
1/30

December 21, 2023

BPF Memory Forensics with Volatility 3
lolcads.github.io/posts/2023/12/bpf_memory_forensics_with_volatility3/

2023-12-21 [Updated: 2023-12-21] :: Valentin Obst and Martin Clauß

BPF Memory Forensics with Volatility 3⌗

Introduction and Motivation⌗

Have you ever wondered how an eBPF rootkit looks like? Well, here’s one, have a good
look:

https://lolcads.github.io/posts/2023/12/bpf_memory_forensics_with_volatility3/

2/30

Upon receiving a command and control (C2) request, this specimen can execute arbitrary
commands on the infected machine, exfiltrate sensitive files, perform passive and active
network discovery scans (like nmap), or provide a privilege escalation backdoor to a local
shell. Of course, it’s also trying its best to hide itself from system administrators hunting it
with different command line tools such as ps, lsof, tcpdump an others or even try tools like
rkhunter or chkrootkit.

Well, you say, rootkits have been doing that for more than 20 years now, so what’s the news
here? The news aren’t that much the features, but rather how they are implemented.
Everything is realized using a relatively new and rapidly evolving kernel feature: eBPF. Even
though it has been in the kernel for almost 10 years now, we’re regularly surprised by how
many experienced Linux professionals are still unaware of its existence, not even to mention
its potential for abuse.

The above picture was generated from the memory image of a system infected with ebpfkit,
an open-source PoC rootkit from 2021, using a plugin for the Volatility 3 memory forensics
framework. In this blog post, we will present a total of seven plugins that, taken together,
facilitate an in depth analysis of the state of the BPF subsystem.

We structured this post as follows: The next section provides an introduction to the BPF
subsystem, while the third section highlights its potential for (ab)use by malware. In section
four, we will introduce seven Volatility 3 plugins that facilitate the examination of BPF
malware. Section five presents a case study, followed by a section describing our testing and
evaluation of the plugins on various Linux distributions. In the last section, we conclude with
a discussion of the steps that are necessary to integrate our work into the upstream Volatility
project, other challenges we encountered, and open research questions.

Note: The words “eBPF” and “BPF” will be used interchangeably throughout this post.

The BPF Subsystem⌗

Before delving into the complexities of memory forensics, it is necessary to establish some
basics about the BPF subsystem. Readers that are already familiar with the topic can safely
skip this section.

To us, BPF is first of all an instruction set architecture (ISA). It has ten general purpose
registers, which are 64 bit wide, and there are all of the basic operations that you would
expect a modern ISA to have. Its creator, Alexei Starovoitov, once described it as a kind of
simplified x86-64 and would probably never have imagined that the ISA he cooked up back
in 2014 would once enter a standardization process at the IETF. The interested reader can
find the current proposed standard here. Of course, there are all the other things that you
would expect to come with an ISA, like an ABI that defines the calling convention, and a
binary encoding that maps instructions to sequences of four or eight bytes.

https://github.com/Gui774ume/ebpfkit
https://github.com/volatilityfoundation/volatility3
https://datatracker.ietf.org/doc/draft-ietf-bpf-isa/

3/30

The BPF ISA is used as a compilation target (currently by clang - gcc support is on the way)
for programs written in high-level languages (currently C and Rust), however, it is not meant
to be implemented in hardware. Therefore, it is conceptually more similar to WebAssembly or
Java Bytecode than x86-64 or arm64, i.e., BPF programs are meant to be executed by a
runtime that implements the BPF virtual machine (VM). Several BPF runtimes exist, but the
“reference implementation” is in the Linux kernel.

Runtimes are, of course, free to choose how they implement the BPF VM. The instruction set
was defined in a way that makes it easy to implement a one-to-one just in time (JIT) compiler
for many CPU architectures. In fact, in the Linux kernel, even non-mainstream architectures
like powerpc, sparc or s390 have BPF JITs. However, the kernel also has an interpreter to
run BPF programs on architectures that do not yet support JIT compilation.

Aside: The BPF platform is what some call a “verified target”. This means that in order for a
program to be valid it has to have some “non-local” properties. Those include the absence of
(unbounded) loops, registers and memory can only be read after they have been written to,
the stack depth may not exceed a hard limit, and many more. The interested reader can find
a more exhaustive description here. In practice, runtime implementations include an up-front
static verification stage and refuse to execute programs that cannot be proven to meet these
requirements (some runtime checks may be inserted to account for the known shortcomings
of static analysis). This static verification approach is at the hearth of BPF’s sandboxing
model for untrusted code.

Roughly speaking, the BPF subsystem includes, besides the implementation of the BPF VM,
a user and kernel space interface for managing the program life cycle as well as
infrastructure for transitioning the kernel control flow in and out of programs running inside
the VM. Other subsystems can be made “programmable” by integrating the BPF VM in
places where they want to allow the calling of user-defined functions, e.g., for decision
making based on their return value. The networking subsystem, for example, supports
handing all incoming and outgoing packets on an interface to a BPF program. Those
programs can freely rewrite the packet buffer or even decide to drop the packet all together.
Another example is the tracing subsystem that supports transitioning control into BPF
programs at essentially any instruction via one of the various ways it has to hook into the
kernel and user space execution. The final example here is the Linux Security Module (LSM)
subsystem that supports calling out to BPF programs at any of its security hooks placed at
handpicked choke points in the kernel. There are many more examples of BPF usage in the
kernel and even more in academic research papers and patches on the mailing list, but we
guess we conveyed the general idea.

BPF programs can interact with the world outside of the VM via so called helpers or kfuncs,
i.e., native kernel functions that can be called by BPF programs. Services provided by these
functions range from getting a timestamp to sending a signal to the current task or reading

https://elixir.bootlin.com/linux/v6.1.68/source/kernel/bpf/core.c#L1648
https://www.kernel.org/doc/html/latest/bpf/verifier.html
https://dl.acm.org/doi/proceedings/10.1145/3609021

4/30

arbitrary memory. Which functions a program can call depends on the program type that was
selected when loading it into the VM. When reversing BPF programs, looking for calls to
interesting kernel functions is a good point to start.

The second ingredient you need in order to get any real work done with a BPF program are
maps. While programs can store data during their execution using stack memory or by
allocating objects on the heap, the only way to persist data across executions of the same
program are maps. Maps are mutable persistent key value stores that can be accessed by
BPF programs and user space alike, as such they can be used for user-to-BPF, BPF-to-user,
or BPF-to-BPF communication, where in the last case the communicating programs may be
different or the same program at different times.

Another relevant aspect of the BPF ecosystem is the promise of compile once run
everywhere (CORE), i.e., a (compiled) BPF program can be run inside of a wide range of
Linux kernels that might have different configurations, versions, compilers, and even CPU
architectures. This is achieved by having the compiler emit special relocation entries that are
processed by a user-space loader prior to loading a program into the kernel’s BPF VM. The
key ingredient that enables this approach is a self-description of the running kernel in the
form of BPF Type Format (BTF) information, which is made available in special files under
/sys/kernel/btf/. For example, BPF source code might do something like current->comm
to access the name of the process in whose context the program is running. This might
generate an assembly instruction that adds the offset of the comm field to a pointer to the task
descriptor that is stored in a register, i.e., ADD R5, IMM. However, the immediate offset might
vary due to kernel version, configuration, structure layout randomization or CPU architecture.
Thus, the compiler would emit a relocation entry that tells the user-space loader running on
the target system to check the kernel’s BTF information in order to overwrite the placeholder
with the correct offset. Together with other kinds of relocations, which address things like
existence of types and enum variants or their sizes, the loader be used to run the same BPF
program on a considerable number of kernels.

Aside: A problem with the CORE implementation described above is that signatures over
BPF programs are meaningless as the program text will be altered by relocations before
loading. To allow for a meaningful ahead of time signature there is another approach in which
a loader program is generated for the actual program. The loader program is portable without
relocations and is signed and loaded together with the un-relocated bytecode of the actual
program. Thus, the problem is solved as all text relocations happen in the kernel, i.e., after
signatures have been verified.

However, there are of course limits to the portability of BPF programs. As we all know, the
kernel takes great care to never break user space, within kernel land, on the other hand,
there are no stability guarantees at all. BPF programs are not considered to be part of user
space and thus there are no forward or backward compatibility guarantees. In practice, that
means that APIs exposed to BPF could be removed or changed, attachment points could

5/30

vanish or change their signature, or programs that are currently accepted by the static
verifier could be rejected in the future. Furthermore, changes in kernel configuration could
remove structure fields, functions, or kernel APIs that programs rely on. In that sense, BPF
programs are in a position similar to out-of-tree kernel modules. That being said, due to
CORE, there is no need to have the headers of the target kernel available at compile time
and thus a lot less knowledge about the target is needed to be confident that the program will
be able to run successfully. Furthermore, in the worst case the program will be rejected by
the kernel, but there are no negative implications on system stability by attempting to load it.

Finally, we should mention that BPF is an entirely privileged interface. There are multiple
BPF-related capabilities that a process can have, which open up various parts of the
subsystem. This has not always been the case. A few years ago, unprivileged users were
able to load certain types of BPF programs, however, access to the BPF VM comes with two
potential security problems. First, the security entirely relies on the correctness of the static
verification stage, which is notoriously complex and must keep up with the ever-expanding
feature set. It has been demonstrated that errors in the verification process can be exploited
for local privilege escalation, e.g., CVE-2020-8835 or CVE-2021-3490. Second, even within
the boundaries set by the verifier, the far-reaching control over the CPU instructions that get
executed in kernel mode opens up the door for Spectre attacks, c.f., Jann Horn’s writeup or
the original Spectre paper. For those reasons, the kernel community has decided to remove
unprivileged access to BPF by default.

BPF Malware⌗

To better understand the implications the addition of the BPF VM has for the Linux malware
landscape, we would like to start with a quote from “BPF inventor” Alexei Starovoitov: “If in
the past the whole kernel would maybe be [a] hundred of programmers across the world,
now a hundred thousand people around the world can program the kernel thanks to BPF.”,
i.e., BPF significantly lowers the entry barrier to kernel programming and shipping
applications that include kernel-level code. While the majority of new kernel programmers
are well-intentioned and aim to develop innovative and useful applications, experience has
shown that there will be some actors who seek to use new kernel features for malicious
purposes.

From a malware author’s perspective, one of the first questions is probably how likely it is
that a target system will support the loading of malicious BPF programs. According to our
personal experience it is safe to say that most general-purpose desktop and server
distributions enable BPF. The feature is also enabled in the android-base.config as BPF
plays a significant role in the Android OS, i.e., essentially every Android device should
support BPF - from your fridge to your phone. Concerning the custom kernels used by big
tech companies let me quote Brendan Gregg, another early BPF advocate: “As companies
use more and more eBPF also, it becomes harder for your operating system to not have

https://elixir.bootlin.com/linux/v6.1.68/source/include/uapi/linux/capability.h#L411
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://chompie.rip/Blog+Posts/Kernel+Pwning+with+eBPF+-+a+Love+Story
https://github.com/hamishcoleman/spectre-tests/blob/master/project-zero/writeup_files/WRITEUP#L282
https://spectreattack.com/spectre.pdf
https://elixir.bootlin.com/linux/v6.1.68/source/kernel/bpf/Kconfig#L71

6/30

eBPF because you are no longer eligible to run workloads at Netflix or at Meta or at other
companies.”. What is more, Google relies on BPF (through cilium) in its Kubernetes engine
and Facebook uses it for its layer 4 load balancer katran. For a more comprehensive survey
of BPF usage in cloud environments we recommend section 5 of Cross Container Attacks:
The Bewildered eBPF on Clouds by Yi He et al. Thus, most of the machines that constitute
“the cloud” are likely to support BPF. This is particularly interesting as signature verification
for BPF programs is still not available, making it the only way to run kernel code on locked-
down systems that restrict the use of kernel modules.

However, enabling the BPF subsystem, i.e., CONFIG_BPF, is only the beginning of the story.
There are many compile-time or run-time configuration choices that affect the capabilities
granted to BPF programs, and thus the ways in which they can be used to subvert the
security of a system. Giving a full overview of all the available switches and their effect would
exceed the scope of this post, however, we will mention some knobs that can be turned to
stop the abuses mentioned below.

If you search for the term “BPF malware” these days, you will find rather sensational articles
with titles like “eBPF: A new frontier for malware”, “How BPF-Enabled Malware Works”,
“eBPF Offensive Capabilities – Get Ready for Next-gen Malware”, “Nothing is Safe Anymore
- Beware of the “eBPF Trojan Horse” or “HOW DOES EBPF MALWARE PERFORM
AGAINST STAR LAB’S KEVLAR EMBEDDED SECURITY?”. Needless to say, that they
contain hardly any useful information. The truth is that we are not aware of any reports of in-
the-wild malware using BPF. Nevertheless, there is no shortage in open source PoC BPF
malwares on GitHub. The two biggest ones are probably ebpfkit and TripeCross, however,
there are many smaller projects like nysm, sshd_backdoor, boopkit, pamspy, or bad bpf as
well as snippet collections like nccgroup’s bpf tools, Offensive-BPF. Researchers also used
malicious BPF programs to escape container isolation in multiple real-world cloud
environments.

There are a couple of core shenanigans that those malwares are constructed around, three
of which we will briefly describe here.

It is possible to transparently (for user space) skip the execution of any system call or to
manipulate just the return value after it was executed. This is since BPF can be used for the
purpose of error injection. To be precise, any function that is annotated with the
ALLOW_ERROR_INJECTION macro can be manipulated in this way, and every system call is
automatically annotated via the macro that defines it. One would hope that the corresponding
configurations BPF_KPROBE_OVERRIDE and CONFIG_FUNCTION_ERROR_INJECTION would not be
enabled in kernels shipped to end users, but they are. There are many things that one can
do by lying to user space in this way, one example would be to block the sending of all
signals to a specific process, e.g., to protect it from being killed. Interestingly, the same
helper is also used by BPF-based security solutions like tetragon, which are deployed in
production cloud environments.

https://github.com/cilium/cilium
https://github.com/facebookincubator/katran
https://www.usenix.org/conference/usenixsecurity23/presentation/he
https://github.com/Gui774ume/ebpfkit
https://github.com/h3xduck/TripleCross
https://github.com/eeriedusk/nysm
https://github.com/Esonhugh/sshd_backdoor
https://github.com/krisnova/boopkit
https://github.com/citronneur/pamspy
https://github.com/pathtofile/bad-bpf
https://github.com/nccgroup/ebpf
https://github.com/wunderwuzzi23/Offensive-BPF
https://www.usenix.org/conference/usenixsecurity23/presentation/he
https://lwn.net/Articles/740146/
https://elixir.bootlin.com/linux/v6.1.64/source/arch/x86/include/asm/syscall_wrapper.h#L74
https://elixir.bootlin.com/linux/v6.1.64/source/kernel/trace/Kconfig#L711
https://elixir.bootlin.com/linux/v6.1.67/source/lib/Kconfig.debug#L1880
https://github.com/Gui774ume/ebpfkit/blob/5727985eab7eca7255ca5cb7c74133c0074e3324/ebpf/ebpfkit/signal.h#L18
https://github.com/cilium/tetragon/blob/d8f5d44810ad2079ee408175454aab5c1159f09e/docs/content/en/docs/concepts/tracing-policy/selectors.md?plain=1#L1030

7/30

Another common primitive is to write to memory of the current process, which gives attackers
the power to perform all sorts of interesting memory corruptions. One of the more original
ideas is to inject code into a process by writing a ROP chain onto its stack. The chain sets up
everything to load a shared library and cleanly resumes the process afterwards. More
generally, the helper bpf_probe_write_user is involved in many techniques to hide objects,
e.g., sockets or BPF programs, from user space or when manipulating apparent file and
directory contents, e.g., /proc, /etc/sudoers or ~/.ssh/authorized_keys. In particular,
those apparent modifications cannot be caught with file system forensics as they are only
happening in the memory of the process that attempts to access the resource, e.g., see
textreplace for an example that allows arbitrary apparent modifications of file contents.
While there are in fact a couple of legitimate programs (like the Datadog-agent) using this
function, it is probably wise to enable CONFIG_LOCK_DOWN_KERNEL_FORCE_INTEGRITY before
compilation.

A rather peculiar aspect of BPF malware is how it communicates over the network. BPF
programs are not able to initiate network connections by themselves, but as one of the main
applications of BPF is in the networking subsystem, they have far-reaching capabilities when
it comes to managing existing traffic. For example, XDP programs get their hands on packets
very early in the receive path, long before mechanisms like netfilter, which is much further up
the network stack, get a chance to see them. In fact, there are high-end NICs that support
running BPF programs on the device’s proces rather than the host CPU. Furthermore,
programs that handle packets can usually modify, reroute, or drop them. In combination, this
is often used to receive C2 commands while at the same time hiding the corresponding
packets from the rest of the kernel by modifying or dropping them. In addition, BPF’s easy
programmability makes it simple to implement complex, stateful triggers. To exfiltrate data
from the system, the contents, and potentially also the recipient data, of outgoing packets are
modified, for example by traffic control (tc) hooks. For unreliable transport protocols higher
layers will deal with the induced packet loss, while for TCP the retransmission mechanism
ensures that applications will not be impacted. Turn off CONFIG_NET_CLS_BPF and
CONFIG_NET_ACT_BPF to disable tc BPF programs.

While the currently charted BPF malware landscape is limited to hobby projects by security
researchers and other interested individuals, it would unfortunately not be unheard of that the
same projects are eventually discovered during real-world incidents. Advanced Linux
malwares, on the other hand, will most likely choose to implement their own BPF programs
when they believe that it is beneficial for their cause, for instance to avoid detection by using
a mechanism that is not yet well known to the forensic community. Some excerpts from the
recent talk by Kris Nova at DevOpsDays Kyiv give an interesting insight into the concerns
that the Ukrainian computer security community had, and still has, regarding the use of BPF
in Russian attacks on their systems.

https://github.com/nccgroup/ebpf/tree/master/glibcpwn
https://github.com/pathtofile/bad-bpf/blob/main/src/textreplace.bpf.c
https://github.com/DataDog/datadog-agent/blob/f425dfa882dd9ca8533172c246ea047be1a40799/pkg/security/ebpf/probes/all.go#L257
https://elixir.bootlin.com/linux/v6.1.67/source/security/lockdown/Kconfig#L33
https://www.netronome.com/blog/ever-deeper-bpf-update-hardware-offload-support/
https://www.kernelconfig.io/CONFIG_NET_CLS_BPF?q=NET_CLS_BPF&kernelversion=6.6.6&arch=x86
https://www.kernelconfig.io/CONFIG_NET_ACT_BPF?q=CONFIG_NET_ACT_BPF&kernelversion=6.6.6&arch=x86
https://www.youtube.com/watch?v=0BDB53PqcoU

8/30

It would be dishonest to claim that there is a general schema that you can follow while
analyzing an incident to discover all malicious BPF programs. As so often, the boundaries
between monitoring software, live patches, security solutions and malware are not clearly
defined, e.g., in addition to bpf_override_retun tetragon also uses bpf_send_singal. The
first step could be to obtain a baseline of expected BPF-related activity, and carefully analyze
any deviations or anomalies. Additionally, a look at the kernel configuration can help to
decide which kinds of malicious activity are fundamentally possible. Furthermore, programs
that make use of possibly malicious helper functions, like bpf_probe_wite_user,
bpf_send_signal, bpf_override_return, or bpf_skb_store_bytes should be reverse
engineered with particular scrutiny. In addition, there are some clear indicators of malicious
activity, like the hiding of programs, which we will discuss in more detail below. Finally, once
program signatures are upstreamed, it is highly recommended to enable and enforce them to
lock down this attack surface.

From now on, we will shift gears and focus on the main topic of this post, hunting BPF
malware in main memory images.

Aside: The bvp47, Symbiote and BPFdoor rootkits are often said to be examples of BPF
malware. However, they are using only what is now known as classic BPF, i.e., the old-
school packet filtering programs used by programs like tcpdump.

Volatility Plugins⌗

Volatility is a memory forensics framework that can be used to analyze physical memory
images. It uses information about symbols and types of the operating system that was
running on the imaged system to recover high-level information, like the list of running
processes or open files, from the raw memory image.

Individual analyses are implemented as plugins that make use of the framework library as
well as other plugins. Some of those plugins are closely modeled after core unix utilities, like
the ps utility for listing processes, the ss utility for listing network connections or the lsmod
utility for listing kernel modules. Other plugins implement checks that search for common
traces of kernel rootkit activity, like the replacement of function pointers or inline hooks.

There may be multiple ways to obtain the same piece of information, and thus multiple
plugins that, on first sight, serve the same purpose. Inconsistencies between the methods,
however, could indicate malicious activity that tries to hide its presence or just be artifacts of
imperfections in the acquisition process. In any case, inconsistencies are something an
investigator should look into.

In this section we present seven Volatility plugins that we have developed to enable analysis
of the BPF subsystem. Three of these are modelled after subcommands of the bpftool
utility and provide basic functionality. We then present three plugins that retrieve similar

https://github.com/cilium/tetragon
https://blogs.blackberry.com/en/2021/12/reverse-engineering-ebpfkit-rootkit-with-blackberrys-free-ida-processor-tool
https://www.pangulab.cn/en/post/the_bvp47_a_top-tier_backdoor_of_us_nsa_equation_group/
https://blogs.blackberry.com/en/2022/06/symbiote-a-new-nearly-impossible-to-detect-linux-threat
https://sandflysecurity.com/blog/bpfdoor-an-evasive-linux-backdoor-technical-analysis/
https://github.com/libbpf/bpftool

9/30

information from other sources and can thus be used to detect inconsistencies. Finally, we
present a plugin that aggregates information from four other plugins to make it easier to
interpret.

_Note: We published the source code for all of our plugins on GitHub. We would love to see
your contributions there! :)

Listing Programs, Maps & Links⌗

Arguably the most basic task that you could think of is simply listing the programs that have
been loaded into the BPF VM. We will start by doing this on a live system, feel free to follow
along in order to discover what your distribution or additional packages that you installed
have already loaded.

Live System⌗

The bpftool user-space utility allows admins to interact with the BPF subsystem. One of the
most basic tasks it supports is the listing of all loaded BPF programs, maps, BTF sections, or
links. We are sometimes going to refer to these things collectively as BPF objects. Roughly
speaking, links are a mechanism to connect a loaded program to a point where it is being
invoked, and BTF is a condensed form of DWARF debug information.

Lets start with an example to get familiar with the information that is displayed (run btftool
as root):

bpftool prog list
[...]
22: lsm name restrict_filesystems tag 713a545fe0530ce7 gpl

loaded_at 2023-11-26T10:31:42+0100 uid 0
xlated 560B jited 305B memlock 4096B map_ids 13
btf_id 53

[...]

From left-to-right and top-to-bottom we have: ID used as an identifier for user-space,
program type, program name, tag that is a SHA1 hash over the bytecode, license, program
load timestamp, uid of process that loaded it, size of the bytecode, size of the jited code,
memory blocked by the program, ids of the maps that the program is using, ids to the BTF
information for the program.

We can also inspect the bytecode

https://github.com/vobst/BPFVol3

10/30

bpftool prog dump xlated id 22
int restrict_filesystems(unsigned long long * ctx):
; int BPF_PROG(restrict_filesystems, struct file *file, int ret)
 0: (79) r3 = *(u64 *)(r1 +0)
 1: (79) r0 = *(u64 *)(r1 +8)
 2: (b7) r1 = 0
[...]

where each line is the pseudocode of a BPF assembly instruction and we even have line
info, which is also stored in the attached BTF information. We can also dump the jited
version and confirm that is is essentially a one-to-one translation to x86_64 machine code
(depending on the architecture your kernel runs on):

bpftool prog dump jited id 22
int restrict_filesystems(unsigned long long * ctx):
bpf_prog_713a545fe0530ce7_restrict_filesystems:
; int BPF_PROG(restrict_filesystems, struct file *file, int ret)
 0: endbr64
 4: nopl (%rax,%rax)
 9: nop
 b: pushq %rbp
 c: movq %rsp, %rbp
 f: endbr64
 13: subq $24, %rsp
 1a: pushq %rbx
 1b: pushq %r13
 1d: movq (%rdi), %rdx
 21: movq 8(%rdi), %rax
 25: xorl %edi, %edi
[...]

Furthermore, we can display basic information about the maps used by the program

bpftool map list id 13
13: hash_of_maps name cgroup_hash flags 0x0

key 8B value 4B max_entries 2048 memlock 165920B

as well as their contents (which are quite boring in this case).

bpftool map dump id 13
Found 0 elements

We can also get information about the variables and types (BTF) defined in the program.
This is somewhat comparable to the DWARF debug information that comes with some
binaries - just that it is harder to strip since its needed by the BPF VM.

11/30

bpftool btf dump id 53
[1] PTR '(anon)' type_id=3
[2] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
[3] ARRAY '(anon)' type_id=2 index_type_id=4 nr_elems=13
[4] INT '__ARRAY_SIZE_TYPE__' size=4 bits_offset=0 nr_bits=32 encoding=(none)
[5] PTR '(anon)' type_id=6
[6] TYPEDEF 'uint64_t' type_id=7
[7] TYPEDEF '__uint64_t' type_id=8
[8] INT 'unsigned long' size=8 bits_offset=0 nr_bits=64 encoding=(none)
[9] PTR '(anon)' type_id=10
[10] TYPEDEF 'uint32_t' type_id=11
[11] TYPEDEF '__uint32_t' type_id=12
[12] INT 'unsigned int' size=4 bits_offset=0 nr_bits=32 encoding=(none)
[13] STRUCT '(anon)' size=24 vlen=3

'type' type_id=1 bits_offset=0
'key' type_id=5 bits_offset=64
'value' type_id=9 bits_offset=128

[...]

As we said earlier, links are what connects a loaded program to a point that invokes it.

bpftool link list
[...]
3: tracing prog 22

prog_type lsm attach_type lsm_mac
target_obj_id 1 target_btf_id 82856

Again, from left-to-right and top-to-bottom we have: ID, type, attached program’s ID,
program’s load type, type that program was attached with, ID of the BTF object that the
following field refers to, ID of the type that the program is attached to (functions can also
have BTF entries). Note that everything but the first line depends on the type of link that is
examined. To find the point where the program is called by the kernel we can inspect the
relevant BTF object (the kernel’s in this case).

bpftool btf dump id 1 | rg 82856
[82856] FUNC 'bpf_lsm_file_open' type_id=16712 linkage=static

Thus we can conclude that the program is invoked early in the do_dentry_open function via
the security_file_open LSM hook and that its return value decides whether the process
will be allowed to open the file (we’re skipping some steps here, see our earlier article for the
full story).

We performed this little “live investigation” on a laptop running Arch Linux with kernel 6.6.2-
arch1-1 and the program wasn’t malware but rather loaded by systemd on boot. You can find
the commit that introduced the feature here. Again, you can see that in the future there will
be more legitimate BPF programs running on your systems (servers, desktops and mobiles)
than you might think!

Memory Image⌗

https://blog.eb9f.de/2023/04/24/lsm2bpf.html
https://github.com/systemd/systemd/commit/021d1e96123289182565f0b3ce5a705b0e84fe48

12/30

As a first step towards BPF memory forensics it would be nice to be able to perform the
above investigation on a memory image. We will now introduce three plugins that aim to
make this possible.

We already saw that all sorts of BPF objects are identified by an ID. Internally, these IDs are
allocated using the IDR mechanism, a core kernel API. For that purpose, three variables are
defined at the top of /kernel/bpf/syscall.c.

[...]
static DEFINE_IDR(prog_idr);
static DEFINE_SPINLOCK(prog_idr_lock);
static DEFINE_IDR(map_idr);
static DEFINE_SPINLOCK(map_idr_lock);
static DEFINE_IDR(link_idr);
static DEFINE_SPINLOCK(link_idr_lock);
[...]

Under the hood, the ID allocation mechanism uses an extensible array (xarray), a tree-like
data structure that is rooted in the idr_rt member of the structure that is defined by the
macro. The ID of a new object is simply an unused index into the array, and the value stored
at this index is a pointer to a structure that describes it. Thus, we can re-create the listing
capabilities of bpftool by simply iterating the array. You can find the code that does so in the
XArray class.

Dereferencing the array entries leads us to structures that hold most of the information
displayed by bpftool earlier.

Entries of the prog_idr point to objects of type bpf_prog, the aux member of this type points
to a structure that hols additional information about the program. We can see how the
information bpftool displays is generated from these structures in the
bpf_prog_get_info_by_fd function by filling a bpf_prog_info struct. The plugin
bpf_listprogs re-implements some of the logic of this functions and displays the following
pieces of information.

columns: list[tuple[str, type]] = [
 ("OFFSET (V)", str),
 ("ID", int),
 ("TYPE", str),
 ("NAME", str),
 ("TAG", str),
 ("LOADED AT", int),
 ("MAP IDs", str),
 ("BTF ID", int),
 ("HELPERS", str),
]

Some comments are in order:

https://www.kernel.org/doc/html/latest/core-api/idr.html?highlight=idr
https://www.kernel.org/doc/html/latest/core-api/xarray.html?highlight=xarray
https://github.com/vobst/BPFVol3/blob/main/src/utility/datastructures.py#L17
https://elixir.bootlin.com/linux/v6.1.63/source/kernel/bpf/syscall.c#L50
https://elixir.bootlin.com/linux/v6.1.63/source/include/linux/bpf.h#L1217
https://elixir.bootlin.com/linux/v6.1.63/source/include/linux/bpf.h#L1129
https://elixir.bootlin.com/linux/v6.1.63/source/kernel/bpf/syscall.c#L3896
https://elixir.bootlin.com/linux/v6.1.63/source/include/uapi/linux/bpf.h#L6172
https://github.com/vobst/BPFVol3/blob/main/src/plugins/bpf_listprogs.py

13/30

OFFSET (V) are the low 6 bytes of the bpf_prog structure’s virtual address. This is
useful as a unique identifier of the structure.
LOADED AT is the number of nanoseconds since boot when the program was loaded.
Converting it to an absolute timestamp requires parsing additional kernel time-keeping
structures and is not in scope for this plugin. There exist Volatility patches that add this
functionality but they are not upstream yet. Once they are, it should be trivial to convert
this field to match the bpftool output.
HELPERS is a field that is not reported by bpftool. It displays a list of all the kernel
functions that are called by the BPF program, i.e., BPF helpers and kfuncs, and is
helpful to quickly identify programs that use possibly malicious or non-standard
helpers.
The reporting of memory utilization is omitted as we consider it to be less important for
forensic investigations, however, it would be easy to add.

The second bpftool functionality the plugin supports is the dumping of programs in
bytecode and jited forms. To dump the machine code of the program, we follow the bpf_func
pointer in the bpf_prog structure, which points to the entrypoint of the jited BPF program.
The length of the machine code is stored in the jited_len field of the same structure. While
we support dumping the raw bytes to a file, their analysis is tedious due to missing symbol
information. Thus, we also support disassembling the program and annotating all occurring
addresses with the corresponding symbol, which makes the programs much easier to
analyze.

Dumping the BPF bytecode is straightforward as well. The flexible insni array member of
the bpf_prog structure holds the bytecode instructions and the len field holds their number.
Here, we also support dumping the raw and disassembled bytecode. However, the additional
symbol annotations are not implemented. As the bytecode is not “what actually runs”, we
consider this information more susceptible to anti-forensic tampering and thus focused on
the machine code, which is what is executed when invoking the program.

Note: We use Capstone for disassembling the BPF bytecode. Unfortunately, Capstone’s BPF
architecture is outdated and thus bytecode is sometimes not disassembled entirely. As a
workaround, you can dump the raw bytes and use another tool to disassemble them.

Entries of the map_idr point to bpf_map objects. The bpf_map_info structure parsed by
bpftool is filled in bpf_map_get_info_by_fd and the plugin bpf_listmaps is simply copying
the logic to display the following pieces of information.

https://github.com/capstone-engine/capstone
https://elixir.bootlin.com/linux/v6.1.63/source/kernel/bpf/syscall.c#L52
https://elixir.bootlin.com/linux/v6.1.63/source/include/linux/bpf.h#L202
https://elixir.bootlin.com/linux/v6.1.63/source/include/uapi/linux/bpf.h#L6214
https://elixir.bootlin.com/linux/v6.1.63/source/kernel/bpf/syscall.c#L4185
https://github.com/vobst/BPFVol3/blob/main/src/plugins/bpf_listmaps.py

14/30

columns: list[tuple[str, Any]] = [
 ("OFFSET (V)", str),
 ("ID", int),
 ("TYPE", str),
 ("NAME", str),
 ("KEY SIZE", int),
 ("VALUE SIZE", int),
 ("MAX ENTRIES", int),
]

Dumping the contents of maps is hard due to the diversity in map types. Each map type
requires its own handling, beginning with manually downcasting the bpf_map object to the
correct container type. One approach to avoid implementing each lookup mechanism
separately, would be through emulation of the map_get_next_key and bpf_map_copy_value
kernel functions, where the former is a function pointer found in the map’s operations
structure. However, this is not in scope for the current plugin.

Furthermore, the dumping could be enhanced by utilizing the BTF information that is
optionally attached to the map to properly display keys and values, similar to the
bpf_snprintf_btf helper that can be used to pretty-print objects using their BTF
information.

We implemented the dumping for the most straightforward map type - arrays - but the plugin
does not support dumping other types of maps.

Entries of the link_idr point to objects of type bpf_link. Again, there is an informational
structure, bpf_link_info, which is this time filled in the bpf_link_get_info_by_fd function.
By analyzing this function, we wrote the bpf_listlinks plugin that retrieves the following
pieces of information.

columns: list[tuple[str, Any]] = [
 ("OFFSET (V)", str),
 ("ID", int),
 ("TYPE", str),
 ("PROG", int),
 ("ATTACH", str),
]

Here, the last column is obtained by mimicking the virtual call to link->ops-
>fill_link_info that adds link-type specific information about the associated attachment
point, e.g., for tracing links it adds the BTF object and type IDs we saw earlier.

LSM Hooks⌗

Our three listing plugins have one conceptual weakness in common: they rely entirely on
information obtained by parsing the (prog|map|link)_idrs. However, the entire ID
mechanism is in the user-facing part of the BPF subsystem, its simply a means for user

https://elixir.bootlin.com/linux/v6.1.63/source/include/linux/bpf.h#L78
https://elixir.bootlin.com/linux/v6.1.63/source/kernel/bpf/syscall.c#L235
https://elixir.bootlin.com/linux/v6.1.63/source/kernel/trace/bpf_trace.c#L1015
https://elixir.bootlin.com/linux/v6.1.63/source/kernel/bpf/syscall.c#L54
https://elixir.bootlin.com/linux/v6.1.63/source/include/linux/bpf.h#L1259
https://elixir.bootlin.com/linux/v6.1.63/source/include/uapi/linux/bpf.h#L6242
https://elixir.bootlin.com/linux/v6.1.63/source/kernel/bpf/syscall.c#L4246
https://github.com/vobst/BPFVol3/blob/main/src/plugins/bpf_listlinks.py

15/30

space to refer to BPF objects in syscalls. Thus, our plugins are susceptible to trivial anti-
forensic tampering.

In our research, we prototyped two anti-forensic methods that remove BPF objects from
these structures while still keeping the corresponding program active in the kernel. First, the
more straightforward way is to simply write a kernel module that uses standard APIs to
remove IDs from the IDRs. The second one is based on the observation that the lifecycle of
BPF objects is managed via reference counts. Thus, if we artificially increment the reference
count of an object that (indirectly) holds references to all other objects that are required to
operate a BPF program, e.g., a link, we can prevent the program’s destruction when all
“regular” references are dropped.

One approach to counter these anti-forensic measures is to “approach from the other side”.
Instead of relying on information from sources that are far detached from the actual program
execution, we go to the very places and mechanisms that invoke the program. The downside
is obviously that this low-level code is much more program-type and architecture specific, the
results, on the other hand, are more robust.

In a previous blog post we described the low-level details that lead up to the execution of
BPF LSM programs in great detail. Based on this knowledge, we developed the bpf_lsm
plugin that can discover hidden BPF programs attached to security hooks. In short, the
plugin checks the places where the kernel control flow may be diverted into the BPF VM for
the presence of inline hooks. If they are found, it cross checks with the links IDR to see if
there is a corresponding link, the absence of which is a strong indication of tampering.
Additionally, the plugin is also valuable in the absence of tampering, as it shows you the
exact program attachment point without the need to manually resolve BTF IDs. In particular,
the plugin displays the number of attached programs and their IDs along with the name of
the LSM hook where they are attached.

columns: list[tuple[str, type]] = [
 ("LSM HOOK", str),
 ("Nr. PROGS", int),
 ("IDs", str),
]

Networking Hooks⌗

As we described above, traffic control (tc) programs are especially useful for exfiltrating
information from infected machines, e.g., by hijacking existing TCP connections. Thus, the
second plugin that obtains its information from more tamper resistant sources targets tc BPF
programs. It only relies on the mini_Qdisc structure that is used on the transmission and
receive fast paths to look up queuing disciplines (qdisc) attached to a network device.

https://blog.eb9f.de/2023/04/24/lsm2bpf.html
https://github.com/vobst/BPFVol3/blob/main/src/plugins/bpf_lsm.py
https://elixir.bootlin.com/linux/v6.1.65/source/include/net/sch_generic.h#L1265

16/30

We use the ifconfig plugin by Ofek Shaked and Amir Sheffer to obtain a list of all network
devices. Then, we find the above-mentioned structure and use it to collect all BPF programs
that are involved into qdiscs on this device. With kernel 6.3 the process of locating the
mini_Qdisc from the network interface changed slightly due to the introduction of link-based
attachment of tc programs, however, the plugin recognizes and handles both cases. Finally,
the bpf_netdev plugin displays the following information about each interface where at least
one BPF program was found,

columns: list[tuple[str, type]] = [
 ("NAME", str),
 ("MAC ADDR", str),
 ("EGRESS", str),
 ("INGRESS", str),
]

where the EGRESS and INGRESS hold the IDs of the programs that process packets flowing
into the respective direction.

Finding Processes⌗

Yet another way to discover BPF objects is through the processes that hold on to them. As
with many other resources, programs, links, maps, and btf are represented to processes as
file descriptors. They can be used to act on the object, retrieve information about it, and
serve as a mechanism to clean up after processes that did not exit gracefully. Furthermore,
an investigator might want to find out which process holds on to a specific BPF object in
order to investigate this process further.

Thus, the bpf_listprocs plugin displays the following pieces of information for every
process that holds on to at least one BPF object via a file descriptor.

columns: list[tuple[str, type]] = [
 ("PID", int),
 ("COMM", str),
 ("PROGS", str),
 ("MAPS", str),
 ("LINKS", str),
]

Here, the PROGS. MAPS, and LINKS columns display the IDs of the respective objects. This list
is generated by iterating over all file descriptors and the associated file structures. BPF
objects are identified by checking the file operations f_op pointer, and the corresponding
bpf_(prog|map|link) structures are found by following the pointer stored in the private
member.

https://github.com/volatilityfoundation/community3/blob/master/Sheffer_Shaked_Docker/plugins/ifconfig.py
https://github.com/vobst/BPFVol3/blob/main/src/plugins/bpf_netdev.py
https://github.com/vobst/BPFVol3/blob/main/src/plugins/bpf_listprocs.py
https://elixir.bootlin.com/linux/v6.1.63/source/include/linux/fs.h#L940

17/30

Not every BPF object must be reachable from the process list, however. They can, for
example, also be represented as files under the special bpf filesystem, which is usually
mounted at /sys/fs/bpf, or processes can close file descriptors and the object will remain
alive as long as there are other references to it.

Connecting the Dots⌗

Finally, we would like to present the bpf_graph plugin, a meta analysis that we have build on
top of the four listing plugins. As its name suggest, its goal is to visualize the state of the BPF
subsystem as a graph.

There are four types of nodes in this graph: programs, maps, links and processes. Different
node types are distinguished by shape. Within a node type, the different program/map/link
types are distinguished by color and process nodes are colored based on their process ID
(PID). Furthermore, map and program nodes are labeled with the ID and name of the object,
link nodes are labeled with the ID and attachment information of the link, and process nodes
receive the PID and comm (name of the user-space program binary) of their process as
labels.

There are three types of edges to establish relationships between nodes: file descriptor, link,
and map. File descriptor edges are dotted and connect processes to BPF objects that they
have an open fd for. Link edges are dashed and connect BPF links to the program they
reference. Finally, map edges are drawn solid and connect maps to all of the programs that
use them.

Especially for large applications with hundreds or even thousands of objects, it is essential to
be able to filter the graph to make it useful. We have therefore implemented two additional
options that can be passed to the plugin. First, you can pass a list of node types to include in
the output. Second, you can pass a list of nodes, and only the connected components that
contain at least one of those nodes will be drawn.

The idea of this plugin is to make the information of the four listing plugins more accessible
to investigators by combining it into a single picture. This is especially useful for complex
applications with possibly hundreds of programs and maps, or on busy systems where many
different processes have loaded BPF programs.

Plugin output comes in two forms, a dot-format encoding of the graph, where each BPF
object node has metadata containing all of the plugin columns, and as a picture of the graph,
drawn with a default layout algorithm. The latter should suffice for most users, but the former
allows advanced use-cases to do further processing.

Note: We provide standalone documentation for all plugins in our project on GitHub.

Case Study⌗

https://github.com/vobst/BPFVol3/blob/main/src/plugins/bpf_graph.py
https://github.com/vobst/BPFVol3/tree/main/docs

18/30

In this section we will use the plugins to examine the memory image of a system with a high
level of BPF activity. To get a diverse set of small BPF applications we launched the example
programs that come with libbpf-bootstrap and some of the kernel self-tests. You can
download the memory image and symbols to follow along. If you prefer to analyze a single,
large application have a look at the krie example in our plugin documentation.

A good first step is to use the graph plugin to get an overview of the subsystem (# vol -f
/io/dumps/debian-bookworm-6.1.0-13-amd64_all.raw linux.bpf_graph).

As we can see, there are several components corresponding to different processes, each of
which holds a number of BPF resources. Let us begin by examining the “Hello, World”
example of BPF, the minimal program:

https://github.com/libbpf/libbpf-bootstrap
https://drive.proton.me/urls/DBWB4GFRK8#7IbjrGRg6o5z
https://drive.proton.me/urls/BCKSBBZ6Z4#ZeZcrnYlF7tZ
https://github.com/vobst/BPFVol3/blob/main/docs/examples/krie/krie.md
https://github.com/libbpf/libbpf-bootstrap/blob/master/examples/c/minimal.bpf.c

19/30

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright (c) 2020 Facebook */
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>

char LICENSE[] SEC("license") = "Dual BSD/GPL";

int my_pid = 0;

SEC("tp/syscalls/sys_enter_write")
int handle_tp(void *ctx)
{

int pid = bpf_get_current_pid_tgid() >> 32;

if (pid != my_pid)
 return 0;

bpf_printk("BPF triggered from PID %d.\n", pid);

return 0;
}

The above source code is compiled with clang to produce an ELF relocatable object file. It
contains the BPF bytecode along with additional information, like BTF sections, CORE
relocations, programs as well as their attachment mechanisms and points, maps that are
used and so on. This ELF is then embedded into a user space program that statically links
against libbpf. At runtime, it passed the ELF to libbpf, which takes care of all the relocations
and kernel interactions required to wire up the program to the BPF VM.

With the above C code in the back of our heads, we can now have a look at the relevant
component of live system’s BPF object graph. To limit the output of the plugin to the
connected components that contain certain nodes, we can add the --components flag to the
invocation and give it a list of nodes (the format is <node_type>-<id> where node_type is in
{map,link,prog,proc} and id is the BPF object ID or PID).

20/30

As we can see, the ELF has caused libbpf to create a program, two maps and a link while
loading. We can now use our plugins to gather more information about each object. Let’s
start with the program itself.

vol -f /io/dumps/debian-bookworm-6.1.0-13-amd64_all.raw linux.bpf_listprogs --id 98
--dump-jited --dump-xlated
Volatility 3 Framework 2.5.0
Progress: 100.00 Stacking attempts finished
OFFSET (V) ID TYPE NAME TAG LOADED AT MAP IDs BTF ID
HELPERS

0xbce500673000 98 TRACEPOINT handle_tp 6a5dcef153b1001e
1417821088492 40,45 196 bpf_get_current_pid_tgid,bpf_trace_printk

By looking at the last column we can see that it is indeed using two kernel helper functions,
where the apparent call to bpf_printk turns out to be a macro that expands to
bpf_trace_printk. If we look at the program byte and the machine code side by side, we

21/30

can discover a few things.

cat .prog_0xbce500673000_98_bdisasm
0x0: 85 00 00 00 10 b2 02 00 call 0x2b210
0x8: 77 00 00 00 20 00 00 00 rsh64 r0, 0x20
0x10: 18 01 00 00 00 a0 49 00 00 00 00 00 e5 bc ff ff lddw r1, 0xffffbce50049a000
0x20: 61 11 00 00 00 00 00 00 ldxw r1, [r1]
0x28: 5d 01 05 00 00 00 00 00 jne r1, r0, +0x5
0x30: 18 01 00 00 10 83 83 f5 00 00 00 00 7b 9b ff ff lddw r1, 0xffff9b7bf5838310
0x40: b7 02 00 00 1c 00 00 00 mov64 r2, 0x1c
0x48: bf 03 00 00 00 00 00 00 mov64 r3, r0
0x50: 85 00 00 00 80 0c ff ff call 0xffff0c80
0x58: b7 00 00 00 00 00 00 00 mov64 r0, 0x0
0x60: 95 00 00 00 00 00 00 00 exit

cat .prog_0xbce500673000_98_mdisasm

handle_tp:
0xffffc03772a0: 0f 1f 44 00 00 nop dword ptr [rax +
rax]
0xffffc03772a5: 66 90 nop
0xffffc03772a7: 55 push rbp
0xffffc03772a8: 48 89 e5 mov rbp, rsp
0xffffc03772ab: e8 d0 fc aa f1 call 0xffffb1e26f80
bpf_get_current_pid_tgid
0xffffc03772b0: 48 c1 e8 20 shr rax, 0x20
0xffffc03772b4: 48 bf 00 a0 49 00 e5 bc ff ff movabs rdi,
0xffffbce50049a000 # minimal_.bss + 0x110
0xffffc03772be: 8b 7f 00 mov edi, dword ptr
[rdi]
0xffffc03772c1: 48 39 c7 cmp rdi, rax
0xffffc03772c4: 75 17 jne 0xffffc03772dd
handle_tp + 0x3d
0xffffc03772c6: 48 bf 10 83 83 f5 7b 9b ff ff movabs rdi,
0xffff9b7bf5838310 # minimal_.rodata + 0x110
0xffffc03772d0: be 1c 00 00 00 mov esi, 0x1c
0xffffc03772d5: 48 89 c2 mov rdx, rax
0xffffc03772d8: e8 13 57 a7 f1 call 0xffffb1dec9f0
bpf_trace_printk
0xffffc03772dd: 31 c0 xor eax, eax
0xffffc03772df: c9 leave
0xffffc03772e0: c3 ret
0xffffc03772e1: cc int3

The first lesson here is probably that symbol annotations are useful :). As expected, when
ignoring the prologue and epilogue inserted by the JIT-compiler, the translation between BPF
and x86_64 is essentially one-to-one. Furthermore, uses of global C variables like my_pid or
the format string result in direct references to kernel memory, where the closest preceding
symbols are the minimal_.bss’s and minimal_.rodata’s bpf_map structures, respectively.
For simple array maps, the bpf_map structure resides at the beginning of a buffer that also

22/30

holds the array data, 0x110 is simply the offset at which the map’s payload data starts. More
generally, libbpf will automatically create maps to hold the variables living in the .data,
.rodata, and .bss sections.

Dumping the map contents confirms that the .bss map holds the minimal process’s PID
while the .rodata map contains the format string.

vol -f /io/dumps/debian-bookworm-6.1.0-13-amd64_all.raw linux.bpf_listmaps --id 45
40 --dump
Volatility 3 Framework 2.5.0
Progress: 100.00 Stacking attempts finished
OFFSET (V) ID TYPE NAME KEY SIZE VALUE SIZE MAX ENTRIES

0xbce500499ef0 40 ARRAY minimal_.bss 4 4 1
0x9b7bf5838200 45 ARRAY minimal_.rodata 4 28 1
cat .map_0xbce500499ef0_40
{"0": "section (.bss) = {\n (my_pid) (int) b'\\xb7\\x02\\x00\\x00'\n"}
cat .map_0x9b7bf5838200_45
{"0": "section (.rodata) = {\n (handle_tp.____fmt) b'BPF triggered from PID
%d.\\n\\x00'\n"}

In the source code we saw the directive SEC("tp/syscalls/sys_enter_write"), which
instructs the compiler to place the handle_tp function’s BPF bytecode in an ELF section
called "tp/syscalls/sys_enter_write". While loading, libbpf picks this up and creates a
link that attaches the program to a perf event that is activated by the sys_enter_write
tracepoint. We can inspect the link, but getting more information about the corresponding
trace point is not yet implemented. Contributions are always highly welcome :)

vol -f /io/dumps/debian-bookworm-6.1.0-13-amd64_all.raw linux.bpf_listlinks --id 11
Volatility 3 Framework 2.5.0
Progress: 100.00 Stacking attempts finished
OFFSET (V) ID TYPE PROG ATTACH

0x9b7bc2c09ae0 11 PERF_EVENT 98

Dissecting the “Hello, World” programm was useful to get an impression of what a BPF
application looks like at runtime. Before concluding this section, we will have a look at a less
minimalist example, the process with PID 687.

23/30

This process is one of the kernel self-tests. It tests a BPF feature that allows to load new
function pointer tables used for dynamic dispatch (so called structure operations), where the
individual operations are implemented as BPF programs, at runtime. The programs that
implement the new operations can be recognized by their type STRUCT_OPS.

24/30

vol -f /io/dumps/debian-bookworm-6.1.0-13-amd64_all.raw linux.bpf_listprogs --id 37
39 40 42 43 44 45
Volatility 3 Framework 2.5.0
Progress: 100.00 Stacking attempts finished
OFFSET (V) ID TYPE NAME TAG LOADED AT MAP IDs BTF ID
HELPERS

0xbce5003b7000 37 STRUCT_OPS dctcp_init 562160e42a59841c
1417427431243 9,10,7 124 bpf_sk_storage_get,bpf_sk_storage_delete
0xbce50046b000 39 STRUCT_OPS dctcp_ssthresh cddbf7f9cf9b52d7
1417427590219 9 124
0xbce500473000 40 STRUCT_OPS dctcp_update_alpha 6e84698df8007e42
1417427647277 9 124
0xbce500487000 42 STRUCT_OPS dctcp_state dc878de7981c438b
1417427777414 9 124
0xbce500493000 43 STRUCT_OPS dctcp_cwnd_event 70cbe888b7ece66f
1417427888091 9 124 bpf_tcp_send_ack
0xbce5004e5000 44 STRUCT_OPS dctcp_cwnd_undo 78b977678332d89f
1417428066805 9 124
0xbce5004eb000 45 STRUCT_OPS dctcp_cong_avoid 20ff0d9ab24c8843
1417428109672 9 124 tcp_reno_cong_avoid

The mapping between the programs and the function pointer table they implement is realized
through a special map of type STRUCT_OPS created by the process.

vol -f /io/dumps/debian-bookworm-6.1.0-13-amd64_all.raw linux.bpf_listmaps --id 11
12
Volatility 3 Framework 2.5.0
Progress: 100.00 Stacking attempts finished
OFFSET (V) ID TYPE NAME KEY SIZE VALUE SIZE MAX ENTRIES

0x9b7bc3c41000 11 STRUCT_OPS dctcp_nouse 4 256 1
0x9b7bc3c43400 12 STRUCT_OPS dctcp 4 256 1

Unfortunately, the current implementation does not parse the contents of the map, so it
cannot determine the name of the kernel structure being implemented and the mapping
between its member functions and the BPF programs. As always, contributions are highly
welcome :). In this case, we would find out that it implements tcp_congestion_ops to load a
new TCP congestion control algorithm on the fly.

There is a lot more to explore in this memory image, so feel free to have a closer look at the
other processes. You might also want to check out the krie example in our documentation
to get an impression of a larger BPF application.

Testing⌗

https://elixir.bootlin.com/linux/v6.1.65/source/include/net/tcp.h#L1071
https://github.com/vobst/BPFVol3/blob/main/docs/examples/krie/krie.md

25/30

We tested the plugins on memory images acquired from virtual machines running on
QEMU/KVM that were suspended for the duration of the acquisition process. To ensure the
correctness of all plugin results, we have cross-checked them by debugging the guest kernel
as well as comparing them with bpftool running on the guest.

Below is a list of the distributions and releases that we used for manual testing

Debian

12.2.0-14, Linux 6.1.0-13

Ubuntu

22.04.2, Linux 5.15.0-89-generic
20.04, Linux 5.4.0-26-generic

Custom

Linux 6.0.12, various configurations
Linux 6.2.12, various configurations

For each of these kernels, we tested at least all the plugins on an image taken during the
execution of the libbpf-bootstrap example programs.

Additionally, to the above mentioned kernels we also developed an evaluation framework
(the code is not public). The framework is based on Vagrant and libvirt/KVM. First we create
and update all VMs. After that we run programs from libbpf-bootstrap with nohup so that
we can leave the VM and dump the memory from outside. To dump the memory we use
virsh with virsh dump <name of VM> --memory-only. virsh dump pauses the VM for a
clean acquisition of the main memory. We also install debug symbols for all the Linux
distributions under investigation so that we can gather the debug kernels (vmlinux with
DWARF debugging information) and the System.map file. We then use both files with
dwarf2json to generate the ISF information that Volatility 3 needs. Currently, we tested the
following Linux distributions with their respective kernels:

Alma Linux 9 - Linux kernel 5.14.0-362.8.1.el9_3.x86_64 ✅
Fedora 38 - Linux kernel 6.6.6-100.fc38.x86_64 ✅
Fedora 39 - Linux kernel 6.6.6-200.fc39.x86_64 ✅
CentOS Stream 9 - Linux kernel 5.14.0-391.el9.x86_64 ✅
Rocky Linux 8 - Linux kernel 4.18.0-513.9.1.el8_9.x86_64 ✅
Rocky Linux 9 - � kernel-debuginfo-common package is missing so the kernel
debugging symbols cannot be installed (list of packages)
Debian 11 - Linux kernel 5.10.0-26-amd64 ✅
Debian 12 - Linux kernel 6.1.0-13-amd64 ✅

https://www.vagrantup.com/
https://libvirt.org/
https://linux-kvm.org/page/Main_Page
https://github.com/volatilityfoundation/dwarf2json
https://download.rockylinux.org/pub/rocky/9/BaseOS/x86_64/debug/tree/Packages/k/

26/30

Ubuntu 22.04 - Linux kernel 5.15.0-88-generic ✅
Ubuntu 23.10 - Linux kernel 6.5.0-10-generic ✅ (works partially, but process listing is
broken due to this dwarf2json GitHub Issue)
ArchLinux - Linux kernel 6.6.7-arch1-1 ✅ (works partially, but breaks probably due to
the same issue as volatility3/dwarf2json GitHub Issue)
openSUSE Tumbleweed - ❓ it seems that the debug kernel that is provided by
OpenSUSE does contain debugging symbols but other sections such as .rodata are
removed (zeroed out) so that dwarf2json is not able to find the banner (further
analyses cannot be carried out without this information) - we will further investigate this
issue

We will check if the problems get resolved and re-evaluate our plugin. Generally, our
framework is designed to support more distributions as well and we will try to evaluate the
plugin on a wider variety of them.

During our automated analysis we encountered an interesting problem. To collect the kernels
with debugging symbols from the VMs we need to copy them to the host. When copying the
kernel executable file it will be read into main memory by the kernel’s page-cache
mechanism. This implies that parts of the kernel file (vmlinux) and the kernel itself (the
running kernel not the file) may be present in the dump. This can lead to the problem of the
Volatility 3 function find_aslr (source code) first finding matches in the page-cached kernel
file (vmlinux) and not in the running kernel. An issue has been opened here.

Related Work⌗

There are several articles on BPF that cover different security-related aspects of the
subsystem. In this section, we will briefly discuss the ones that are most relevant to the
presented work.

Memory Forensics: The crash utility, which is used to analyze live systems or kernel core
dumps, has a bpf subcommand that can be used to display information about BPF maps
and programs. However, as it is not a forensics tool it relies solely on the information
obtained via the prog_idr and map_ird. Similarly, the drgn programmable debugger comes
with a script to list BPF programs and maps but suffers from the same problems when it
comes to anti-forensic techniques. Furthermore, drgn and crash are primarily known as
debugging tools for systems developers and as such not necessarily well-established in the
digital forensics and incidence response (DFIR) community. In contrast, we implemented our
analyses as plugins for the popular Volatility framework well-known in the DFIR community.
Finally, A. Case and G. Richard presented Volatility plugins for investigating the Linux tracing
infrastructure in their BlackHat US 2021 paper. Apart from a plugin that lists programs by
parsing the prog_idr, they have also implemented several plugins that can find BPF
programs by analyzing the data structures of the attachment mechanisms they use, such as
kprobes, tracepoints or perf events. Thus, their plugins are also able to discover

https://github.com/volatilityfoundation/dwarf2json/issues/57
https://github.com/volatilityfoundation/volatility3/issues/1065
https://github.com/volatilityfoundation/volatility3/blob/fdf93f502fa8d0edc2b60764463aee3c455aeb03/volatility3/framework/automagic/linux.py#L121
https://github.com/volatilityfoundation/volatility3/pull/1070
https://github.com/crash-utility/crash/tree/master
https://github.com/crash-utility/crash/blob/master/bpf.c
https://github.com/osandov/drgn
https://github.com/osandov/drgn/blob/main/tools/bpf_inspect.py
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Fixing-A-Memory-Forensics-Blind-Spot-Linux-Kernel-Tracing-wp.pdf

27/30

inconsistencies that could reveal anti-forensic tampering. However, they have never publicly
released their plugins and despite several attempts we have been unable to contact the
authors to obtain a copy of the source code. Volatility already supports detecting BPF
programs attached to sockets in its sockstat plugin. The displayed information is limited to
names and IDs.

Reverse Engineering: Reverse engineering BPF programs is a key step while triaging the
findings of our plugins. Recently, the Ghidra software reverse engineering (SRE) suite
gained support for the BPF architecture, which means that its powerful decompiler can be
used to analyze BPF bytecode extracted from kernel memory or user-space programs.
Furthermore, BPF bytecode is oftentimes embedded into user-space programs that use
framework libraries to load it into the kernel at runtime. For programs written in the Go
programming language, ebpfkit-monitor can parse the binary format of these embedded files
to list the defined programs and maps as well as their interactions. It uses this information to
generate graphs that are similar to those of our bpf_graph plugin. Although the utility of
these graphs has inspired our plugin, it is fundamentally different in that it displays
information about the state of the kernel’s BPF subsystem extracted from a memory image.
Consequently, it is inherently agnostic to the user-space framework that was used for
compiling and loading the programs. Additionally, it displays the actual state of the BPF
subsystem instead of the BPF objects that might be created by an executable at runtime.

Runtime Protection and Monitoring: Important aspects of countering BPF malware are
preventing attackers from loading malicious BPF programs and logging suspicious events for
later review. krie and ebpfkit-monitor are tools that can be used to log BPF-related events as
well as to deny processes access to the BPF system call.

Simply blocking access on a per-process basis is too course-grained for many applications
and thus multiple approaches were proposed to implement a more fine-grained access
control model for the BPF subsystem to facilitate the realization of least privilege policies.
Among those, one can further distinguish between proposals that implement access control
in user space, kernel space, or a hypervisor.

bpfman (formerly known as bpfd) is a privileged user space daemon that acts as proxy for
loading BPF programs and can be used to implement different access control policies. A
combination of a privileged user-space daemon and kernel changes is used in the proposed
BPF token approach that allows delegation of access to specific parts of the BPF subsystem
to container processes by a privileged daemon.

A fine-grained in-kernel access control is offered by the CapBits proposed by Yi He et al.
Here, two bitfields are added to the task_struct, where one defines the access that a
process has to the BPF subsystem, e.g., allowed program types and helpers, and the other
restricts the access that BPF programs can have on the process, e.g., to prevent it from
being traced by kprobe programs. Namespaces are already used in many areas of the Linux

https://github.com/volatilityfoundation/volatility3/blame/develop/volatility3/framework/plugins/linux/sockstat.py#L163
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra/pull/4258
https://github.com/Gui774ume/ebpfkit-monitor
https://github.com/Gui774ume/krie
https://github.com/Gui774ume/ebpfkit-monitor
https://medium.com/@yunwei356/the-secure-path-forward-for-ebpf-runtime-challenges-and-innovations-968f9d71fc16
https://bpfman.io/main/
https://lwn.net/Articles/947173/
https://dl.acm.org/doi/abs/10.5555/3620237.3620571

28/30

kernel to virtualize global resources like PIDs or network devices. Thus, Y. Shao proposed
introducing BPF namespaces to limit the scope of loaded programs to processes inside of
the namespace. Finally, signatures over programs are a mechanism that allows the kernel to
verify their provenance, which can be used analogous to module signatures that prevent
attackers from loading malicious kernel modules.

Lastly, Y. Wang et al. proposed moving large parts of the BPF VM from the kernel into a
hypervisor, where they implement a multi-step verification process that includes enforcing a
security policy, checking signatures, and scanning for known malicious programs. In the
security policy, allowed programs can be specified as a set of deterministic finite automata,
which allows for accepting dynamically generated programs without allowing for arbitrary
code to be loaded.

All these approaches are complementary to our plugins as they focus on reducing the
chance that an attacker can successfully load a malicious program, while we assume that
this step has already happened and aim to detect their presence.

Conclusion⌗

In this post, we gave an introduction to the Linux BPF subsystem and discussed its potential
for abuse. We then presented seven Volatility plugins that allow investigators to detect BPF
malware in memory images and evaluated them on multiple versions of popular Linux
distributions. To conclude the post, we will briefly discuss related projects we are working on
and plans for future work.

This project grew out of the preparation of a workshop on BPF rootkits at the DFRWS EU
2023 annual conference (materials). We began working on this topic because we believe
that the forensic community needs to expand its toolbox in response to the rise of BPF in the
Linux world to fill blind spots in existing analysis methods. Additionally, investigators who
may encounter BPF in their work should be made aware of the potential relevance of the
subsystem to their investigation.

While the workshop, our plugins, and this post are an important step towards this goal, much
work remains to be done. First, in order for the present work to be useful in the real world our
next goal must be to upstream most of it into the Volatility 3 project. Only this will ensure that
investigators all around the world will be able to easily find and use it. This will require:

Refactoring of our utility code to use Volatility 3’s extension class mechanism
The bpf_graph plugin relies on networkx, which is not yet a dependency of Volatility 3.
If the introduction of a new dependency into the upstream project is not feasible, one
could make it optional by checking for the presence of the package within the plugin.
Additional testing on older kernel versions and kernels with diverse configurations to
meet Volatility’s high standards regarding compatibility

https://lwn.net/Articles/927354/
https://www.youtube.com/watch?v=9p4qviq60z8
https://dl.acm.org/doi/10.1145/3609021.3609305
https://web.archive.org/web/20230323233100/https://dfrws.org/forensic-analysis-of-ebpf-based-linux-rootkits/
https://github.com/fkie-cad/bpf-rootkit-workshop
https://networkx.org/documentation/stable/reference/algorithms/index.html

29/30

We will be happy to work with upstream developers to make the integration happen.

Furthermore, there remains the problem of dealing with the wide variety of map types when
extracting their contents, as well as the related problem of pretty-printing them using BTF
information. Here, we consider a manual implementation approach to be impractical and
would explore the possibility of using emulation of the relevant functions.

Regarding the advanced analysis aimed at countering anti-forensics, we have also
implemented consistency checks against the lists of kprobes and tracepoints, but these
require further work to be ready for publication. We also described additional analyses in our
workshop that still need to be implemented.

Finally, an interesting side effect of the introduction of BPF into the Linux kernel is that most
of the functionality requires BTF information for the kernel and modules to be available. This
provides an easy solution to the problem of obtaining type information from a raw memory
image, a step that is central to automatic profile generation. We have already shown that it is
possible to reliably extract BTF sections from memory images by implementing a plugin for
that. We have also explored the possibility of combining this with existing approaches for
extracting symbol information in order to obtain working profiles from a dump. While the
results are promising, further work is needed to have a usable solution.

Appendix⌗

A: Kernel Configuration⌗

This section provides a list of compile-time kernel configuration options that can be adjusted
to restrict the capabilities of BPF programs. In general, it is recommended to disable unused
features in order to reduce the attack surface of a system.

BPF_SYSCALL=n: Disables the BPF system call. Probably breaks most systemd-based
systems.
DEBUG_INFO_BTF=n: Disables generation of BTF debug information, i.e., CORE no
longer works on this system. Forces attackers to compile on/for the system they want
to compromise.
BPF_LSM=n: BPF programs cannot be attached to LSM hooks.
LOCK_DOWN_KERNEL_FORCE_INTEGRITY=y: Prohibits the use of bpf_probe_write_user.
NET_CLS_BPF=n and NET_ACT_BPF=n: BPF programs cannot be used in TC classifier
actions. Stops some data exfiltration techniques.
FUNCTION_ERROR_INJECTION=n: Disables the function error injection framework, i.e.,
BPF programs can no longer use bpf_override_return.
NETFILTER_XT_MATCH_BPF=n: Disables option to use BPF programs in nftables rules.
Could be used to implement malicious firewall rules.

https://github.com/vobst/BPFVol3/blob/extractbtf/src/plugins/btf_extract.py
https://elixir.bootlin.com/linux/v6.1.68/source/kernel/bpf/Kconfig#L26
https://elixir.bootlin.com/linux/v6.1.68/source/lib/Kconfig.debug#L345
https://elixir.bootlin.com/linux/v6.1.68/source/kernel/bpf/Kconfig#L90
https://elixir.bootlin.com/linux/v6.1.67/source/security/lockdown/Kconfig#L33
https://www.kernelconfig.io/CONFIG_NET_CLS_BPF?q=NET_CLS_BPF&kernelversion=6.6.6&arch=x86
https://www.kernelconfig.io/CONFIG_NET_ACT_BPF?q=CONFIG_NET_ACT_BPF&kernelversion=6.6.6&arch=x86
https://elixir.bootlin.com/linux/v6.1.67/source/lib/Kconfig.debug#L1880
https://elixir.bootlin.com/linux/v6.1.68/source/net/netfilter/Kconfig#L1168
https://blog.cloudflare.com/programmable-packet-filtering-with-magic-firewall/

30/30

BPF_EVENTS=n: Removes the option to attach BPF programs to kprobes, uprobes, and
tracepoints.

Below are options that limit features that we consider less likely to be used by malware.

BPFILTER=n: This is an unfinished BPF-based replacement of iptables/nftables
(currently not functional).
LWTUNNEL_BPF=n: Disables the use of BPF programs for routing decisions in light
weight tunnels.
CGROUP_BPF=n: Disables the option to attach BPF programs to cgoups. Cgroup
programs can monitor various networking-related events of processes in the group.
Probably breaks most systemd-based systems.

https://elixir.bootlin.com/linux/v6.1.68/source/kernel/trace/Kconfig#L696
https://elixir.bootlin.com/linux/v6.1.68/source/net/bpfilter/Kconfig#L2
https://elixir.bootlin.com/linux/v6.1.68/source/net/Kconfig#L397
https://elixir.bootlin.com/linux/v6.1.68/source/init/Kconfig#L1157

