

Emulation Check

Qakbot uses the GetFileAttributesW function to check for a folder "C:\INTERNAL__empty." If this directory
exists, it suggests that the environment might be used for analysis, such as Microsoft Defender emulation or
sandbox, and then the process will be terminated.

Figure(10): emulation check

Checking Processes

Qakbot loops through running processes on the system and compares their executable names against well-
known static and dynamic malware analysis tools.

Figure(11): Qakbot search for tool's process
full processes list

Expand to see more
 wireshark.exe

https://justpaste.it/89hqg
https://zw01f.github.io/assets/images/malware-analysis/qakbot/anti_sandbox.png
https://zw01f.github.io/assets/images/malware-analysis/qakbot/anti_analysis_1.png

10/22

 filemon.exe
 procmon.exe

 idaq64.exe
 tcpview.exe

Anti VM

Qakbot exploits Windows Management Instrumentation (WMI), a system management technology used to
administer remote systems and provide comprehensive data about the operating system, hardware, and
installed software and applications on a computer.

It uses WMI queries to gather system information, including details about virtualization. It queries
classes such as Win32_ComputerSystem, Win32_Bios, Win32_DiskDrive, or
Win32_PhysicalMemory, then check for patterns indicative of virtualized environments. These patterns
include known manufacturer or model strings associated with virtualization platforms.

Below are the classes and their corresponding checked values :

Class Checked Values

Win32_ComputerSystem MS_VM_CERT, VMware, Virtual Machine

Win32_Bios VRTUAL, VMware, VMW, Xen

Win32_DiskDrive VMware, PROD_VIRTUAL_DISK, VIRTUAL-DISK, XENSRC, 20202020

Win32_PhysicalMemory VMware, VMW, QEMU

Win32_PnPEntity QEMU, VMware Pointing, VMware Accelerated, VMware SCSI,..

Qakbot also searches for ‘vmnat’, a process initiated by VMware upon startup. ‘vmnat’ manages
communication in the Network Address Translation (NAT) set up with the guest machine .

Qakbot’s C2 Functionality

Malware needs to connect to C2 servers to execute remote commands, update its code, and exfiltrate stolen
data. Before doing so, it needs to extract its C2 from an encrypted configuration.

Configuration Extraction

Qakbot, in this version, contains an embedded AES encrypted configuration within its .data section.

11/22

Figure(12): Encrypted configuration

The AES decryption method used is the same as the one we’ve seen for decrypting strings. The key will be
SHA-256 hashed before attempting the decryption, the first 16 bytes of the encrypted string used as IV. Then
use the final key to decrypt the rest encrypted data.

Figure(13): Decrypt the campaign INFO

With the same method and key, Qakbot will decrypt its C2 list .

Figure(14): Decrypt the C2 list

https://zw01f.github.io/assets/images/malware-analysis/qakbot/enc_config.png

12/22

With this information, we can reuse our string decryption script with some edits to have the configuration .
notice that :

The first 32 bytes in the decrypted data represent the SHA-256 validation, a cryptographic process used
for data integrity verification. These bytes serve as a hash value that allows systems to confirm the
authenticity and integrity of the data being processed.

We can see the output of the script (configuration).

Figure(15): the Decrypted configuration the malware use

C2 communication

QakBot mainly uses HTTP for C2 communication. The malware communicates with its C2 servers through
encrypted AES payloads and then encodes the result in Base64.

Figure(16): C2 communication fun

https://zw01f.github.io/assets/images/malware-analysis/qakbot/c2_fun.png

13/22

Figure(17): AES Encryption and the key used while C2 communication

Gather system INFO

Part of QakBOT communication with its command and control is sending information about the computer.
QakBot gathers computer information using a combination of Windows API calls, shell commands, and
Windows Management Instrumentation (WMI) commands. This approach allows it to collect various details
about the system, including hardware, software, and configuration data. By using these methods together,
QakBot obtains a comprehensive overview of the target computer’s setup and specifications.

VMI Queries Used

Qakbot builds a WMI query by concatenating strings to form It then executes these queries to retrieve critical
data and obtain a comprehensive overview of the system’s configuration and installed security measures.

14/22

Figure(18): Qakbot create VMI queries

Here are the WMI classes targeted and the information they retrieve:

Class Properties Result

Win32_OperatingSystem Caption OS Info [name and version]

AntiVirusProduct * Information about antivirus products installed on a
system

Win32_Processor * Information about the processor

Win32_ComputerSystem * Information about the computer system, including
its hardware configuration, such as the
manufacturer, model, system type, number of
processors, memory

Win32_Bios * Details about a computer’s BIOS, like its version,
manufacturer, and release date

Win32_DiskDrive * Information about the disk drives installed on a
computer, including their model, manufacturer,
interface type, capacity

Win32_PhysicalMemory * Details about the physical memory modules in
use, including their capacity, speed, manufacturer

15/22

Class Properties Result

Win32_Product Caption, Description,
Vendor, Version,
InstallDate, InstallSource,
PackageName

Information about installed software, including its
name, description, vendor, version, installation
date, installation source, and package name

Win32_PnPEntity Caption, Description,
DeviceID, Manufacturer,
Name, PNPDeviceID,
Service, Status

Details about Plug and Play devices, such as their
name, description, device ID, manufacturer, name,
PnP device ID, service, and status

Windows command line

Qakbot creates anonymous pipes to execute various built-in command-line tools processes, enabling it to
retrieve information about the compromised system’s environment effectively.

Figure(19): execute command-line tools

Here is the list of commands that can be used to gather information about the system:

Windows Command Output

ipconfig /all Displays detailed configuration information about all network
interfaces.

whoami /all Displays user, group, and privileges information for the
current user.

16/22

Windows Command Output

nltest /domain_trusts /all_trusts Lists all domain trusts established with the current domain.

qwinsta Lists information about all Remote Desktop sessions on the
local system.

nslookup -querytype=ALL -timeout=12
_ldap._tcp.dc._msdcs.%s

Performs a DNS lookup for LDAP service records for the
specified domain controller.

net share Lists information about shared resources on the local
system.

net localgroup Lists information about local groups on the local system.

netstat -nao Lists active network connections and associated processes.

net view Lists information about shared resources on remote
systems.

route print Displays the IP routing table for the local system.

arp -a Displays the ARP cache, which contains mappings of IP
addresses to MAC addresses.

Additionally, it will use Windows API calls to get different system details like computer name, screen size, AD
domain info, user name, processor details, whether it’s a 32-bit or 64-bit Windows, and the operating system
version, along with its respective full paths.

Collect AntiViruses Information

Qakbot checks for specific antivirus programs like Kaspersky, Avast, Norton, etc to see if any antivirus
software is active on the system. It does this by scanning running programs and looking for related processes
from these vendors.

This list shows which antivirus vendors are associated with each process :

processes Related Vendor

ccSvcHst.exe;NortonSecurity.exe;nsWscSvc.exe Norton Security

avgcsrvx.exe;avgsvcx.exe;avgcsrva.exe AVG Antivirus

MsMpEng.exe Microsoft
Defender
Antivirus

avp.exe;kavtray.exe Kaspersky
Antivirus

coreServiceShell.exe;PccNTMon.exe;NTRTScan.exe Trend Micro
Antivirus

fshoster32.exe F-Secure
Antivirus

fmon.exe FortiClient
Antivirus

17/22

processes Related Vendor

egui.exe;ekrn.exe ESET

bdagent.exe;vsserv.exe;vsservppl.exe Bitdefender

AvastSvc.exe;aswEngSrv.exe;aswToolsSvc.exe;afwServ.exe;aswidsagent.exe;AvastUI.exe Avast

Sophos UI.exe;SophosUI.exe;SAVAdminService.exe;SavService.exe Sophos

WRSA.exe Webroot
SecureAnywhere

vkise.exe;isesrv.exe;cmdagent.exe Kaspersky

ByteFence.exe ByteFence

MBAMService.exe;mbamgui.exe Malwarebytes

mcshield.exe McAfee

dwengine.exe;dwarkdaemon.exe;dwwatcher.exe Datawatch

SentinelServiceHost.exe;SentinelStaticEngine.exe;SentinelAgent.exe;… SentinelOne

SonicWallClientProtectionService.exe;SWDash.exe SonicWall

CynetEPS.exe;CynetMS.exe;CynetConsole.exe Cynet

CSFalconService.exe;CSFalconContainer.exe CrowdStrike
Falcon

Executing C2 Commands

After establishing communication, the C2 server will send commands to be executed. These commands are
represented as integer values or indexes.

Figure(20): The list of the C2 commands used by Qakbot

https://zw01f.github.io/assets/images/malware-analysis/qakbot/commands.png

18/22

Process Hollowing

QakBot selects a system process for process hollowing based on the machine’s architecture (32-bit or 64-bit)
and the installed antivirus software.

This list includes the following system processes:

Expand to see more
 %SystemRoot%\SysWOW64\AtBroker.exe

 %SystemRoot%\System32\AtBroker.exe
 %SystemRoot%\SysWOW64\xwizard.exe
 %SystemRoot%\System32\xwizard.exe

 %SystemRoot%\SysWOW64\explorer.exe

It first calls the CreateProcessW() API with the CREATE_SUSPENDED flag to start a new process, making it
suspended at the beginning.

Figure(21): create a suspended process

Then it allocates virtual memory in a target process, writes data into the allocated region, and then modifies
the memory protection to allow execution.

19/22

Next, it retrieves the context of the thread to modify it to set the instruction pointer (EIP/RIP register) to point
to the entry point of the injected code.

It finally calls the API ResumeThread() to resume the new processes.

Persistence

QakBot sets itself to run on system reboot through a registry entry or Scheduled Task.

Figure(22): Persistence function

Conclusion

Qakbot is an advanced malware with regular updates and powerful anti-analysis actions, ensuring it remains
a persistent threat with a wide range of capabilities and techniques.

YARA Rule

20/22

rule detect_Qakbot_v5
{
 meta:
 description = "just a rule for Qakbot v5"
 author = "Mohamed Ezzat (@ZW01f)"
 hash1 = "af6a9b7e7aefeb903c76417ed2b8399b73657440ad5f8b48a25cfe5e97ff868f"
 hash2 = "59559e97962e40a15adb2237c4d01cfead03623aff1725616caeaa5a8d273a35"
 strings:
 $s1 = "\\u%04X\\u%04X" ascii wide
 $s2 = "%u;%u;%u" ascii wide
 $s3 = "CfGetPlatformInfo" ascii wide
 $p1 = {45 33 C0 E8 ?? ?? ?? ?? 35 91 CB 35 A2 41 3B C7}
 $p2 = { 0F B6 01 48 FF C1 44 33 C0 41 8B C0 41 C1 E8 04 83 E0 0F 44 33 04 82 41 8B C0 41 C1
E8 04 83 E0 0F 44 33 04 82 49 83 E9 01 75 ?? 41 F7 D041 8B C0 C3}
 condition:
 uint16(0) == 0x5A4D and all of ($p*) and (2 of ($s*)) and filesize < 500KB
}

Python Automated Configuration Extraction

This python script is used to extract the configuration of the Qakbot malware :

Open the binary file.
Get the .data section.
Extract the the key and the encrypted configuration data .
SHA-256 hash the extracted key to get the final key.
Use the key to decrypt the configurations.
Parse the decrypted configurations to extract useful information.

21/22

#--------------- imports --------------------#
import hashlib
from Crypto.Cipher import AES
from Crypto.Util.Padding import unpad
import socket
from datetime import datetime
import pytz
#------------- helper ------------------------#
def extract_data(filename): #finds the content of the ".data" section. .
 import pefile
 pe = pefile.PE(filename)
 for section in pe.sections:
 if '.data' in section.Name.decode(encoding='utf-8').rstrip('x00'):
 return (section.get_data(section.VirtualAddress, section.SizeOfRawData))
def tohex(data):
 import binascii
 if type(data) == str:
 return binascii.hexlify(data.encode('utf-8'))
 else:
 return binascii.hexlify(data)

def get_ip(ip_binary):
 # Convert the binary network format to a human-readable string format
 ip_str = socket.inet_ntoa(ip_binary)
 return ip_str
#------------ Decryption ---------------------#
def calculate_sha256(input_data):
 sha256_hash = hashlib.sha256()
 sha256_hash.update(input_data)
 hash_hex = sha256_hash.digest()
 return hash_hex
def aes_decrypt(ciphertext, key, iv):
 cipher = AES.new(key, AES.MODE_CBC, iv)
 plaintext = cipher.decrypt(ciphertext)
 unpadded_plaintext = unpad(plaintext, AES.block_size)
 return unpadded_plaintext
def full_dec(enc_str , aes_key_init):
 aes_key = calculate_sha256(aes_key_init)
 dec_str = aes_decrypt(enc_str[17:],aes_key,enc_str[1:17])
 return dec_str
def parse_camp(input_str):
 lines = input_str.strip().split(b'\r\n')
 parsed_data = {}
 for line in lines:
 key, value = line.split(b'=')
 parsed_data[key] = value
 timestamp = int(parsed_data[b'3'])
 dt_obj = pytz.utc.localize(datetime.utcfromtimestamp(timestamp))
 print(f"Botnet ID : {parsed_data[b'10']}'")
 print(f"b'40' : {parsed_data[b'40']}'")
 print(f"Campaign Timestamp : {dt_obj}")
def parse_c2(dec_ips):
 i = 0
 splitted_data = [dec_ips[i:i+7] for i in range(1, len(dec_ips), 8)]
 for data in splitted_data:
 ip = get_ip(data[:4])
 port = int(tohex(data[4:6]),16)
 print('IP[{0}] = {1}:{2}'.format(i,ip,port))
 i = i + 1
def main():
 file_name = input("enter the file path: ")

22/22

 # The config data begins at these offsets inside the .data section
 enc_ips_rva = 0x852 ; size_rva = 0x850 ; enc_config_rva = 0x1022
 data_section = extract_data(file_name) #read data section
 size = ord(data_section[size_rva:size_rva+1])
 enc_config_ips = data_section[enc_ips_rva:enc_ips_rva+size]
 enc_config = data_section[enc_config_rva:enc_config_rva+size]
 init_key = b'T2X!wWMVH1UkMHD7SBdbgfgXrNBd(5dmRNbBI9'
 aes_key = calculate_sha256(init_key)
 campaign_info = full_dec(enc_config,init_key)
 dec_c2 = full_dec(enc_config_ips,init_key)
 print('##------------------- Campaign Info -------------------##')
 print('sha256 :',tohex(campaign_info[:32]))
 print('#--------------------------------------#')
 parse_camp(campaign_info[32:])
 print('##------------------- Qakbot c2 -------------------##')
 print('sha256 :',tohex(dec_c2[:32]))
 print('#--------------------------------------#')
 parse_c2(dec_c2[32:])

if __name__ == '__main__':
 main()

References

