AeroBlade on the Hunt Targeting the U.S. Aerospace Industry

blogs.blackberry.com/en/2023/11/aeroblade-on-the-hunt-targeting-us-aerospace-industry

Dmitry Bestuzhev, The BlackBerry Research & Intelligence Team

Summary

BlackBerry has uncovered a previously unknown threat actor targeting an aerospace organization in the United States, with the apparent goal of conducting commercial and competitive cyber espionage. The <u>BlackBerry Threat Research and Intelligence team</u> is tracking this threat actor as **AeroBlade.** The actor used spear-phishing as a delivery mechanism: A weaponized document, sent as an email attachment, contains an embedded remote template injection technique and a malicious VBA macro code, to deliver the next stage to the final payload execution.

Evidence suggests that the attacker's network infrastructure and weaponization became operational around September 2022. BlackBerry assesses with medium to high confidence that the offensive phase of the attack occurred in July 2023. The attacker improved its toolset during that time, making it stealthier, while the network infrastructure remained the same.

Given the final payload functionality and the subject of the attack, BlackBerry assesses with medium to high confidence that the goal of this attack was commercial cyber espionage.

Brief MITRE ATT&CK[®] Information

Tactic	Technique
Initial Access	T1566.001
Execution	T1204.002, T1059.005, T1203, T1559.002, T1559.001, T1106, T1059.003
Defense Evasion	T1027, T1140, T1221, T1036.005, T1027.001,
Persistence	T1137.001, T1053.005
Command-and- Control	T1071.001, T1001, T1573.001, T1105
Exfiltration	T1041, T1029
Discovery	T1083, T1082, T1033, T1016

Weaponization and Technical Overview

Weapons	MS Office documents, PE 64
Attack Vector	Spear-phishing
Network Infrastructure	C2 server on port 443
Targets	Aerospace industry in the United States

Technical Analysis

Context

The BlackBerry Threat Research and Intelligence team recently uncovered two campaigns by a previously unknown threat actor, which we have named AeroBlade, targeting an aerospace industry company in the U.S. We found two phases of the attack chain. The initial attack was conducted in September 2022, and based on our technical analysis, we have concluded this was a "testing" stage. The second attack occurred in July 2023.

There are certain similarities between both campaigns:

- Both lure documents were named "[redacted].docx."
- The final payload is a reverse shell.
- The command-and-control (C2) server IP address is the same.

There are also some interesting differences between the two campaigns:

- The final payload of the 2023 attack is stealthier and uses more obfuscation and antianalysis techniques.
- The 2023 campaign's final payload includes an option to list directories from infected victims.

During an attack, a malicious Microsoft Word document called [redacted].docx is delivered via email spear-phishing, which, when executed manually by the user, employs a remote template injection to download a second stage file called "[redacted].dotm". This file in turn executes "item3.xml", which creates a reverse shell connecting to "redacted[.]redacted[.]com" over port 443.

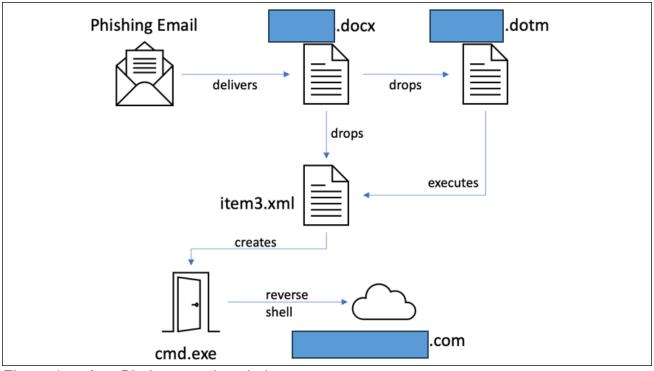


Figure 1 — AeroBlade execution chain

Attack Vector

First Stage

The first stage of the infection is a targeted email that has a malicious document attachment with the filename [redacted].docx. When opened, the document displays text in a deliberately scrambled font, along with a "lure" message asking the potential victim to click it to enable the content in MS Office.

The docx document employs remote template injection, MITRE ATT&CK technique <u>T1221</u>, to download the second stage of the infection.

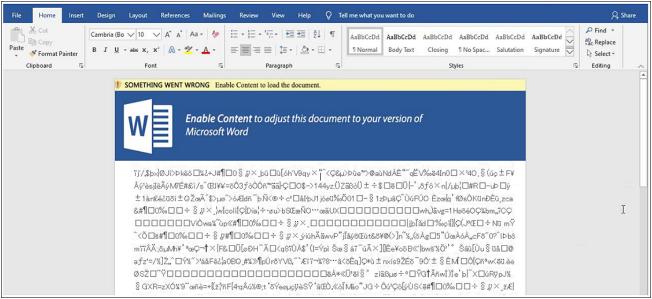


Figure 2 — The malicious document displays text in a scrambled font, along with a visual lure asking the user to click it to enable content

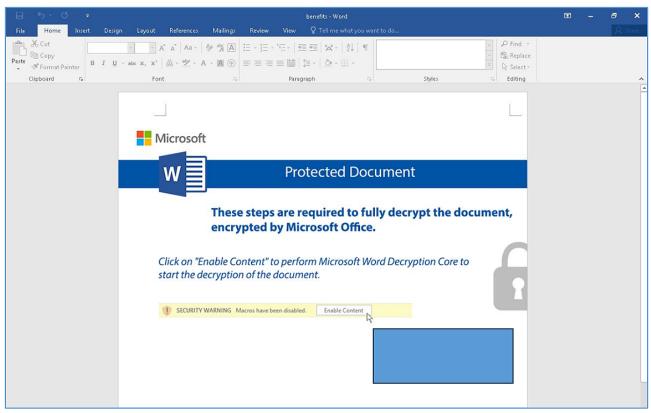


Figure 3 — The "fixed" document that appears once the victim clicks the lure message to manually enable content

The next-stage information is saved in an XML (eXtensible Markup Language) file inside a .dotm file. A .dotm file is a document template created by Microsoft Word, containing the default layout, settings, and macros for a document.

1	<pre></pre> <pre< th=""><th>0" encoding="UTF-8" standalone="yes"?></th></pre<>	0" encoding="UTF-8" standalone="yes"?>
2	<pre><retationsnips pre="" xr<=""></retationsnips></pre>	<pre>ilns="http://schemas.openxmlformats.org/package/2006/relationships"></pre>
2	-Polationship Id	"rIdl" Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/attachedTemplate"
-	sveraciousnith in-	
1	Target="http://	dotm" TargetMode="External"/>
	rangee- neep.//	
5		

Figure 4 — Next stage parameter in the OLE file

hxxp://[redacted].106.27. [redacted]/[redacted][.]dotm

Once the victim opens the file and executes it by manually clicking the "Enable Content" lure message, the [redacted].dotm document discretely drops a *new* file to the system, and opens it. The newly downloaded document is readable, leading the victim to believe that the file initially received by email is legitimate. In fact, it's a classic cyber bait-and-switch, performed invisibly right under the victim's nose.

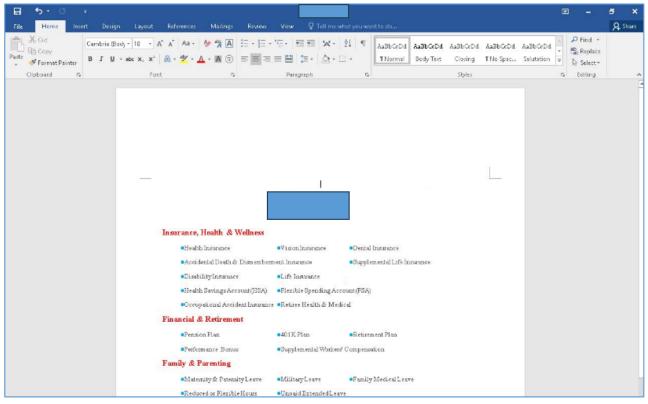


Figure 5 — A second document is discretely downloaded and opened in place of the original malicious document

It's interesting to note that the body of the first-stage document contains an executable library that runs with the help of the second stage — we'll take a closer look at this executable library a little later on in this report.

	:\cust]
	>UPDIR<	Attr	Date	Time
_rels	>SUBDIR<			
item1.xml	249	.a		
item2.xml	2833	.a		
item3.xml	165376	.a		
itemProps1.xml	335	.a	1	
itemProps2.xml	308	.a		

Figure 6 — Location of the executable library in the file list in the [redacted].docx document

Second Stage

The second stage of execution is the OLE document which contains the macro. The macro runs the library included in the first-stage document.

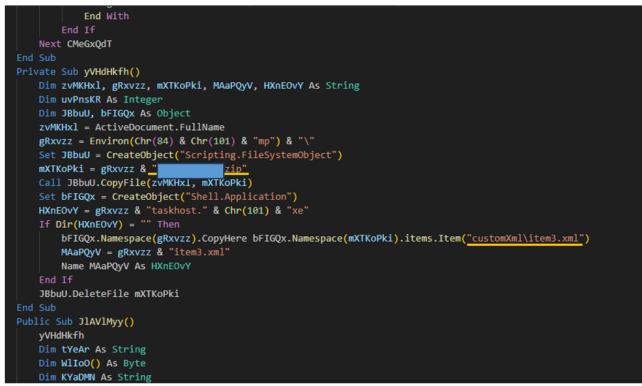


Figure 7 — A macro that runs a malicious PE file

The second-stage macro also copies the OLE document ([redacted].docx) to a hard-coded file name at a specific path:

C:\Users\user\AppData\Local\Temp\[redacted].zip

The final execution stage will be an executable file run on the system using the macro.

Payload

The final payload is a DLL that acts as a reverse shell that connects to a hard-coded C2 server. Reverse shells allow attackers to open ports to the target machines, forcing communication and enabling a complete takeover of the device. It is therefore a severe security threat.

The DLL is also capable of listing all directories found on the now-infected system. It is a heavily obfuscated executable which implements complex techniques, such as:

- Anti-disassembly techniques to make analysis harder
- API hashing to hide its usage of Windows functions; The hash function used is <u>Murmur</u>.
- Custom encoding for each string used
- Multiple checks are implemented to avoid the malware running on an automated environment such as a sandbox; This impedes analysis.

For anti-disassembly, the executable contains control flow obfuscation, usage of data between code, and dead code-executed instructions that do not affect the malware. Dead code is a section in the source code of a program which is executed, but whose result is never used in any other computation. These techniques are all added to make analysis harder for defenders.

.text:0000000140003527	E9	50	E0	FF	FF				jmp	loc_1400015	57C		
.text:0000000140003527								; END OF FUNCTI	ON CHUNK	FOR sub_140	001569		
.text:0000000140003527								;			;		
.text:000000014000352C	5B	67	86	C 4					dd 0C48	6675Bh			
.text:0000000140003530	C 9	04	9E	DØ	5E (7D 54	99		dq 995A	7D5ED09E04C9	loc_14000157C:		
.text:0000000140003538	0E	34	B4	37					db ØEh,	34h, 0B4h,			
.text:000000014000353C								;				mov	esi, 20h ; ' '
.text:00000014000353C												jmp	loc_14000353C
.text:000000014000353C								loc 14000353C:			sub_140001569	endp	
.text:000000014000353C	4C	89	74	24	20			-	mov	[rsp+20h],	_		
.text:0000000140003541	50								push	rax	;		
.text:0000000140003542	51								push	rcx	-		
.text:0000000140003543	52								push	rdx			
.text:0000000140003544	53								push	rbx			
.text:0000000140003545	5B								, pop	rbx			
.text:0000000140003546	5A								pop	rdx			
.text:0000000140003547	59								рор	ncx			
.text:0000000140003548	58								рор	rax			

Figure 8 — Example of data between code, control flow obfuscation, and use of dead code

.text:0000000140003567 48 8D 4C 24 20 .text:000000014000356C	lea rcx, [rsp+20h]
.text:000000014000356C loc_14000356C .text:000000014000356C EB FF	<pre>; CODE XREF: .text:loc_14000356C1j jmp short near ptr loc_14000356C+1</pre>
.text:000000014000356C ; .text:000000014000356E D0 50 .text:0000000140003570 58 51 59 52 5A 53 5B EB+	dw 50D0h dq 0EB5B535A52595158h, 88BF00017AAA15FFh, 0EBCF8BD88B00001

Figure 9 — Usage of <u>evil byte</u>, a common technique to defeat the way disassembler tools work

.text:0000000140003567 .text:0000000140003567	48 8D 4C 24 20		lea	rcx, [rsp+20h]
.text:000000014000356C	EB	;	db ØEBh	
.text:000000014000356D		;		
.text:00000014000356D			call	rax
.text:000000014000356F .text:0000000140003570			push	rax
.text:000000140005570	20		рор	rax

Figure 10 — Fixed evil byte showing real code execution

The executable also implements techniques that causes the malware to skip execution on automated systems, such as sandboxes or antivirus (AV) emulators. These techniques include:

- Comparing the position of the mouse cursor using the GetCursorPos() function
- Comparing time elapsed on execution using the function GetTickCount()
- Checking to see if the number of processors is less than two, using the NumberOfProcessors from the Process Environment Block (PEB) structure
- Checking physical memory size using the function GlobalMemoryStatusEx()

.text:00000001400035FB 83 B8 B8 00 00 00 02	cmp dword ptr [rax+0B8h], 2
.text:0000000140003602 E9 01 E0 FF FF	jmp loc_140001608

Figure 11 — Checking number of processors used by the victim's machine

.text:0000000140003656 .text:0000000140003657		8D /	c .	A 7	a		pop lea	rbx rcx, [rsp+70h]
.text:0000000140003657		00 -			·	;		
.text:000000014000365C .text:000000014000365D	EB					;	db 0EBh	
.text:000000014000365D .text:000000014000365F			<u> </u>	A 7	8 00 00 00+		call cmp	<pre>rax ; GlobalMemoryStatusEx gword ptr [rsp+78h], 40000000h</pre>
.text:000000014000365F	40	01 /		/	0 00 00 00+		Cillb	quora per [rspron], 400000001
.text:0000000140003668 .text:0000000140003669		D9 0	FF	FF	F		nop jmp	loc_140001647

Figure 12 — Checking available physical memory on the victim's machine

After passing all those checks, the malicious DLL executes the following sequence:

- Decrypts embedded static configuration containing the C2 server information for it to connect to
- Collects system information from the infected machine
- Sets persistence to survive upon system reboot
- Finally, it connects to the C2 server, transmitting all its collected information, and spawning a reverse shell, while also sending a list of directories found on the infected system.

Offset(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	OF	Decoded text
0001C6D0	54	01	00	00	BB	01	00	00	50	61	24	24	77	30	72	64	T»Pa\$\$w0rd
0001C6E0											64	61	74	65	2E	61	
0001C6F0										63	6F	6D	00	00	00	00	.com
0001C700	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C710	00	00	00	00	00	00	00	00	AB	·····							

Figure 13 — Static configuration

Static configuration is AES encrypted, and once decrypted, contains the following structure:

- First DWORD: 0x154, unknown usage, static config size is hard-coded at 72 bytes
- Second DWORD: 0x1BB, connects to TCP port 443
- 16-byte string "Pa\$\$w0rd" seems to be a password to connect to the C2, but it is not used in practice
- C2 server points to: redacted[.]redacted[.]com

Offset(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	OF	Decoded text
0001C480	00	00	00	4E	C4	26	6E	СВ	EA	8E	DO	22	F6	43	0C	11	NÄ&nËêŽĐ"öC
0001C490	1C	Α4	56	61	64	6D	69	6E	00	00	00	00	00	00	00	00	.¤Vadmin
0001C4A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C4B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C4C0	00	00	00	44	45	53	4B	54	4F	50	2D						DESKTOP-
0001C4D0			00	00	00	00	00	00	00	00	00	00	00	00	00	00	•••••
0001C4E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	••••••
0001C4F0	00	00	00	43	ЗA	5C											C:
0001C500										2E	64	6C	6C	00	00	00	.dl1
0001C510	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	· · · · · · · · · · · · · · · · · · ·
0001C520	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C530	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C540	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C550	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C560	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C570	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C580	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C590	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C5A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C5B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C5C0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C5D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C5E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C5F0	00	00	00	00	00	00	00	00	AC	10	F5	79	00	00	00	00	õy
0001C600	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C610	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C620	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C630	00	00	00	00	00	00	00	00	00	0C	29	EF	03	F2	14	7D)ï.ò.}
0001C640	DA	DE	27	0D	00	00	00	00	00	00	00	00	00	00	00	00	ÚÞ'
0001C650	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C660	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C670	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C680	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0001C690	00	00	00	00	00	00	00	00	AB								

Figure 14 — Example of information collected from infected system

Bot-collected data structure is as follows:

- Offset 0x3: hard-coded unknown 16 bytes computed by custom unknown encode functions
- Offset 0x13: username using function GetUserNameA()
- Offset 0x43: computer name using function GetComputerNameA()
- Offset 0x73: file name being executed using function GetModuleFileNameA()
- Offset 0x178: IPV4 addresses using function GetAdaptersInfo()
- Offset0x1b8: MAC addresses using function GetAdaptersInfo()

Persistence is achieved via Windows Task Scheduler, where a task named "**WinUpdate2**" is created to run every day at 10:10 AM. Task Scheduler functions are abused by using its COM object via the CoCreateInstance() function.

🕒 WinUpdate2	Ready A	At 10:10 AM ev	ery day			8/12/2023 10:10:00 AM	8/11/202
<							
General Triggers	Actions	Conditions	Settings	History (disabled)			
pages using the			y the action	on that will occur when your ta	isk starts. To change	these actions, open the task prop	berty
pages using the	riopenie	s command.					
Action	De	etails					
Start a program	n C:	N	.d	II			

Figure 15 — Persistence is established through Windows Task Scheduler

Reverse Shell

Finally, the reverse shell is executed in a stealthy way. First, it gets the default standard handle by calling GetStdHandle(), then the ComSpec variable is retrieved using the GetEnvironmentVariableW() function, which by default is set to

"C:\Windows\system32\cmd.exe". After that, a pipe is created using CreatePipe(), and CreateProcessW() is executed, creating "cmd.exe."

RAX	00007FF8D326CB60	<kernel32.createprocessw></kernel32.createprocessw>
RBX	000000000000000000	
RCX	00000000000000000	
RDX	00000096CFCFF930	L"C:\\Windows\\system32\\cmd.exe /c "

Figure 16 — cmd.exe CreateProcess

Besides the reverse shell, the final payload can collect a complete list of directories on the victim's system by using the function GetLogicalDeviceStringsW(), looping through the list of files using FindFirstFileA()/FindNextFileA(), and then comparing with ".." to see if a given file is actually a directory.

Hide FPU			
RAX	00007FF8D326B770	<kernel32.uaw_lstrcmpw></kernel32.uaw_lstrcmpw>	
RBX	000000000000000000000000000000000000000		
RCX	000000CDA34FC6BC	L"\$Recycle.Bin"	
RDX	000000CDA34FCB39	L""	

Figure 17 — String comparison with directories

During our investigations, we found two samples from mid-2022: "**5[redacted sha-256]7**" and "**5[redacted sha-256]8**", which is also a reverse shell with a hard-coded C2 at " [redacted][.]165" — the same IP address that the C2 server from the 2023 samples are

pointing to. Both samples were targeting the aerospace industry.

While the 2022 samples are obfuscated, unlike the 2023 samples, they do not contain stealthier functions such as API hashing, anti-analysis techniques, or encrypted static configuration. They also don't include the capability to list directories, nor are they able to send information to a remote server.

Networ	k Infra	structure

IP	Domain Name
[redacted].217	hxxp://[redacted].217/[redacted][.]dotm hxxp://[redacted].217/[redacted]
[redacted].195	redacted.redacted.com
[redacted].165	redacted.redacted.com

Targets and Attribution

Based on the content of the lure message, an aerospace company in the United States was the intended target for both campaigns.

The development of this threat group's toolkit indicates that the operator has been active for at least one year. Exactly who is behind these two campaigns remains unknown.

Conclusions

Given the relatively sophisticated technical capabilities this threat actor deployed and the victim's timelines, we conclude with a high degree of confidence that this was a commercial cyberespionage campaign. Its purpose was most likely to gain visibility over the internal resources of its target in order to weigh its susceptibility to a future ransom demand.

Based on the threat actor's operations timelines — September 2022 and then July 2023 — we can surmise that this shows the group's interest in the target remained consistent between the first and second campaign, as evidenced by the increased complexity of the second campaign compared to the first. During the time that elapsed between the two campaigns we observed, the threat actor put considerable effort into developing additional resources to ensure they could secure access to the sought-after information, and that they could exfiltrate it successfully.

Second Stage	16bd34c3f00288e46d8e3fdb67916aa7c68d8a0622f2c76c57112dae36c76875 885B04081BD89F5E23CBC59723052601
Sha 265 MD5 Sha 265	6d515dafef42a5648754de3c0fa6adfcb8b57af1c1d69e629b0d840dab7f91ec 62D3FF36EC8A721488E512E1C94B2744
Sha 265 MD5 Sha 256 MD5	abc348d3cc40521afc165aa6dc2d66fd9e654d91e3d66461724ac9490030697f A04D2C0AA0A798047161118B5D5816AA

Disclaimer: The private version of this report is available upon request. It includes but is not limited to, the complete and contextual MITRE ATT&CK[®] mapping, MITRE D3FEND[™] countermeasures, Attack Flow by MITRE, and other threat detection content for tooling, network traffic, complete IoCs list, Yara rules, Sigma rules, and system behavior. Please email us at <u>cti@blackberry.com</u> for more information.

For similar articles and news delivered straight to your inbox, <u>subscribe to the **BlackBerry**</u> <u>**Blog**</u>.

Related Reading

About Dmitry Bestuzhev

Dmitry Bestuzhev is Senior Director, CTI (Cyber Threat Intelligence) at BlackBerry.

Prior to BlackBerry, Dmitry was Head of Kaspersky's Global Research and Analysis Team for Latin America, where he oversaw the company's experts' anti-malware development work in the region. Dmitry has more than 20 years of experience in IT security across a wide variety of roles. His field of expertise covers everything from traditional online fraud to targeted high-profile attacks on financial and governmental institutions. His main focus in research is on producing Threat Intelligence reports on financially motivated targeted attacks.

About The BlackBerry Research & Intelligence Team

The BlackBerry Research & Intelligence team examines emerging and persistent threats, providing intelligence analysis for the benefit of defenders and the organizations they serve.

<u>Back</u>