
1/9

Getting gooey with GULOADER: deobfuscating the downloader
elastic.co/security-labs/getting-gooey-with-guloader-downloader

Subscribe

Overview

Elastic Security Labs continues to monitor active threats such as GULOADER, also known as CloudEyE – an evasive shellcode
downloader that has been highly active for years while under constant development. One of these recent changes is the addition
of exceptions to its Vectored Exception Handler (VEH) in a fresh campaign, adding more complexity to its already long list of
anti-analysis tricks.

While GULOADER’s core functionality hasn’t changed drastically over the past few years, these constant updates in their
obfuscation techniques make analyzing GULOADER a time-consuming and resource-intensive process. In this post, we will
touch on the following topics when triaging GULOADER:

Reviewing the initial shellcode and unpacking process
Finding the entrypoint of the decrypted shellcode
Discuss update to GULOADER’s VEH that obfuscates control flow
Provide a methodology to patch out VEH

Initial Shellcode

In our sample, GULOADER comes pre-packaged inside an NSIS (Nullsoft Scriptable Install System) installer. When the installer
is extracted, the main components are:

NSIS Script - This script file outlines all the various configuration and installation aspects.

https://www.elastic.co/security-labs/getting-gooey-with-guloader-downloader
https://www.elastic.co/security-labs
https://www.elastic.co/security-labs/rss/feed.xml
https://malpedia.caad.fkie.fraunhofer.de/details/win.cloudeye
https://www.virustotal.com/gui/file/6ae7089aa6beaa09b1c3aa3ecf28a884d8ca84f780aab39902223721493b1f99

2/9

 Extracted NSIS contents

System.dll - Located under the $PLUGINSDir. This file is dropped in a temporary folder to allocate/execute the
GULOADER shellcode.

 System.Dll exports

Shellcode - The encrypted shellcode is buried into a nested folder.

One quick methodology to pinpoint the file hosting the shellcode can be done by monitoring ReadFile events from SysInternal’s
Process Monitor after executing GULOADER. In this case, we can see that the shellcode is read in from a file (Fibroms.Hag).

Shellcode Retrieved from File

GULOADER executes shellcode through callbacks using different Windows API functions. The main reasoning behind this is to
avoid detections centered around traditional Windows APIs used for process injection, such as CreateRemoteThread or
WriteProcessMemory. We have observed EnumResourceTypesA and CallWindowProcW used by GULOADER.

EnumResourceTypesA Function Call inside GULOADER

By reviewing the MSDN documentation for EnumResourceTypesA, we can see the second parameter expects a pointer to the
callback function. From the screenshot above, we can see that the newly allocated shellcode is placed into this argument.

EnumResourceTypesA Function Parameters

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-enumresourcetypesa

3/9

 Shellcode from second parameter

EnumResourceTypesA call

Finding Main Shellcode Entrypoint

In recent samples, GULOADER has increased the complexity at the start of the initial shellcode by including many different junk
instructions and jumps. Reverse engineering of the downloader can require dealing with a long process of unwinding code
obfuscation designed to break disassembly and control flow in some tooling, making it frustrating to find the actual start of the
core GULOADER shellcode.

One methodology for finding the initial call can be leveraging graph view inside x64dbg and using a bottom-to-top approach to
look for the call eax instruction.

 Graph view for GULOADER main entrypoint call

Another technique to trace the initial control flow involves leveraging the reversing engineering framework Miasm. Below is a
quick example where we can pass in the shellcode and disassemble the instructions to follow the flow:

https://github.com/cea-sec/miasm

4/9

from miasm.core.locationdb import LocationDB
from miasm.analysis.binary import Container
from miasm.analysis.machine import Machine

with open("proctoring_06BF0000.bin", "rb") as f:
 code = f.read()

loc_db = LocationDB()
c = Container.from_string(code, loc_db)

machine = Machine('x86_32')
mdis = machine.dis_engine(c.bin_stream, loc_db=loc_db)
mdis.follow_call = True
mdis.dontdis_retcall = True
asm_cfg = mdis.dis_multiblock(offset=0x1400)

Miasm cuts through the 142 jmp instructions and navigates through the junk instructions where we have configured it to stop on
the call instruction to EAX (address: 0x3bde).

JMP loc_3afd
-> c_to:loc_3afd
loc_3afd
MOV EBX, EAX
FADDP ST(3), ST
PANDN XMM7, XMM2
JMP loc_3b3e
-> c_to:loc_3b3e
loc_3b3e
SHL CL, 0x0
PSRAW MM1, MM0
PSRLD XMM1, 0xF1
JMP loc_3b97
-> c_to:loc_3b97
loc_3b97
CMP DL, 0x3A
PADDW XMM3, XMM5
PXOR MM3, MM3
JMP loc_3bde
-> c_to:loc_3bde
loc_3bde
CALL EAX

Tail end of Miasm

GULOADER’s VEH Update

One of GULOADER’s hallmark techniques is centered around its Vectored Exception Handling (VEH) capability. This feature
gives Windows applications the ability to intercept and handle exceptions before they are routed through the standard exception
process. Malware families and software protection applications use this technique to make it challenging for analysts and tooling
to follow the malicious code.

GULOADER starts this process by adding the VEH using RtlAddVectoredExceptionHandler. Throughout the execution of the
GULOADER shellcode, there is code purposely placed to trigger these different exceptions. When these exceptions are
triggered, the VEH will check for hardware breakpoints. If not found, GULOADER will modify the EIP directly through the
CONTEXT structure using a one-byte XOR key (changes per sample) with a one-byte offset from where the exception occurred.
We will review a specific example of this technique in the subsequent section. Below is the decompilation of our sample’s VEH:

https://learn.microsoft.com/en-us/windows/win32/debug/vectored-exception-handling
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-context

5/9

 Decompilation of VEH

Although this technique is not new, GULOADER continues to add new exceptions over time; we have recently observed these
two exceptions added in the last few months:

EXCEPTION_PRIV_INSTRUCTION

EXCEPTION_ILLEGAL_INSTRUCTION

As new exceptions get added to GULOADER, it can end up breaking tooling used to expedite the analysis process for
researchers.

EXCEPTION_PRIV_INSTRUCTION

Let’s walk through the two recently added exceptions to follow the VEH workflow. The first exception
(EXCEPTION_PRIV_INSTRUCTION), occurs when an attempt is made to execute a privileged instruction in a processor’s instruction
set at a privilege level where it’s not allowed. Certain instructions, like the example below with WRSMR expect privileges from
the kernel level, so when the program is run from user mode, it will trigger the exception due to incorrect permissions.

 EXCEPTION_PRIV_INSTRUCTION

triggered by wrmsr instruction

EXCEPTION_ILLEGAL_INSTRUCTION

This exception is invoked when a program attempts to execute an invalid or undefined CPU instruction. In our sample, when we
run into Intel virtualization instructions such as vmclear or vmxon, this will trigger an exception.

https://www.felixcloutier.com/x86/wrmsr

6/9

EXCEPTION_ILLEGAL_INSTRUCTION triggered by vmclear instruction

Once an exception occurs, the GULOADER VEH code will first determine which exception code was responsible for the
exception. In our sample, if the exception matches any of the five below, the code will take the same path regardless.

EXCEPTION_ACCESS_VIOLATION

EXCEPTION_ILLEGAL_INSTRUCTION

EXCEPTION_PRIV_INSTRUCTION

EXCEPTION_SINGLE_STEP

EXCEPTION_BREAKPOINT

GULOADER will then check for any hardware breakpoints by walking the CONTEXT record found inside the
EXCEPTION_POINTERS structure. If hardware breakpoints are found in the different debug registers, GULOADER will return a
0 into the CONTEXT record, which will end up causing the shellcode to crash.

GULOADER monitoring hardware breakpoints

If there are no hardware breakpoints, GULOADER will retrieve a single byte which is 7 bytes away from the address that caused
the exception. When using the last example with vmclear, it would retrieve byte (0x8A).

 GULOADER retrieves a single byte,

7 bytes away from the instruction, causing an exception

Then, using that byte, it will perform an XOR operation with a different hard-coded byte. In our case (0xB8), this is unique per
sample. Now, with a derived offset 0x32 (0xB8 ^ 0x8A), GULOADER will modify the EIP address directly from the CONTEXT
record by adding 0x32 to the previous address (0x7697630) that caused the exception resulting in the next code to execute from
address (0x7697662).

https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_pointers

7/9

Junk instructions in between exceptions

With different junk instructions in between, and repeatedly hitting exceptions (we counted 229 unique exceptions in our sample),
it’s not hard to see why this can break different tooling and increase analyst time.

Control Flow Cleaning

To make following the control flow easier, an analyst can bypass the VEH by tracing the execution, logging the exceptions, and
patching the shellcode using the previously discussed EIP modification algorithm. For this procedure, we leveraged TinyTracer,
a tool written by @hasherezade that leverages Pin, a dynamic binary instrumentation framework. This will allow us to catch the
different addresses that triggered the exception, so using the example above with vmclear, we can see the address was
0x7697630, generated an exception calling KiUserExceptionDispatcher, a function responsible for handling user-mode
exceptions.

Once all the exceptions are collected and filtered, these can be passed into an IDAPython script where we walk through each
address, calculate the offset using the 7th byte over and XOR key (0xB8), then patch out all the instructions generating
exceptions with short jumps.

The following image is an example of patching instructions that trigger exceptions at addresses 0x07697630 and 0x0769766C.

Disassembly of patched instructions

Below is a graphic representing the control flow graph before the patching is applied globally. Our basic block with the vmclear
instruction is highlighted in orange. By implementing the VEH, GULOADER flattens the control flow graph, making it harder to
trace the program logic.

https://github.com/hasherezade/tiny_tracer
https://twitter.com/hasherezade
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html

8/9

GULOADER’s control flow flattening obfuscation

After patching the VEH with jmp instructions, this transforms the basic blocks by connecting them together, reducing the
complexity behind the flow of the shellcode.

 GULOADER’s call graph obfuscation

Using this technique can accelerate the cleaning process, yet it’s important to note that it isn’t a bulletproof method. In this
instance, there still ends up being a good amount of code/functionality that will still need to be analyzed, but this definitely goes a
long way in simplifying the code by removing the VEH. The full POC script is located here.

Conclusion

GULOADER has many different features that can break disassembly, hinder control flow, and make analysis difficult for
researchers. Despite this and the process being imperfect, we can counter these traits through different static or dynamic
processes to help reduce the analysis time. For example, we observed that with new exceptions in the VEH, we can still trace
through them and patch the shellcode. This process will set the analyst on the right path, closer to accessing the core
functionality with GULOADER.

By sharing some of our workflow, we hope to provide multiple takeaways if you encounter GULOADER in the wild. Based on
GULOADER’s changes, it's highly likely that future behaviors will require new and different strategies. For detecting
GULOADER, the following section includes YARA rules, and the IDAPython script from this post can be found here. For new

https://github.com/elastic/labs-releases/tree/main/tools/guloader/guloader_FixCFG.py
https://github.com/elastic/labs-releases/tree/main/tools/guloader/guloader_FixCFG.py

9/9

updates on the latest threat research, check out our malware analysis section by the Elastic Security Labs team.

YARA

Elastic Security has created different YARA rules to identify this activity. Below is an example of one YARA rule to identify
GULOADER.

rule Windows_Trojan_Guloader {
 meta:
 author = "Elastic Security"
 creation_date = "2023-10-30"
 last_modified = "2023-11-02"
 reference_sample = "6ae7089aa6beaa09b1c3aa3ecf28a884d8ca84f780aab39902223721493b1f99"
 severity = 100
 arch = "x86"
 threat_name = "Windows.Trojan.Guloader"
 license = "Elastic License v2"
 os = "windows"
 strings:
 $djb2_str_compare = { 83 C0 08 83 3C 04 00 0F 84 [4] 39 14 04 75 }
 $check_exception = { 8B 45 ?? 8B 00 38 EC 8B 58 ?? 84 FD 81 38 05 00 00 C0 }
 $parse_mem = { 18 00 10 00 00 83 C0 18 50 83 E8 04 81 00 00 10 00 00 50 }
 $hw_bp = { 39 48 0C 0F 85 [4] 39 48 10 0F 85 [4] 39 48 14 0F 85 [7] 39 48 18 }
 $scan_protection = { 39 ?? 14 8B [5] 0F 84 }
 condition:
 2 of them
}

Observations

All observables are also available for download in both ECS and STIX format.

The following observables were discussed in this research.

Observable Type Name Reference

6ae7089aa6beaa09b1c3aa3ecf28a884d8ca84f780aab39902223721493b1f99 SHA-
256

Windows.Trojan.Guloader GULOADER
downloader

101.99.75[.]183/MfoGYZkxZIl205.bin url NA GULOADER
C2 URL

101.99.75[.]183 ipv4-
addr

NA GULOADER
C2 IP

References

https://www.elastic.co/security-labs/topics/malware-analysis
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_Guloader.yar
https://github.com/elastic/labs-releases/tree/main/indicators/guloader

